
The Intemet Programming Contest: A Report and Philosophy

Owen Astrachan Vivek Khera David Kotz

Duke University Duke University Dartmouth College

ola@cs.duke.edu khera@cs.duke.edu David.Kotz@dartmouth.edu

(listed alphabetically)

Abstract

Programming contests can provide a high-profile method for
attracting interest in computer science. We describe our phi-
losophy as it pertains to the purpose and merits of program-
ming contests as well as their implementation. We believe
that we have successfully combined the theoretical and prac-
tical aspectsof computer science in an enjoyable contest in
which many people can participate.

The contests we describe have distinct advantages over
contests such as the ACM scholastic programming contest.
The primary advantage is that there is no travel required-the
whole contest is held in cyberspace. All interaction between
participants and judges is via electronic mail.

Of course all contests build on and learn from others, and
ours is no exception. This paper is intended to provide a
description andphilosophyof programming contests that will
foster discussion, that will provide a model, and that will
increase interest in programming as an essential aspect of
computer science.

1 Introduction

Programming contests can provide a way of attracting in-
terest in computer science, of honing analytical skills, and
of having fun. Contrary to methodologies espoused in [8]
and debated in [7], we hold the view that programming com-

puters is an integral part of computer science accessible to

beginning students. Programming can be used to develop

theoretical concepts in an environment that provides imme-

diate and useful feedback.

The type of problem used in a contest and the method

of administering a contest have a significant impact on the

contest’s success both from the point of view of those partic-
ipating in the contest and from the validity of the contest as
viewed by computer scientists. Of course the difficulty of the

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notica and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, raquires a fea

and/or specific permission.

ACM-24thCSE-2/93 -lN, USA

e 1993 ACM 0-89791 -566 -6/93 /0002 /0048$1.50
,

problems in a contest should depend on the level of expertise

of the contestants one expects harder problems in a contest
in which graduate students compete than in a contest for high

school students.

In this paper we report on a philosophy of programming

contests and its realization in a global contest open to any

individual and group with access to electronic mail. Par-

ticipation in this contest has grown considerably since its
inception two years ago. The first contest [2] was only

“advertised” on one Usenet news group (comp. edu) one

week prior to the contest date in October, 1990. Even with

this short notice the contest was truly global; teams partic-

ipated from the United States, Canada, Sweden, Australia,

and New Zealand. Although we had anticipated a handful

of teams, over 60 competed in the three hour contest which

was held in real-time over the Intemet. There were 330 pro-
gram submissions processed semi-automatically in this three

hour period. The second contest, held in November 1991,

was eagerly anticipated by many participants of the fist con-

test. This contest was announced much earlier and to a wider

group of people. This resulted in a drastic increase in the

number of participants, again more than we expected. Ad-

ditional countries represented included Finland, the United

Kingdom, India [1], Guatemala, and Belgium. There were

over 200 teams from more than 100 sites (including one high

school). This contest lasted three and a half hours during

which there were 713 program submissions. The third con-

test, held in November 1992, involved approximately 290

teams — a roughly 40% increase in participation compared

to the 1991 contest. Teams came from at least 14 countries

on five continents. New countries included Chile, Brazil,

Hong Kong, and LMmani3 there were also two high schools

fielding teams. During the three hour contest, 890 program

submissions were judged.

2 A Contest Rationale and Manifesto

The Intemet Programming Contest (WC) was inspired by

and modeled after the ACM scholastic programming con-

test [6, 4,3, 5], but designed with a different philosophy than
that contest. Our primary purpose was to foster interest in
the contest, to allow anyone to compete, and to have fun. We

48

wanted our programming problems to be challenging and to

test knowledge of fundamentally important topics in com-

puter science, but to be entertaining as well. Our goal was

not to test typing speed, but thinking sped all of our prob-

lems have solutions of less than 200 lines of code. Because

the PC awards no prizes other than bragging rights, we do

not have the same worries inherent in a contest such as the

ACM contest which awards prizes of considerable value. For

example, we make our solutions and our test data available

immediately upon conclusion of the contest, which the ACM

contest has not been able to do. Perhaps this is because we

are free to be second-guessed by contestants when the contest

is over since not as much is at stake.
Although the description of the 1988 ACM contest [6]

included a methodological description of problem selection,
such descriptions have been absent from the reports on the
most recent contests [4, 3] (no report on the 1989 contest
appeared in a SIGCSE bulletin). Our philosophy closely
matchesthe description given for problem design in the 1988
ACM contesc

Problems requiring solutions of more than about
150 statementsare immediately suspect. . . . Addi-
tionally, problems should be interesting and novel
(or at least exhibit some novel twist), should re-
quire solutions demonstrating knowledge of com-
puterscience, and should allow comprehensive and
definitive testing of purported solutions.

