
On the Reliability of Wireless Fingerprinting using Clock
Skews ∗ †

Chrisil Arackaparambil, Sergey Bratus, Anna Shubina, and David Kotz
Dept. of Computer Science, Dartmouth College, Hanover, NH 03755, USA

{cja, sergey, ashubina, kotz}@cs.dartmouth.edu

ABSTRACT
Determining whether a client station should trust an ac-
cess point is a known problem in wireless security. Tradi-
tional approaches to solving this problem resort to cryptog-
raphy. But cryptographic exchange protocols are complex
and therefore induce potential vulnerabilities in themselves.
We show that measurement of clock skews of access points
in an 802.11 network can be useful in this regard, since it
provides fingerprints of the devices. Such fingerprints can be
used to establish the first point of trust for client stations
wishing to connect to an access point. Fingerprinting can
also be used in the detection of fake access points.

We demonstrate deficiencies of previously studied meth-
ods that measure clock skews in 802.11 networks by means
of an attack that spoofs clock skews. We then provide means
to overcome those deficiencies, thereby improving the reli-
ability of fingerprinting. Finally, we show how to perform
the clock-skew arithmetic that enables network providers to
publish clock skews of their access points for use by clients.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]:Network Architecture and De-
sign

General Terms: Experimentation, Measurement, Security

1. INTRODUCTION
Clock skews are the inherent tiny drifts in the clocks of

hardware devices due to variations in the manufacturing pro-
cess. The use of clock skews of devices on a network for the

∗An expanded version of this paper is available [1].
†This article results from a research program in the Insti-
tute for Security, Technology, and Society (ISTS), supported
by the U.S. Department of Homeland Security under Grant
Award Number 2006-CS-001-000001. The views and con-
clusions contained in this document are those of the authors
and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the U.S.
Department of Homeland Security.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’10,March 22–24, 2010, Hoboken, New Jersey, USA.
Copyright 2010 ACM 978-1-60558-923-7/10/03 ...$10.00.

purpose of fingerprinting those devices was first studied by
Kohno, Broido, and Claffy [11]. They showed that it was
possible to remotely measure the microscopic skews of de-
vices, and that their fingerprinting method could identify in-
dividual devices despite errors inherent in remote measure-
ments. Such fingerprinting has innumerable applications,
e.g., in network forensics for identification, and also in pen-
etration testing to identify network systems to know their
weaknesses (the method of Kohno et al. can be used to
identify virtual hosts served by the same physical device).

The study of Kohno et al. focused on the measurement
of skews in wide-area networks by observing timestamps in
TCP and ICMP packets. On the wireless side, Jana and
Kasera [10] studied the approach of Kohno et al. at the
MAC layer of 802.11 networks. They observed that, due
to the essentially zero latency and the availability of a high
frequency stream of precise beacon timestamps, the process
of measuring clock skews became more accurate in these
networks. They also showed that the clock skews of wireless
devices remain consistent over time and changing external
factors like temperature, and that skews vary across devices.
The main application considered in their work was that of
detecting fake APs. Today, tools like rglueap and rfakeap

are readily available that make it easy for an attacker to set-
up an AP that fakes a real one. Identifying fields in 802.11
frames like MAC address, BSSID, and SSID can be easily
set to values desired by the attacker. A client attempting
to associate with the real AP can be diverted to the fake
AP, thus becoming vulnerable to various kinds of attacks.
As pointed out before [9, 10], the attacker may also attempt
to avoid detection of the fake AP by either operating on a
channel different from the real AP, or by offering a stronger
signal to the client.

Our contributions.In this work we show how previous
methods for measuring clock skews are inadequate for fin-
gerprinting and provide a means to overcome the problems
that arise. Our work provides new insights into the imple-
mentation of the 802.11 standard in commodity hardware.
In particular, we present

• a new method to measure clock skew, rather, a more
precise clock to measure it against;

• an attack that spoofs the clock skew of a fake AP to
mimic that of a real one, thereby rendering the two
indistinguishable by the methods proposed previously;

• additional parameters to measure authenticity of the
skew, enabling detection and mitigation of spoofing;

169

• clock skew arithmetic, that enables a network provider
to publish skews of APs in the network independent of
client stations.

