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ABSTRACT

Researchers strive to understand eating behavior as a means
to develop diets and interventions that can help people
achieve and maintain a healthy weight, recover from eat-
ing disorders, or manage their diet and nutrition for personal
wellness. A major challenge for eating-behavior research is to
understand when, where, what, and how people eat. In this
paper, we evaluate sensors and algorithms designed to detect
eating activities, more specifically, when people eat. We com-
pare two popular methods for eating recognition (based on
acoustic and electromyography (EMG) sensors) individually
and combined. We built a data-acquisition system using two
off-the-shelf sensors and conducted a study with 20 partic-
ipants. Our preliminary results show that the system we
implemented can detect eating with an accuracy exceeding
90.9% while the crunchiness level of food varies. We are
developing a wearable system that can capture, process, and
classify sensor data to detect eating in real-time.

1. INTRODUCTION

Intake monitoring plays an important role in preventing
and treating many diseases including obesity and diabetes.
In contrast to many commercial sensing devices that mea-
sure physical activity (caloric output) such as Fitbit, similar
devices to track eating (caloric intake) have lagged behind.
Accurate eating recognition is the basis for automatic dietary
monitoring and can help trigger other kinds of sensing or
inquiries. For instance, a wearable camera could be trig-
gered when the eating recognition system detects eating; a
digital food journal, which includes times and durations of
eating and pictures of food, can be generated and sent to
nutritionists for analysis.

Despite substantial research on technology for automatic
eating recognition [1, 2, 5, 7, 12, 6], the most common method
is still manual record-keeping. It has not yet been possible
to accurately and automatically detect eating outside the
lab; thus our interest is to make a wearable system robust
enough for free-living scenarios. To move from laboratory
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environments into the wild, there are many challenges in
implementing such a system. First, in out-of-lab settings, a
variety of environmental noise and subject activities could be
misclassified as eating. For instance, coughing may trigger
sensor readings similar to those encountered when eating.
Second, the material properties of food (e.g., hardness) vary
significantly, which require different chewing forces and result
in different measurable signals. For soft food like yogurt,
the chewing process only generates low-amplitude signals
and is challenging to detect, while harder foods like carrots
generate high-amplitude signals and are relatively easier to
detect. Lastly, it is challenging to build a system that is
energy-efficient, unobtrusive and comfortable to wear for an
entire day.

The main contributions of this paper are 1) a comparison
between two sensing modalities (acoustic and EMG) in terms
of performance and usability for free-living scenarios, and
2) demonstrations of the potential for implementing this
system as a robust wearable for long-term use in free-living
scenarios.

2. BACKGROUND

We first define the term eating used in this paper as “an
activity involving the consumption of food and consisting
of chewing and swallowing.” Detecting the occurrences and
durations of eating is the foundation of all other objectives
for automatic dietary monitoring, such as food classification
and calorie content estimation. Below is a brief overview of
common existing methods, which we categorize into three
main types: acoustic, EMG, and other.

2.1 Acoustic approach

There are two main types of acoustic sensors: microphones
designed for recording sound from the air, and contact mi-
crophones designed for recording sound conducted through
a solid [8]. Amft et al. evaluated the air-conducted sound
intensity of chewing and speech when a microphone is placed
at different locations on or near the body [1]. They found
that the best microphone position is inside the ear canal,
directed towards the eardrum. A microphone placed at this
location can capture body-generated sound at a higher mag-
nitude than ambient noise. Papapanagiotou et al. proposed
a system that integrates a microphone and a PPG sensor in
an ear hook, connected via wire to a data logger equipped
with an accelerometer [7]. They evaluated their system in a
semi-free-living scenario on 14 subjects and achieved an F1
score of 0.761 for eating detection.



Contact microphones have an advantage over conventional
microphones because they only capture vibrations directly
from the body surface and naturally avoid ambient noise.
Rahman et al. designed a wearable sensing system consisting
of a customized contact microphone, an ARM microcontroller,
and an Android smartphone [8]. They achieved an average
recall of 71.2% for a nine-class classification of different body
sounds in laboratory conditions.