We also wanted to encourage participation at all levels.
The ACM contest has, properly, restricted the level of the
contestants in the past three years. Whereas the 1990 ACM
contest permitted contestants at any level of graduate study,
the past two contestshave required teams to consist primarily

of undergraduate students with graduate students restricted

to those in their first two years of study. In addition, the

number of contestants per team has decreased from four to

three. We agree with the principles motivating these changes

the contestants should be on a roughly equal footing. Again,

because only bragging rights are awarded in the IPC we

have an open division in which anyone may compete. In

the 1991 contest this division included several faculty and

industrial teams. If we have erred, perhaps it has been on

the side of difficulty many teams were notable to solve any

problem in the 1991 contest. In 1993 we plan to offer another

division intended for those in their first years of study. The
problems in this category will be easier than those we have

used in the past. Since we depend only on an honor system to

enforce proper team placement, this should be of great value
in increasing participation and satisfaction,

Finally, as far as we are aware, this is the fist global pro-

gramming contest held in cyberspace. The term Internet

Programming Contest is a slight misnomer, because the par-

ticipants do not really need to be on the Intemet, they just

one ACM regional contest is run in a distributed manner (the

Mountain Region permits teams to travel to one of severat

regional sites), this kind of distributed solution is problematic

since, for example, problem clarifications need to be caior-
dinated in some manner. Holding the contest in cyberspace

using electronic mail eliminates travel expenses, increases

the level of automation, and considerably decreases the cctm-

puter and personnel resources needed by the contest host.l

This allows broader participation by the teams, and allc)ws

the organizers to put more effort into producing a quality

problem set.

3 A Closer Look at Problem Sets

The problems used in the contests must also be teaching tools.

We feel that good problems will challenge people to be prob-

lem solvers, not just programmers. To this end, we design all

of our problems with the goal that the contest. should reward

problem-solving speed rather than typing speed. Each of

our problems also includes a background section describing

the relevance of the task to real-world problems or computer

science theory.

As is often the case with problems from the ACM regional

and nationrtt contests, many of our problems are veiled de-

scriptions of common computer science algorithms, such as
finding the shortest path in a graph, determining the mini-

mum spanning tree, or Ending the convex hull of a set of

points. Other problems involve solving atgebraic or geomet-

ric problems, financial calculations, simplified VLSI tasks,

robotics, automatic program generation, and artificial intelli-

gence. None of our problems require tricky input or output

processing. We do have some problems that are of the “just-

for-fun” variety such as “The Cat in the Hat” [9] problem,

which appeared in the 1991 contest in memory of the late

Theodore Seuss Geisel.

We also design the problems so that the choice of a naive

atgorithm would likely result in a program that would not

work on all possible test cases. This requires the participants

to read the specifications carefully and take into consideration

the problem size when deciding on algorithms and in making

design deeisions.

Finatly, from a practical standpoint, the problems are rig-

orously proofread by several other programming contest vet-

erans, and a solution is written by at least one person who

is not the problem’s author. This process refines the prob-

lem specification to eliminate most of the clarifications in

advance.

need fast electronic mail access. This permits many teams l~e F& 1992 ~d-A~tic regional contest was conducted in a dis-

that would be unable to participate in some contests for finan- tributed manner using tbe software we developed for tbe Intemet Prosmm-

cial reasons to participate in our contest. Although at least rningcontest.

49

4 Logistics

Each participating site is expected to have a contest admin-

istrator to install the needed software and to make printed

copies of the problem set. The administrator is the contact

person to whom all pre-contest mailings are sent. The initial
mailing includes full contest rules, contest guidelines, and

software for submitting problems. This is sent out several

days prior to the contest so that the software can be tested

and the materials distributed. The day before the contest, the

problem set is sent to the administrator, with instructions to
keep it secret until the start of the contest. The contestants

only know that there will be between three and ten problems.

Due to the global nature of the contest, any starting time

would inconvenience people in at least onetime-zone. Some

sites would start the contest at 3AM local time, while others

would start at 3PM local time. We therefore select a starting

time that is convenient for us (early evening).

Starting onehourprior to the contest start time,each team is

required to run a registration program. This program prompts

them for some information (names, education level, elec-

tronic mail address, etc.) and then sends an electronic mail

message to contest headquarters. Once the message is re-

ceived and processed, an acknowledgment is sent to the team

with their assigned team number. All fiwther correspondence

relies on this team number for identification. Each team may

have up to four team members, and is placed into one of three

categories for scoring purposex2

I All undergraduates or high school students.