The Role of Fingerprinting in Securing Wireless Infras-
tructure. Initially, 802.11 link layer security focussed on
denying network access to unauthorized clients. The en-
tire concept of 802.11 authentication, association, and in
particular the design of the client state machine, proceeded
from the assumption that the primary goal of the security
mechanisms was to protect the network from rogue clients.
The APs were thought of as the “perimeter” of the network,
vested with the role of protecting it against rogue clients.

However, subsequent experience showed that the threat
model underlying this design was inherently flawed. Clients
(with stored representations of trust relationships) turned
to be a much more important piece of the holistic secu-
rity puzzle than previously thought. In fact, they emerged
as the weakest link in the so-called perimeter. Exploiting
network clients by tricking them into establishing connec-
tions to rogue services has become a leading strategy for
both exploitation and penetration testing as evidenced by
an entire BlackHat 2009 track (e.g., [13]) devoted to client
exploitation functionality in the popular Metasploit pene-
tration testing tool. It did not take long till the same attack
approach was realized in 802.11 Layer 2. Crafting malformed
inputs in frame fields quickly emerged as an extremely ef-
ficient attack methodology [6]. This methodology yielded
such achievements as“hijacking a Macbook in 60 seconds”[5]
(by way of a crafted probe response leading to attack code
execution within the ring zero driver kernel context) and
the subsequent automation and refinement of this technique
that revealed other 802.11 driver vulnerabilities— the so-
called “Month of kernel bugs” (see, e.g., [4]).

For setting up fake APs, popular exploitation tools, such
as Karma [15], were developed to meet penetration testers’
demand. Such early attacks were described by wireless se-
curity researchers in [9, 14]. However, such traditional fake
AP scenarios assume successful establishment and mainte-
nance of a layer 3 connection, whereas a new class of attacks
is based on compromising the client at a much earlier point:
either during scanning for available networks or during au-
thentication or association attempts. As such, strong cryp-
tographic schemes for authenticating access points, such as
WPA2-Enterprise, cannot mitigate this threat. Fake access
points thus become a tool of delivering link layer exploits.

As we have seen, establishing trust for an AP can be a
tricky issue for a client. Traditional approaches to such
trust-relationship problems most often find solutions in cryp-
tographic exchange protocols. With respect to wireless se-
curity, the 802.11i RSNA (Robust Security Network Associ-
ation) provides such a functionality. Importantly however,
such protocols that are dependent on cryptography are com-
plex and therefore induce potential vulnerabilities in them-
selves. These protocols must be implemented with great
care. Before involving in complex cryptographic exchange
protocols with an untrusted entity, we propose using clock-
skew fingerprinting as a means of providing a first point of
trust for clients. As such, we propose our methods as a
complement to the existing authentication methods.

The following sections describe our contributions in detail.

2. MEASUREMENT OF CLOCK SKEWS
We first give an overview of the timing and synchroniza-

tion processes in wireless networks as specified in the IEEE
802.11 standard. These processes provide the timing infor-
mation required to compute the clock skews of APs.

In an 802.11 network operating in infrastructure mode,
every station maintains a timer. This timer is synchronized
with the timer in the AP the station is associated with via
a Timer Synchronization Function (TSF). The synchroniza-
tion is achieved through the beacon frames transmitted by
the AP at periodic intervals. The most common setting for
the beacon interval is 100 milliseconds. The beacon frames
contain the TSF timer timestamp of the AP “at the time
that the data symbol of the first bit of the timestamp is
transmitted to the wireless medium,” adjusting for hardware
transmission delays. The timer is of microsecond resolution
and is maintained as a 64-bit counter. Client stations set
their local TSF timers to the values observed from beacon
frames, again, adjusting for hardware delays. This means
that beacon timestamps provide a high-precision mechanism
to measure the skew in an APs TSF timer.