2.2 EMG approach

Electromyography (EMG) may be effective in detecting
eating, because EMG sensors can capture the movement of
muscles used for eating — if the sensor is placed on the
correct locations. Zhang et al. fused three electrodes into a
3D-printed eyeglass frame to capture muscle signals during
chewing [12]. They achieved a precision and recall of 80%
for chewing detection in laboratory conditions and compared
signal performance for various electrode placements, sizes,
and types. They further developed Bite Glasses, which
integrated EMG electrodes and a vibration sensor into the
eyeglass frame to identify chewing and texture of food [11].

2.3 Other approaches

Other methods involve inertial sensors, piezoelectric sen-
sors and proximity sensors. The inertial approach focuses
on extracting motion patterns during the eating process,
especially wrist motion. Shen et al. used a customized wrist-
worn device to record the process of eating a single meal
for 271 participants [9]. Piezoelectric sensors are capable of
producing a voltage at their terminals in response to me-
chanical stress [10]. By placing a piezoelectric film against
the throat, Kalantarian et al. developed a necklace that
can detect changes in mechanical stress on necks during the
swallowing process [5]. Another novel method uses three
proximity sensors in an earpiece to monitor jaw movement
by measuring ear-canal deformation during chewing [2].

3. APPROACH

Our goal is to develop a wearable device that can last
a waking day and recognize eating in free-living scenarios.
Researchers have explored several body locations for eating
detection, which include inside the ear canal [1, 2, 7], against
the throat [5, 8], and on the wrist [9]. To ensure user comfort
for long periods of time and not impede hearing during daily
activities, placing sensors inside the ear canal may not be
acceptable. The throat is physically close to the location
of swallowing, but placing sensors against the throat may
be considered too obtrusive by users. Wrist-worn devices
tend to be unobtrusive and acceptable to the public, but
wrist motion is relatively limited for eating detection and we
expect it to be difficult to achieve high accuracy, especially
in free-living scenarios.

We chose to place sensors behind the ear; this location is
physically close to where chewing happens, giving us access
to sound, motion, and electromyographic activities related
to eating. A device placed behind the ear does not impede
hearing and could be minimized in size to be physically
unobtrusive (as in modern hearing aids).

3.1 Bench-top apparatus

We evaluated two off-the-shelf sensors for a behind-the-ear
device: a contact microphone (CM-01B, Measurement Spe-
cialties) and an EMG sensor (AT-04-001, MyoWare Muscle

Sensor). Both sensors are connected to a data acquisition
device (DAQ) (USB-1608G, Measurement Computing) with
a 20 kHz sampling rate and a 24-bit resolution, while the
data collected is processed and analyzed on a laptop.

As shown in Figure 1, the location we used for acoustic
sensing is the tip of mastoid bone, a relatively hard surface
behind the ear. We fixed the contact microphone under a
headband during data collection to maintain stable contact
with the body. For the EMG sensor, we used three Ag/AgCl
electrodes with gel (24mm in diameter), placed as shown
in Figure 2. The ground electrode can be placed anywhere
on the body as long as it is relatively far away from the
other two electrodes. For convenience, we placed the ground
electrode on the back of participants’ necks. Figure 3 shows
an experiment setup where both sensors are attached to a
participant.

Figure 1: Contact
microphone

Figure 2: EMG Figure 3: Experi-
electrodes ment setup

3.2 Wearable apparatus

In addition, we developed a wearable device (Figure 4).
Based on the results in Section 5.2, we chose to incorporate
only a microphone in our wearable device. We fused the
contact microphone, microcontroller (ATSAMD21, Spark-
Fun), SD card and 400 mAh battery into a headband. For
this preliminary prototype, we expect the battery life to be
at least 8 hours. We plan to test it in out-of-lab, day-long,
free-living scenarios.

Battery

Contact
Microphone
Microcontroller

SD Card

Figure 4: Wearable apparatus

4. METHOD

Our experiments involved multiple stages including data
collection on the bench-top apparatus, feature extraction,
feature selection and classification on a laptop.



