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Summary.

In traditional computational systems, resource owners have no incen-
tive to subject themselves to additional risk and congestion associated
with providing service to arbitrary agents, but there are applications that
benefit from open environments. We argue for the use of markets to regu-
late agent systems. With market mechanisms, agents have the abilities to
assess the cost of their actions, behave responsibly, and coordinate their
resource usage both temporally and spatially.

We discuss our market structure and mechanisms we have developed
to foster secure exchange between agents and hosts. Additionally, we be-
lieve that certain agent applications encourage repeated interactions that
benefit both agents and hosts, giving further reason for hosts to fairly
accommodate agents. We apply our ideas to create a resource-allocation
policy for mobile-agent systems, from which we derive an algorithm for a
mobile agent to plan its expenditure and travel. With perfect information,
the algorithm guarantees the agent’s optimal completion time.

We relax the assumptions underlying our algorithm design and simu-
late our planning algorithm and allocation policy to show that the policy
prioritizes agents by endowment, handles bursty workloads, adapts to situ-
ations where network resources are overextended, and that delaying agents’
actions does not catastrophically affect agents’ performance.

0.1 Introduction

Agents are clean abstractions for constructing multiple-user applications. In
particular, the abstraction is useful for networked applications where agents
represent competing or cooperating principals. We believe that using the
agent model, it is possible to quickly construct openly networked architec-
tures where computational resources are distributed around the network for
remote and visiting agents to use. There is, however, little incentive for service
providers (hosts) to accommodate arbitrary agents. Hosts expose themselves
to additional resource contention and risk inherent in offering any additional
network service. Conversely, agents have no incentive for responsible resource
usage nor mechanisms to assess the costs of their actions.

We solve these problems by having agents use electronic currency to pur-
chase the computational resources that they use. The currency’s value gives
hosts incentive to entertain arbitrary agents, finite budgets bound agents’ im-
pact on the network, prices convey the cost of an agent’s actions, and market
competition serves as a primitive coordination mechanism.

We argue in Section 0.2 that markets solve problems at many levels
faced by agent systems. In Section 0.3, we summarize work we have done
to provide a secure marketplace for mobile agents. We provide a resource-
allocation policy in Section 0.4 on which we derive an algorithm to mini-
mize a mobile agent’s execution time of a sequence of tasks given a bud-
get. Section 0.5 presents simulation results of agents visiting hosts using our
resource-allocation policy. We show that it effectively prioritizes agents ac-
cording to endowment and that our planning algorithm’s performance de-



0.2 Markets 3

grades gracefully as network delay increases. We summarize relevant related
work in Section 0.6 and conclude by fleshing out our future research direction
and describing the applicability of our results to more general agent systems
in Section 0.7.

0.2 Markets

We promote agent architectures where agents’ potentials are represented
through a common parameter— their endowments. Agents may spend their
endowments how they see fit to optimize their performance. Rather than
specify absolute rules, hosts specify policies to guide agents. While agents
may deviate from these policies to tune their performance, they do so at the
expense of depleting their endowments, and possibly their lifetimes. The ar-
chitecture type we propose is that of a market, though the extent of market
implementation may vary. In this section, we give a high-level description of
market structures applied to agent systems.

agents sell
services

sysadmins
distribute
priviledge:
to users

agents buy
resources

Fig. 0.1. The flow of money
in our computational mar-
ket.

Our computational markets involve agents purchasing the computational
resources that they consume from hosts. Agents can sell their services to users
and other agents. Hosts accumulate revenues that they redistribute to their
users, who use the currency to launch their own agents. Figure 0.1 sketches
the exchange of money in our market.

Currency exchange can happen at many levels to provide a cleaner design,
fault tolerance, and incentive mechanisms. At the most basic form, an agent’s
currency represents its potential to act in the network. Currency exchange
can be modeled at the design level to provide a useful architectural tool by
quantifying the limits of agents’ actions.