Clock skews.We now define the notion of clock skew as
given by Moon, Skelly, and Towsley [12], and later used by
Kohno et al. [11] and Jana and Kasera [10]. To measure the
clock skew of an AP, we passively monitor the wireless inter-
face of the measuring device for beacon frames from the AP.
For beacon frame i we record the time ti when it was received
and the timestamp Ti in the beacon frame. In this manner
we obtain a set of n measurements (ti, Ti), 1 ≤ i ≤ n. We
found that sampling n = 100 beacons gave sufficient accu-
racy in our experiments (as also observed previously [10]).
We denote by xi the elapsed time since the first beacon was
observed, i.e., xi = ti − t1. Similarly, let wi = Ti − T1. The
quantity yi = wi−xi is called the clock offset of the ith mea-
surement. In this way we get a set of n clock offset points
(xi, yi). Ideally, there should be no relative skew between
the measurer’s clock and the beacon timestamps represent-
ing the AP’s clock, when we would have wi = xi,∀ i ≤ n. In
reality we observe that the clock offset points lie on an ap-
proximately linear pattern that has some non-zero slope. A
linear least square fit (LSF) is used to fit a line y = s·x+c to
the set of clock offset points (yi, xi) by minimizing the least
square error

P

n

i=1
(yi − (s · xi + c))2. The slope of the line

obtained by LSF gives the clock skew of the AP. Skews ob-
served in practice are tiny, but consistent, and are reported
in parts per million (ppm).

Monitor mode synchronization.The timestamps in the
beacon frames form one half of the required information for
estimating clock skews. The measurement of the arrival time
of the beacon frame is an important problem, since its accu-
racy impacts the accuracy of estimation. There were several
clocks considered in [10] to report the beacon arrival time.
The timestamp reported in the Radiotap header in the pcap
field radiotap.mactime was considered. This timestamp is
reported by the driver from the TSF timer maintained by the
wireless hardware. But the approach was abandoned since
the timer values were updated from the incoming beacon
timestamps and hence did not serve as a stable clock. The
approach finally found to work was to use the time reported
by the Linux kernel via the function do_gettimeofday().

170

However, this method too suffers from some drawbacks.
The do_gettimeofday function is implemented using timer
interrupts, and is adjusted in the kernel for anticipated de-
lays. So it could be expected to shift in accuracy, and is only
as accurate as the underlying interrupt mechanism. Also,
since the skew of the clock represented by the function de-
pends on the implementation of the function and underlying
routines, we expect this skew to vary with the updates to
the system. This would require clients to recalibrate their
skew measurements before fingerprinting APs again. We
have observed significant changes in the implementation of
the do_gettimeofday function between kernel releases.

We present a new method of measuring the arrival time of
beacons that is more accurate than using do_gettimeofday.
Since this measurement is critical to estimating the clock
skew, our method leads to more accurate measurements.
Further the clock used in our method is implemented in the
wireless hardware, and hence its skew does not change with
software updates. Our method depends on the synchroniza-
tion behavior of the Atheros chipset based cards that we use.
We explain this behavior now. In the course of our discus-
sion we state some observations and verify them empirically.
These observations turn out to be crucial to our techniques
described in later sections.

For the experiments in the rest of the paper we use two
laptops as measurement stations. These laptops run the
Ubuntu 9.04 GNU/Linux distribution (with kernel 2.6.28-
15) and are each equipped with a wireless card based on
the Atheros 5212 chipset. The Madwifi driver ath_pci is
used with these cards for the measurements. In our experi-
ments we also use two Linksys APs, henceforth referred to
as Linksys 1 and Linksys 2 respectively.