4.1 Data Collection

With the approval of our Institutional Review Board (IRB),
we collected data from 20 participants (8 females, 12 males;
aged 21-30). For the first 10 participants, we collected data
using both contact microphone and EMG sensors. Based on
the experiments with the first 10 participants (Section 5.2),
we concluded that the EMG sensor was infeasible for free-
living scenarios and provided only limited improvement to the
accuracy of eating detection. We thus collected data from the
second 10 participants using only the contact microphone. All
the activities listed in Table 1 were performed, in sequence,
by each participant. The total duration of both positive
cases (FEating) and negative cases (Non-eating) are each 12
minutes. All participants ate the same six types of food,
shown in Figure 5, among which three (protein bars, baby
carrots, crackers) are crunchy while the other three (canned
fruits, instant foods, yogurts) are soft. While recording each
activity, participants were asked to refrain from performing
any other activity and to minimize the gaps between each
mouthful. All data recorded during each activity was labeled
as the activity.

Figure 5: Six types of food used for data collection

Activity Description Duration
Eating Eat a protein bar 2 minutes
Eating Eat several baby carrots 2 minutes
Eating Eat several crackers 2 minutes
Eating Eat canned fruit 2 minutes
Eating Eat instant food 2 minutes
Eating Eat yogurt 2 minutes
Talking Read an article aloud 5 minutes
Silence Relax and avoid chewing 5 minutes
Coughing Cough 24 seconds
Laughing Laugh 24 seconds
Sniffling Sniffle 24 seconds
Deep Breathing Deep breath 24 seconds
Drinking Drink water 24 seconds

Table 1: The list of activities performed by each participant
for data collection

4.2 Feature Extraction and Selection

As sampling rate is one of the most important factors
driving power consumption for wearable sensors, we hoped
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to use a relatively low sampling rate. After testing a range
of sampling rates from 250 Hz to 4000 Hz, we chose 500 Hz
for eating detection in our system. As a result, all raw
data was first downsampled from 20 kHz to 500 Hz before
feature extraction. Since the frequency of non-speech body
sounds is generally higher than 20 Hz [8], we used a high-
pass filter to minimize the frequency components lower than
20 Hz. The filtered signals were segmented into time windows
with uniform length and 50% overlap. In this work, we
experimented with window sizes ranging from 1 second to 5
seconds and the results are shown in Figure 7. For each time
window, we used the open-source Python package tsfresh to
extract a common set of 206 features per sensor from both
time and frequency domains.

The two sensors provide a total of 412 features for eval-
uation. To improve computational efficiency, we selected
relevant features based on feature significance scores and
the Benjamini-Yekutieli procedure [3]. Each feature is in-
dividually and independently evaluated with respect to its
significance for predicting the target under investigation and
a p-value is generated to quantify its significance. Then, the
Benjamini-Yekutieli procedure evaluates the p-value of all
features to determine which ones to keep.

4.3 Classification

We designed a two-stage classification model. In the first
stage, to filter out most of the time windows labelled as
silence using simple thresholding, we calculate the average
variance of all time windows labelled as silence by ground
truth, and find all time windows with lower variance in the
entire data set and mark them as “evident silence periods”.
After separating training and testing data, we train our
classifier on the training set excluding the “evident silence
periods”. Similarly, during testing, we arbitrarily mark the
time windows in the testing set that are “evident silence
periods” as Non-eating. To reduce energy consumption, when
we implement a compact, low-energy device, the first stage
classification can be done in hardware so that the device does
not need to process data during the “evident silence periods”.
In the second stage, we choose a Logistic Regression classifier
to perform a 2-class classification to classify Fating and
Non-eating. We chose Logistic Regression as it is lightweight
enough to be implemented in a resource-limited wearable. In
both the training and testing data sets, Fating is one class
and all other seven activities are treated as another class,
Non-eating.

5. EVALUATION

We evaluated our methods when sensor, window size, bit
resolution and number of features vary. We also conducted
an uncontrolled-food experiment.