More involved markets have agents and hosts exchange cryptographically
verifiable electronic cash. Electronic cash serves as a security mechanism and



verifies the spender. This type of budget constraint bounds the havoc that a
malicious agent can wreak and provides a limited form of fault tolerance.

In a still stronger market, participants exchange virtual currency that is
redeemable for legal tender (e.g, U.S. dollars). Here, the currency verification
process is more important and requires more scrutiny. The benefit, however,
is that administrative domains become flexible. Resource owners may lease
their equipment to agents outside their domain, recouping the cost of capital.
Conversely, system administrators may temporarily expand their domains
when the need for extra computation arises by buying outside resources.

In each of these examples, we rely on a pricing system. Prices signal
the costs of agents’ actions and allow agents to plan accordingly. When
agents crowd resources, resource prices rise and deter further congestion.
Thus, prices serve to balance computational load over time and through the
network [25, 8].

0.3 Secure Transactions

The first step towards establishing any market is to promote methods of se-
cure exchange. The most obvious part of secure transactions is a verifiable
currency. Sometimes, exchange requires more than just valuable currency
and we have implemented a protocol for a trusted third party to mediate
transactions between agents who may not trust one another. Agents must
be able to find and negotiate with vendors of computational resources, and
we have implemented an architecture for agents to locate machine resources
through a network of resource management agents. Finally, agents are ulti-
mately subject to the wishes of their hosts, but we argue that interaction
between hosts and agents is beneficial to both and that repeated interaction
is likely. Repeated interaction and exchange foster cooperation between hosts
and agents.

0.3.1 Currency

There are many existing electronic currency systems [12, 15, 18, 20]. As a
proof of concept, we have implemented electronic currency and a hierarchy
of banks in Agent Tcl, a mobile-agent system [4]. Our currency is verified
using PGP and incurs a lot of overhead in comparison to other electronic
currency systems, but clearly any of the existing more efficient mechanisms
could also be used. Most mobile-agent systems cryptographically verify the
identity of agents, so verifying currency on agents’ arrival does not pose
significant additional overhead. After agents verify their currency at a host,
they can convert a global currency to local “scrip” similar to what is done in
the Millicent electronic currency system [12]. This local verification reduces
transaction costs enough to allow small efficient transactions.
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0.3.2 Repeated Interaction

It is frequently the case that repeated interaction among agents creates in-
centive for cooperation. In this subsection we focus on the effects of frequent
interaction between mobile agents and their hosts. In this context, a mobile
agent is a computational process that may autonomously relocate its execu-
tion from one host to another.

Currency validation protects sellers, specifically mobile-agent hosts. Pro-
tecting agents from agents and hosts from agents appear to be tractable
problems and there has been much progress in the area. Protecting mobile
agents from their hosts is difficult, however. A host provides an agent with
an execution environment and hence, the mobile agent is at the mercy of
its host. There is little to prevent the possibility of the host robbing visiting
mobile agents.

While it may always be possible for hosts to molest mobile agents, we
believe that it is in hosts’ best interests to provide safe and reliable execution
environments. In establishing a market for computation, it must be the case
that transactions benefit both hosts as well as agents. If this were not the
case, then either agents or hosts would not participate in the exchange.

Additionally, we believe that mobile-agent applications will likely rely on
frequently sending small agents to remote sites. Thus, a mobile-agent mar-
ket for computational resources will see repeated interaction between hosts
and agents. Since molesting an agent risks upsetting a host’s income stream,
there is incentive for the host and agents to cooperate. Axelrod sees many
examples of cooperation development in scenarios where there is repeated
interaction among human agents and that often little communication is nec-
essary between agents to foster cooperation [2].

0.3.3 Arbiter

While we believe that in many circumstances an agent will deal with known
agents and facilities, it is likely that at some point it will be necessary to
conduct transactions between untrusting parties. There may be little reason
to believe that there will be future transactions, or agents may prefer to
conceal their identities. To support such transactions, we have implemented
an arbiter protocol for use within Agent Tcl [4].