The monitoring performed to capture the beacon frames
is done in the monitor-mode of the wireless interface. The
TSF timer maintained in the wireless hardware is a high-
accuracy microsecond resolution timer, and it would serve
best for our measurements of beacon arrival time, since its
value is provided directly to the driver by the hardware and
is not affected by other processes in the system. However,
this timer was deemed as unusable in [10] because the timer
was kept synchronized to the incoming beacon timestamps
even in monitor mode. We now give a method to use this
timer. It should be noted that in monitor mode, it is not
necessary to synchronize the TSF timer with the incoming
beacon timestamps, since the card is completely passive in
this mode. However, cards with the Atheros chipset con-
tinue to synchronize with the beacon frames observed from
the AP that the card was last associated with. This leads
to an interesting possibility: what happens when the AP
that the card was last associated with becomes inactive and
stops broadcasting beacon frames? In this case the timer
on the card, not being able to synchronize with the beacon
timestamps, should begin to drift with its own skew. And
indeed, this is confirmed empirically with our experiments.
We measured the skew of Linksys 1 and Linksys 2 in mon-
itor mode, by first associating the measuring laptop with
Linksys 2 and then switching the laptop to monitor mode.
We then turned Linksys 2 off and again measured the skew of
Linksys 1. Figure 1 shows the clock offsets points measured
in the different cases, and Table 1 reports the measured clock
skews. Observe that the estimated skew of Linksys 1 varied
significantly before and after Linksys 2 was turned off. Also,
the estimated skew of Linksys 2 was negligible. Note that to

Figure 1: Clock offsets with and without the mea-
suring station syncing its TSF timer with Linksys 2.

similarly measure the skew of Linksys 2 when the associated
AP was turned off, we had to first associate with Linksys 1
and repeat the process. This leads us to the following ob-

Clock Skew
Linksys 1, when synced with Linksys 2 14.37
Linksys 2, when synced with Linksys 2 -0.01

Linksys 1, when not synced 6.68
Linksys 2, when not synced -7.85

Table 1: Clock skew measurements with sample
sizes of 100 beacon timestamps, with and without
synchronization with Linksys 2.

servations.

Observation 1. Given a wireless card in Station mode
and associated with an AP A, when the card is switched to
Monitor mode, it continues to update its TSF timer register
with the beacon timestamps from AP A.

Observation 2. Given a wireless card in Station mode
and associated with an AP A, when the card is switched to
Monitor mode, if AP A ceases to transmit beacons, then the
TSF timer maintained in the wireless card begins to drift
with its own, actual skew.

The next two observations follow from Observation 1.

Observation 3. Given a wireless card in Station mode
and associated with an AP A, when the card is switched to
Monitor mode, the clock skew of AP A as measured by the
card is zero (imperceptible).

Observation 3 suggests that the skew of the measuring card
becomes equal to the skew of the AP it is synchronized with.
From Table 1 it may further be observed that the skew of
Linksys 1 when measured by the card synchronized with
Linksys 2 is approximately equal to the difference of the
skews of Linksys 1 and Linksys 2 when there is no synchro-
nization. We have observed this behavior consistently with
different APs; we omit the data for the sake of brevity. This
indicates that it is possible to compute the skew of a wireless

171

device as measured by another, by passively measuring the
skews of the two devices.

Observation 4. Given a wireless card in Station mode
and associated with an AP A, when the card is switched to
Monitor mode, the clock skew of another AP B as measured
by the card is equal the skew of AP B as would be measured
by AP A.

The issue of performing arithmetic to determine the skew
between a pair of wireless devices is detailed in Section 5.

Our measurement technique.The previous observations
give us a new method of measuring beacon arrival times—
using the TSF timer to do it. For the experiments in the rest
of the paper that use the TSF timer, we use the timer by
first associating with an AP and then switching off power to
the AP. On a client station the same effect can be achieved
by either removing and re-inserting the wireless card, or
even through software by reloading the driver modules. It
may even be possible to power-cycle the card and flush the
state through the driver interface, but we have not verified
this. Our next experiments show that using the TSF timer

Mean Variance
TSF Timer 6.7011 0.0001245

do_gettimeofday -28.1347 0.0659

Table 2: Mean and variance of 10 clock skew mea-
surements (ppm) with the two clocks. Beacon times-
tamp sample size is 100.

Figure 2: Variance in clock skew measurements as a
function of the beacon timestamp sample size.

yields much higher accuracy than using do_gettimeofday.
To compare the two methods we collected 10 sets of beacon
traces with each method. As in [10] we disable NTP to avoid
its effect on the do_gettimeofday method. For each set of
traces we measured the clock skew of Linksys 1 using sam-
ple sizes ranging from 100 beacons to 600 beacons. Then for
each set of traces, and each sample size we computed the
mean and variance of the clock skew. Our observations are
presented in Table 2 and Figure 2 Observe that the variance

of the clock skew when using the TSF timer is consistently
several orders of magnitude smaller that the variance when
using do_gettimeofday function to report the beacon arrival
times. This points to the superior stability and accuracy of
the TSF timer method.