5.1 Evaluation metrics

To evaluate the accuracy of our classifier, we compared its
output for each time window against the ground-truth label
for that time window. In other words, each time window is
an independent test case that results in one of four outcomes:

True positive (TP): Both the classifier and ground truth
indicate Eating.

False positive (FP): The classifier indicates Eating and
ground truth indicates Non-eating.

True negative (TN): Both the classifier and ground
truth indicate Non-eating.



False negative (FN): The classifier indicates Non-eating
and ground truth indicates Fating.

We then evaluate our method with three metrics:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

The accuracy score is balanced as we configured our data
to be 50% positive cases (Fating) and 50% negative cases
(Non-eating).

We used Leave-One-Person-Out (LOPO) cross-validation
to evaluate our classifier’s performance. A LOPO model is
relatively unbiased because the classifier is asked to detect
eating for a new person whom it has not seen before. The
model iterates over all possible combinations of the train-
ing and testing data set. For each iteration, the data set
is divided into two subsets: the testing set (data from one
participant) and the training sets (data from all other par-
ticipants). The classifier is trained on the training sets and
outputs three metrics (accuracy, precision, and recall) on
the testing set for each iteration. As summary metrics, we
calculated the mean and standard deviation of these three
scores across all iterations.

5.2 Sensor Comparison

Figure 6 shows the results of eating detection with contact
microphone and EMG, independently and combined, for the
first 10 participants. During our experiments, we found that
repeatable and effective placement of the electrodes used for
collecting EMG signals was a challenging task and partici-
pants found this task to be unpleasant. Moreover, Figure 6
shows that EMG and contact microphone improve accuracy
by 3.2% (with a p-value of 0.005) relative to use of the con-
tact microphone alone. Although statistically significant,
this difference is not great enough to be worthwhile given
the extra cost, effort and size that would be incurred. EMG
also appears to yield the worst performance on its own. We
thus decided that it is infeasible to integrate EMG sensors
into a wearable suitable for free-living scenarios. In the final
10 participants, we collected data using only the contact mi-
crophone and used data from the contact microphone alone
for evaluation in Sections 5.3 and 5.4.
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Figure 6: Summary metrics when using contact microphone
and EMG, independently and combined (error bars represent
standard deviation).
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5.3 Parameter evaluation

We explored the effect of different window sizes on accuracy
of eating detection in our system by testing a range of window
sizes from 1 second to 5 seconds. Based on the accuracy
results shown in Figure 7, we chose a 3-second window size
for all later evaluations as it yielded the best accuracy.
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Figure 7: Summary metrics when window size ranges from 1
second to 5 seconds (error bars represent standard deviation)

Moreover, we evaluated whether the bit resolution of
analog-to-digital converters (ADC) affects the classification
performance. We rounded our raw data (in decimal form) to
the third decimal place before feature extraction to simulate
10-bit resolution ADC in a 1V voltage range. As shown in
Table 2, lowering the bit resolution did not have a substantial
effect on the accuracy of eating detection, so we used a 10-bit
resolution for later evaluation.

Resolution Accuracy Precision Recall

24-bit 0.942 0.953 0.937
+ 0.036 + 0.063 + 0.050

10-bit 0.935 0.943 0.934
+0.043 +0.075 + 0.052

Table 2: Results when bit resolution was 24-bit and 10-bit
(mean value £ standard deviation)

Finally, considering the limited computational resources
of wearable platforms, we further selected a smaller number
of features using the Recursive Feature Elimination (RFE)
algorithm with a Lasso kernel. Figure 8 shows the results
when the number of top features ranged from 1 to 70.

In general, an increased number of features can benefit ac-
curacy but the improvement is limited (the largest difference
of accuracy was less than 8%). To achieve a relatively high
accuracy and avoid overfitting due to insufficient features,
we chose the top 8 features for later evaluation (Table 3).
When we only used the top 8 features for classification, the
accuracy, precision, and recall metrics were 90.9%, 91.9%,
and 91.1% respectively.