. At l-t two undergraduates

. No member with more than two years in graduate

school

● No member with a Ph.D. degree.

III Open (everyone else)

When local time coincides with the contest starting time,
each team is given a copy of the problems by the local ad-
ministrator. The teams then have three hours from this time

to complete and submit all work. All timing is done using the

local clock on the team’s computer to avoid problems with

clock skew and mailing delays.

Once a team has decided that a problem is completed,

they run a submission program which prompts them for their

team number, the problem number, the language used? and

the name of the file containing the program. This information
is packaged and sent via electronic mail to Duke where the

program is compiled and run with our secret test cases. One

Zwe @a to di~de division I into two diviSiOnS fOr the 1993 COnt@.
3we ~umntiy ~ccqt su~5sims in ~assic or NW C, Pascal. HaskeL

Ada, and Sehemq the languages used in the future may change to include,

for example, C++.

of the following results of judging are sent back to the submit-

ting team: (a) Correct, (b) Incorrect Output, (c) Incorrect

Output Format, (d) Incomplete Output (e.g., no output for

some test cases), (e) Compiler Error, (9 Rurttime Error, or

(g) RuntimeLimitExceeded (one minute wall-clock time on

the judges’ machine).

Any questions about the problems are submitted by run-

ning another program called clarify. This program is like

the submission program, but sends a question rather than a

program.

5 Results

The results of the 1990 contest are presented in Table 1 for

the three divisions. Only the top three teams in each division

are listed. Only one team was able to solve all six problems.

Final standings from the 1991 contest are presented in

Table 2 by division. No team solved all six problems, nor did

any one team attempt to solve them all. Based on this data

and post-contest comments from the contestants, we believe
that the problems in this contest may have been a little bit too

mathematically oriented for many participants.

The final results from the third programming contest are

summarized in Table 3. Of the six problems presented, 127

teams were able to solve at least one. Each of the problems

was solved by some team and two teams solved four prob-

lems. Scheme was introduced as a new language in 1992.

On an experimental basis, a few teams used Hrtskell and Ada.

Next year, these will be officially supported, along with some
other new languages.

6 Implementation details

The contest software used by the contestants, consisting of
threeprograms called register, submit, and clarif y,

is very Unix-centric, but we have been able to cope with

submissions from a few non-Unix sites. We assume the

existence of some of the basic tools that are traditionally

standard under Unix (e.g., seal, awk, and Mai- 1). Almost

all of the judging software was written using Perl scripts.

At the judges’ machine, the receipt, unpacking, compiling,

running, and initial testing of program submissions is com-
pletely automatic. We cdl this process RobeJudge. Careful

specification of the problems allows for our software to eas-

ily test a submitted program’s output for correctness. Only

when a submission appears to be incorrect is it necessary for

a human judge to intervene and decide on a score. Recording

and reporting the score is also automated.

Scoring the problems also involves taking into account the

amount of time a team took to solve a problem. Therefore

we use the submission time (as recorded by the submit

program), rather than receipt time, in our calculations. Since

we assume that each team starts the contest when their local

clock reaches the appointed start time, the use of submission

50

Rank Solved Institution Team Name

Division I

1 5 Carnegie-Mellon University Brand X

2 3 Williams College Brain Lecture

3 2 St. Olaf College
Division II

1 4 Duke University Team 1
2 3 Michigan StateUniversity Students
3 3 University of Virginia

Division III
1 6 University of Maryland Defending National Champs!
2 4 University of Tennessee
3 4 University of Maryland Terrapins

Table 1: 1990 contest results

Rank Solved Institution T&un Name

Division I

1 4 University of Linkoping, Sweden Team Lysator

2 4 University of Maryland 7-11 cashiers

3 3 Rice University The Screaming Schemers

Division II

1 4 University of Pennsylvania Dining Philosophers
2 4 Virginia Tech Fighting Gobblers

3 4 University of Waterloo WatBrains.
Division III

1 4 University of Central Florida Old Timers
2 4 Univ. of Sydney Australia LUD Industries
3 4 Sun Microsystems Rocky Mountain Technology Center

Table 2 1991 contest results

Rank Solved Institution Tam Name

Division I

1 4 Virginia T&h Virginia Tech 1

2 3 Rice University Screamin’ Schemers

3 3 Oberlin College Macho Hacker Geeks

Division II
1 3 Stanford University Cardinal Sin
2 3 University of Waterloo WatTheHell
3 3 Linkoping University, Sweden Team Proj-P +

Division III
1 4 University of Maryland Battle-Scarred Hackers Anonymous
2 3 University of Hildesheim Joghurt

3 3 Carnegie Mellon University CHEM

Table 3: 1992 contest results

51

time is a valid measure of the elapsed time taken to solve a

problem. To handle multiple time zones, we used Universal

Time (i.e., Greenwich Mean Time) for all time values.