3. VULNERABILITY OF PREVIOUS
MEASUREMENT METHODS

In this section we present a spoofing attack that is able
to fool the method of [10] that relied only on the clock skew
measurement to detect spoofing. Our technique finds its
basis in two key points:

1. Observations 3 and 4 show that a measurement device
measures different clock skews depending on whether
its TSF timer is synchronized with the beacon times-
tamps from an AP, because that timer, being synchro-
nized, acquires the skew of the AP.

2. The Madwifi driver allows the multiple creation of
virtual interfaces (VAPs) for a single physical device.
These virtual interfaces may be in different modes—
station, master, or monitor—and in particular, one
station VAP is allowed to exist along with several AP
VAPs. These virtual interfaces can then be brought
“up” to begin operation.

These points suggest that we might be able to have an AP
VAP and a station VAP, with the station VAP associated
with the real AP, and the AP VAP configured as the fake
AP. Since the two interfaces would share the same hardware
TSF timer, the timer would acquire the skew of the real
AP due to the station VAP associating with it. This skew
would be reflected in the timestamps in the beacons emit-
ted by the AP VAP, thereby spoofing the clock skew of the
real AP. However, carrying out the above attack required
modification of the Madwifi driver. Details of the modifica-
tion are in the full version of the paper [1]. Table 3 shows
the skews from four measurements. It can be seen that it is
not possible to detect the fake AP by comparing the clock
skew alone, with a reasonable degree of certainty. Figure 3
shows the clock offset points from the two APs. The syn-
chronization behavior produces periodic dips in the plot. In
Section 4 we show how to capture this behavior to measure
of the reliability of the clock skew. The authors of [10]

Real skew Real intercept Fake skew Fake intercept
16.79 0.53 16.78 -2.13
16.82 0.51 16.69 1.43
16.80 -0.02 16.74 -1.34
16.81 0.17 16.78 -1.10

Table 3: Skews and intercepts from real & fake AP.

present several arguments showing why the skews of APs
cannot be fabricated. The failing assumption made in their
arguments is that the attacker, on knowing the clock skew
of the the real AP, would need to perform arithmetic with
his local timer values to compensate for his own skew. Our
attack does not measure the skew of the real AP in advance
and try to compensate for it, so we do not suffer from the
effects of transmission delays and computational overheads.

172

Figure 3: Clock offsets with 100 beacon timestamps
from the real AP and the fake AP.

Real skew Real intercept Fake skew Fake intercept
17.35 -0.78 16.29 71.49
17.29 0.70 17.58 -10.63
17.26 -0.46 17.54 -10.49
17.25 -0.19 16.49 -19.53

Table 4: Clock skews and line intercepts from the
real and bridged fake AP.

Extending the scope of the attack
We now show how the scope of the attack can be extended
by using a “bridge” AP. The function of the bridge AP is
to allow the attacker to move the fake AP to cover a wider
range (perhaps in order to be out of range of the real AP),
or to operate in a different channel, all while still spoofing
its clock skew. The bridge AP synchronizes its TSF timer
with that of the real AP as described earlier, and the fake
AP synchronizes its timer with that of the bridge AP. To
operate on a different channel we take advantage of the fact
that frequency ranges of adjacent channels as prescribed by
the 802.11 standards overlap.

In our experiment we have the real AP operating on chan-
nel 11, the bridge AP on channel 10, and the fake AP on
channel 9. Our results from four traces are shown in Table 4
and Figure 4. As it may be expected, the quality of spoofing
degrades due to the bridging, but the clock skew of the fake
AP is still fairly close to that of the real AP.

4. IMPROVING THE RELIABILITY OF
FINGERPRINTING

We now present techniques to mitigate the risks of at-
tacks like those presented in the last section, by gauging the
reliability of the measured clock skews.