In our arbiter protocol, agents arrange for a trusted third party, an arbiter,
to conduct the transaction. The arbiter asks each agent for the information
to be exchanged between the agents, and an amount of collateral equal to
the value of the transaction from each agent. If, by an agreed upon time,
neither agent is unhappy with the resulting transaction, the arbiter returns
the collateral to the agents. If, however, one agent does not receive the goods
or payment that it expected, the arbiter retains both agents’ collateral until
the transaction can be policed. We illustrate the protocol in Figure 0.2.



Fig. 0.2. The arbiter proto-
col for secure transaction be-
tween agents. Agents A and
B send collateral and the
transaction to a trusted third
party, the arbiter agent.
Bank Once the arbiter agent re-
ceives payments from the
agents, it delivers the prod-
uct and payment to the
agents. After an agreed upon
time, if neither agent com-
plains, the arbiter returns
the collateral to agents.

0.3.4 Resource Managers

To facilitate resource location and access negotiation in the D’Agents mobile-
agent system, every host machine has a set of well-known resource-management
agents [13]. These agents are responsible for allocating their respective re-
sources and all resource consumption requests are directed to them. Resource
managers are agents and use the same communication protocols as every
other agent, so transactions between an agent and a resource manager do not
require any additional protocol. Any agent request to use a resource is auto-
matically forwarded to the relevant resource manager, however, and resource
consumption can be transparent to consumer agents.

Resource managers allow system administrators to tune resource access
to fit individual resource consumption habits. Certain resources may require
specialized policies or coordination with other resources. Several resource
managers may work together to prevent deadlock or to track suspicious re-
source usage.

0.4 Allocation Mechanism

We now provide a specific market model for use in allocating computation to
mobile agents. For a more rigorous system formulation, we refer the reader
to [6, 5]. We allocate computation to mobile agents where ownership of re-
sources is shared by the owners of the agents. The purpose of our mechanism
is not to generate revenue to attract hosts, but rather to prioritize agents,
increase resource utilization, and provide a structure for agents to use to
efficiently plan their itineraries. In our model, a mobile agent attempts to
minimize the time taken to execute a series of tasks, each requiring consump-
tion of a particular service.

For example, an agent may wish to retrieve an image at one site, process
the image using a computationally intensive algorithm at another, and then
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deliver the image to be displayed at a terminal located near its user. Figure 0.3
depicts the agent’s example itinerary. Each of the three sites that the agent
visits may allow the agent to pay more to complete its task faster.

Fig. 0.3. An example of a
mobile agent’s itinerary. The
agent must visit one host in
each group and choose at
image image image what priority to execute at
retrieval processing display each host visited.

After an agent finishes all execution, its remaining endowment vanishes.
Each host offers one of K computational services to the set of agents at the
site. To extract agent demand, hosts solicit bid functions from the agents.
The bids represent rates at which the bidder will pay for access to the service.
The i-th agent receives service at a rate equal to the capability, ci, of the
k-th host times the agent’s bid, u};, relative to the sum of all bids the host
receives, 0y = >, ul. So the i-th agent computes its task at site k at a rate
of:

vk = ¢l Uf% (0.1)
uj, +6,"

where 0,7 = f), — u} represents the sum of competing agents’ bids. The
amount of time an agent spends to complete its task is the size of the job,
q;,, divided by the computational rate, v;,, which is:

A
t}, = % (0.2)
chul,
The amount of currency an agent spends is its bid, u};, multiplied by the time
taken, £y, is:

ai (uj, +6;")

i
e, = -
k c;ﬂ



We derive a bidding strategy that minimizes the time to complete an
agent’s itinerary given knowledge of the itinerary’s task sizes, the amounts
competing agents bid, the capacities of all hosts to be visited, a fixed budget
constraint, and the assumption that the agent has no need for currency other
than to complete its set of tasks at hand.