5.4 Uncontrolled-food evaluation

To further evaluate our system on food that was not used
for training and under a more realistic condition, we designed
an uncontrolled-food experiment. First, using the acoustic
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Figure 8: Results when number of features ranged from 1 to
70

Feature Description Number

type

Kurtosis Kurtosis 1

Mean Number of values higher than 1
mean

Sum Sum over the absolute values of 1
changes

Peak Number of peaks at different 4
width scales

Friedrich Coefficients of polynomial h(x) 1

coefficients fitted to the deterministic dy-

namic of Langevin model [4]

Table 3: Top 8 features

data collected from all 20 participants, we trained a classi-
fier with the top 8 features (Table 3) extracted using the
same methods as described in Section 4.2. Then, using the
bench-top apparatus described in Section 3.1, we asked one
participant to conduct a sequence of activities and used the
pre-trained classifier to classify these activities in real time
with the same classification methods as described in Section
4.3. The food was brought in by the participant (Figure 9)
and not like the food used in the training data. To conve-
niently annotate activities for the ground truth, we asked the
participant to perform a series of activities lasting 30 or 15
seconds each following an arbitrarily predetermined routine.
The total time length of each type of activity performed in
the routine is shown in Table 4.

Figure 9: Food brought in by the participant
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Activity Number of periods Total time length

Eating 10 300 seconds
Talking 4 120 seconds
Silence 6 105 seconds
Coughing 1 15 seconds
Laughing 1 15 seconds
Sniffling 1 15 seconds
Deep 1 15 seconds
Breathing

Drinking 1 15 seconds

Table 4: Activities performed in uncontrolled-food evaluation

The accuracy, precision, and recall metrics for this experi-
ment were 91.5%, 95.1%, and 87.4%. These results show that
our system can work properly when participants eat food
that was not used for training the classifier. This experiment,
however, was only conducted on one participant. In the
future, we plan to test on more participants in free-living
scenarios to evaluate the performance of our system.

6. DISCUSSION AND FUTURE WORK

In the LOPO cross-validation, we evaluated our system
under relatively strict conditions. First, half of the food
we used in the experiments was soft and challenging to
detect. After training the classifier with six types of food
with different hardness levels, we expect our system to be
able to detect food with a variety of hardness. Second, the
window size we chose for eating detection was 3 seconds,
relatively short compared to a meal or an ordinary mouthful.
In fact, we aim for our system to detect different types of
eating including meals and momentary snacks during long
periods, which could be a useful feature for nutrition studies.
Third, subjects conducted activities in the experiments for a
longer duration than may occur in daily life. In a 12-minute
recording session for negative cases, we recorded 5 minutes of
silence, 5 minutes of talking and 24 seconds of activities like
coughing, sniffling and so forth. We expect the durations of
these negative cases, which are relatively hard to distinguish
from eating, to be shorter while silence lasts much longer in
real life.

One of the limitations to our experiments is that our sys-
tem relies heavily on chewing detection. If a participant
performed an activity with a significant amount of chewing
but no swallowing (e.g., chewing gum), our system may out-
put false positives; activities with swallowing but no chewing
(e.g., drinking) will not be detected as eating although they
may be of interest to some dietary studies. More explorations
in swallowing recognition can be a good research direction.

In the future, we plan to construct a behind-the-ear wear-
able device that can encapsulate the microphone, battery,
and data-processing hardware. With this device, we aim to
conduct an out-of-lab, day-long, free-living experiment to
test our approach for eating detection. Such an experiment
will allow us to explore the effect of ambient noise, subject
motion, or other subject activities. We plan to explore meth-
ods for noise reduction, feature definition, feature selection,
and classification, and new metrics for inferring various types
of eating activities.



7. CONCLUSION

In this paper, we propose a wearable system for eating
detection in free-living scenarios. We developed a bench-top
apparatus and collected data of 8 activities from 20 partici-
pants. In LOPO cross-validation experiments, we achieved
accuracy over 90.9% with 500 Hz sampling rate, 10-bit resolu-
tion, 3-second window size and 8 features for eating detection
of 6 types of food with different crunchiness level (3 crunchy
and 3 soft). Based on the promising results reported in the
paper, we plan to further improve our wearable apparatus
and evaluate its performance in free-living scenarios.
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