Line-fitting error. The most straightforward approach is to
measure the error in line fitting. We observed that the spoof-
ing attack in the previous section introduced an artifact—
the dips in the plots of clock offset points in Figures 3 and 4.
There are several ways to measure these fluctuations. First,
we consider the y-intercept c of the fitted line y = s · x + c.

Figure 4: Clock offsets with 100 beacon timestamps
from the real AP and the bridged fake AP.

Since, in the ideal case, the line passes through the origin,
the absolute value of the intercept serves as one parameter
to measure the fitting error. Tables 3–4 show the values of
the parameter c with our attacks. The absolute value of c
for the fake AP is higher than that for the real AP.

We also consider the jitter of the beacon timestamps as
a means to measure clock skew reliability. Given a set of
clock offset points, the jitter is γ =

P

n−1

i=1
|yi+1 −yi|/(n−1)

and provides a measure of the temporal variations in the
beacon timestamps. We defer the measurements of jitter in
our attacks to the next section, where we analyze the effect
of beacon interval on our attacks.

Beacon c c
change

γ γ
change

interval real fake real fake
25 0.20 2.13 965% 0.50 3.1 520%
50 0.58 1.23 112% 0.84 3.34 298%
100 0.31 1.50 384% 1.71 3.11 82%
200 0.40 1.68 320% 3.43 3.88 13%

Table 5: Variation in parameters c and γ with dif-
ferent values of the beacon interval.

Analysis of beacon-interval on skew measurements.The
value of the beacon interval of the AP affects the ability of
the attacker to spoof its clock skew with our attack. When
the beacon interval is set to smaller values, the attacker
needs to present a finer-grained clock via the beacon times-
tamps. At lower beacon intervals the fluctuations in the syn-
chronized clock of the attacker become more prominent since
the various processing delays play a relatively larger role. To
validate this hypothesis we perform our attack with different
settings of the beacon interval parameter, and measure the
parameters c and γ described earlier for testing the reliabil-
ity of clock skew measurements. On plotting the clock offset
points for this experiment (see full version [1]), we observe
that the dips in the plots (such as those seen in Figure 4)
increase in magnitude as the beacon interval is reduced. In
Table 5 and Figure 5 we show the variation of the param-
eters c and γ with different beacon intervals. We observe

173

Figure 5: Variation in parameters c and γ with dif-
ferent values of the beacon interval.

that the changing magnitude of the dips is captured very
well by the jitter parameter γ, and to a good extent also by
the intercept c. Thus, to avoid clock skew spoofing attempts
it is advisable to use a beacon interval that is as small as
permissible, and use the parameters c and γ to gauge the
reliability of clock skew measurements.

5. SKEW ARITHMETIC
In this section we show how to perform arithmetic with

clock skews. For example, if we know the clock skew sAB

of AP B as would be measured by AP A, then we can com-
pute the skew sBA, i.e., the clock skew of AP A as would
be measured by AP B. After doing the necessary deriva-
tion and approximation (see full version [1] for details), we
find that the intuitive formula sBA = −sAB turns out to
work well in theory and in practice. We can also compute
the clock skew sBC of AP C as measured by AP B, when
given the clock skews sAB and sAC . After doing necessary
derivation and approximation [1] we again find that that the
intuitive formula sBC = sAC −sAB works well in theory and
in practice.

Unlike Jana and Kasera’s proposal [10], where the fake
AP detection procedure was meant to be implemented in a
Wireless Intrusion Detection System (WIDS) node, in our
work we even enable the measurements to be done on wire-
less clients themselves. This requires the use of skew arith-
metic. To determine whether to trust an AP by measuring
its clock skew, the client must know the skew of the real
AP beforehand. Since the clock used by the client has a
skew of its own, it would be necessary for the client to have
measured the skew of the real AP using its own clock be-
forehand. However, the ability to perform skew arithmetic
eliminates this requirement. Network providers can publish
the skews of the APs in their network as measured against a
high-precision clock of negligible skew. Then to measure the
skew of an AP using skew arithmetic, the client only needs
to know the skew of its own clock against a similar high-
precision clock. The process is simplified further if network
card vendors measure and publish the skews of the cards
they produce at the time of testing.