Most of the automation relied on the coordination between

the submit program and RoboJudge. The submit program

carefully formats the email messages it sends so the judging

programs can identify the problem being attempted, the com-

piler to use, and the team being judged. The regist er and

c 1 a r i f y programs also use fixed-format email messages to

automate and speed their processing.

When a message arrives at the judging machine, it is iden-

tified and placed in an appropriate bin: registration request,

clarification request, judge request, or a special bin for unrec-

ognized mail. RobeJudge picks problems to judge from the

judge request bin. Similarly, the contest registration program

uses the registration request bin, The clarification requests

are picked up by a clarification response program run by one
of the judges. Because of the existence of RobeJudge, one

human judge can monitor and handle several judging ses-

sions at once. Five human judges are able to process several

hundreds of submissions during a three-hour contest, with a

typical submission requiring less than two minutes process-

ing time, from receipt to response.

7 Conclusion

We have received many positive comments about the contests

and are pleased that they have been successful. We thank

the Department of Computer Science at Duke University for
allowing us to use the computing resources that we needed

to run these contests.

We believe the contests were fun for all involved. We

certainly enjoyed organizing and running them. The tension

level at Contest Central (the room in which judging takes

place) was intense during evenings that the contest was held.

Post-contest enthusiasm was high, and several people have

volunteered to help in future contests.

We hope that the 1993 contest, and future contests, will

continue to elicit the same degree of enthusiasm as have past

contests.

Finally, we hope that other contest administrators will use

our contest as inspiration for new contests and as an impetus

towards developing a contest philosophy. An explicit prob-

lem philosophy is an important part of ensuring a successful
contest, though we do not anticipate that all will share ours.

7.1 Contest materials

Acknowledgments

We would like to thank the following people for their support

and help in running these contests Lars Nyland, Steve Tate,

Dave Reed, Amr Fahmy, dlafur Gudmundsson, and Rob

Kolstad. We also want to thank our advisors for realizing

that time spent away from research in developing this contest
was not time lost, but time well-spent.

References

[1]

[2]

[3]

[4]

[51

[6]

[7]

[8]

[9]

KSR Anjeneyulu. Report on the 2nd Intemet Program-

ming Contest. The SofmareBulletin, Number 1, Janum-y

1992. Published by the National Centre for Software

Tmhnology (NCST) in Bombay, India.

Owen Astrachan, Vivek Khera, and David Kotz. The

Duke Intemet Programming Contest. Technical Report

CS-1990-21, Duke University, Durham, NC 27706, De-
cember 1990.

J. Comer, J. Perry, B. Poucher, R. Rinewald, and S. Wde-

man. Results and Problems From the 1991 ACM

Scholastic Programming Contest Finals. SIGCSE Bul-

letin, 24(2):48-54, 1991.

J. Comer, J. Perry, B. Poucher, R. Rinewalt, and S. Wile-

man. Results and Problems From the 1990 ACM

Scholastic Programming Contest Finals. SZGCSE Bul-

letin, 22(4): 15-22,1990.

J. Comer, R. Rinewalt, P. Ryan, and W.B. Poucher. The
ACM Scholastic Programming Contest — 1977 to 1990.

In The Papers of the Twenty- fzrst Technical Symposium

on Computer Science Education, page 256. ACM Press,
February 1990. SIGCSE Bulletin V. 22 N. 1.

L.E. Deimel. Problems from the 12th Annual ACM

Scholastic Programming Contest. SIGCSE Bulletin,

20(4):19–28, 1988.

Edsger Dijkstr% David Pamas, William Scherlis,

M.H. van Emden, Jacques Cohen, Richard Hamming,

Richard M. Karp, and Terry Wmograd. A Debate on

Teaching Computer Science. Communications of the

ACM, 32(12): 1397–1414, December 1990.

Edsger W. Dijkstra. On the Cruelty of Really Teaching
Computer Science. In SIGSCE Technical Symposium on

Computer Science Education, pages xxv–xxxix, 1989.

Dr. Seuss. The Cat in the Hat Comes Back. Basic Books.

Random House, 1958.

The contest materials for the three contests held so far are

available via anonymous ftp from the host cs. duke. edu

in the directory dist /mist/acm-contest. Materials

found in this directory are the problem sets, copies of com-

plete results, and the software needed to run the contest.

52