6. RELATED WORK
Existing methods of passive L2 fingerprinting of 802.11

client stations aimed to improve client identification for de-
fensive or forensic purposes by verifying facts about the
client. Franklin et al. [8] fingerprinted clients based on the
clients’ driver-specific probing behavior, and Ellch [7] finger-
printed clients based solely on statistical distributions of the
2-byte NAV field in established client connections.

A passive method for detecting fake APs was presented
by Bahl et al. [2]. The anomaly in sequence numbers in
beacons from the real and fake APs was used to detect the
fake AP. For the case when the two APs are not active to-
gether, location-based detection was suggested. Still, it was
observed [10] that even such methods are not very reliable,
and fail if the attacker is able to position his AP carefully.

Bratus et al. stress [3] the importance of protecting clients
from APs in the early stages of connection before cryptog-
raphy based trust in the AP could be established, and pro-
posed an active fingerprinting scheme that tested certain
properties of the AP before accepting complex data from it.

7. REFERENCES
[1] Chrisil Arackaparambil, Sergey Bratus, Anna Shubina, and

David Kotz. On the Reliability of Wireless Fingerprinting
using Clock Skews. Technical Report TR2010-661, Dartmouth
College, Computer Science, Hanover, NH, January 2010.

[2] Paramvir Bahl, Ranveer Chandra, Jitendra Padhye, Lenin
Ravindranath, Manpreet Singh, Alec Wolman, and Brian Zill.
Enhancing the security of corporate wi-fi networks using dair.
In MobiSys ’06: Proceedings of the 4th international
conference on Mobile systems, applications and services,
pages 1–14, New York, NY, USA, 2006. ACM.

[3] Sergey Bratus, Cory Cornelius, David Kotz, and Daniel
Peebles. Active behavioral fingerprinting of wireless devices. In
WiSec ’08: Proceedings of the first ACM conference on
Wireless network security, pages 56–61. ACM, 2008.

[4] Laurent Butti. Wi-Fi advanced fuzzing. Black Hat Europe,
February 2007.

[5] Johnny Cache and David Maynor. Hijacking a MacBook in 60
seconds. Black Hat, August 2006.

[6] Johnny Cache, H D Moore, and skape. Exploiting 802.11
wireless driver vulnerabilities on Windows. Uninformed.org, 6,
January 2007.

[7] J.P. Ellch. Fingerprinting 802.11 devices. Master’s thesis, U.S.
Naval Postgraduate School, September 2006.

[8] Jason Franklin, Damon McCoy, Parisa Tabriz, Vicentiu
Neagoe, Jamie Van Randwyk, and Douglas Sicker. Passive
data link layer 802.11 wireless device driver fingerprinting. In
Proceedings of 15th USENIX Security Symposium, pages
167–178. USENIX, August 2006.

[9] The Shmoo group. 802.11 bait, the tackle for wireless phishing.
Toorcon, October 2005.

[10] Suman Jana and Sneha Kumar Kasera. On fast and accurate
detection of unauthorized wireless access points using clock
skews. In MobiCom ’08: Proceedings of the 14th ACM

international conference on Mobile computing and
networking, pages 104–115. ACM, 2008.

[11] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote
physical device fingerprinting. IEEE Transactions on

Dependable and Secure Computing, 2(2):93–108, 2005.

[12] S.B. Moon, P. Skelly, and D. Towsley. Estimation and removal
of clock skew from network delay measurements. In IEEE
INFOCOM ’99, volume 1, pages 227–234, March 1999.

[13] H D Moore. Mastering the Metasploit framework.
http://www.blackhat.com/html/bh-usa-09/train-bh-usa-09-
hdm-meta.html, July
2009.

[14] Simple Nomad. Hacking the friendly skies. Shmoocon, January
2006.

[15] Dino A. Dai Zovi and Shane ”K2” Macaulay. Karma.
http://trailofbits.wordpress.com/karma/.

174