We begin by assuming that the agent’s bid is small enough that competing
agents will not change their bids significantly in response to the agent’s bid.
From this assumption, we derive f*(6;"), the i-th agent’s optimal bid at the
first host as a function of competing agents’ bids, 67 . The agent’s naive
bidding strategy for the i-th is:

az_ﬁze;z 0
7,_+_ ’Yi _,
P o

The parameters o, 3%, and ¥* describe the i-th agent’s itinerary and the state
of the hosts it will visit:

u' = (") = max (0.4)

ol = I—Zz—fa,;l (0.5)
k#£1 K
4
pgi=4 (0.6)
¢y
P= q—'im/e*i 0.7
Y . c}; k ( . )
#1

where [ is the agent’s remaining endowment.

In reality, however, other agents will change their bids in response to the
agent’s bid. We must augment our bidding strategy to accommodate other
agents’ responses by finding an equilibrium bidding level at which all agents’
bidding functions are satisfied. We can find the equilibrium by transforming
each agent’s bidding function domain to a domain common to each agent.
The original domain operates over the over the space of the sum of all other
agents’ bids, 67 ¢ while the transformed domain, 6;, includes the bid of the
i-th agent. The result is:

i i i2
i gl = @200 _H\/H(Miel 03
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when 6 € (0,a!/8%) and u' = g(6;) = 0 otherwise. The fraction /3" rep-
resents the rate at which the agent can pay to compute at the first host. If
a'/B% is less than #;, the agent does not have enough money to be serviced
given the current level of site congestion. If the quotient is negative, then the
agent must wait until congestion at future hops subsides. To ensure that g(8)
is continuous, we require v’ to be strictly positive. Normally, v* would only
be zero when the agent bids for its last task. We approximate the situation
by assigning ~¢ an arbitrarily small positive value to keep g(f) continuous.

___ base g(91)
2.5 - - - larger endowment
- - increased future T TN
consumption e R
ol g(0,) =6, P .
, N
. B .
- . \
< g \
O1.5 D ' 1 .
5 o Y Fig. 0.4. The form of an
e , ® .
m 7 '\ agent’s bid as a function of
Y \ . .
1 . all bids submitted to the
LT T T | server. As the agent’s en-
osl A N | dowment increases, the func-
/ N tion scales outward. Increas-
N . .
S | ing the size of future tasks
0 s .
0 1 2 .3 4 5 results in a smaller gentler
Congestion: 6
! curve.

Figure 0.4 sketches three examples of agents’ bidding functions for the
next task. The function, g(#), has a few important properties. First, a positive
bid computed with g(f) guarantees that the agent can complete the task
at the current level of congestion. After completing the task with the bid
computed from g¢(#), the agent will have enough cash remaining to finish its
itinerary given current network conditions. The function is continuous and
concave in the upper right quadrant. Finally, du/df equals one at the origin.

We complete the description of our resource-allocation policy by allow-
ing each agent to submit the parameters of, 3%, and 7’ that describe its
itineraries, wealth, and perceived state of the network. If there are multiple
agents visiting, the host constructs all the bidding functions, sums them, and
finds a value of 6 at which # = 3" g(#) and allocates a fraction of the com-
putational resources to the i-th agent equal to ¢g*(61)/6;. This determines a
Nash equilibrium for the underlying non-cooperative game. If there is only
one agent, then there is no contention for the resource and the host assigns
the agent the full share of resources. Figure 0.5 demonstrates an example of
16 agents’ bidding function and the resulting equilibrium, which we show as
the intersection of the sum of the individual bidding curves and the 45° line.
In [6], we prove that when there are two or more agents at a server, there
is exactly one bidding level at which agents will be satisfied with their bids



Fig. 0.5. Sample plot of the
1 sum of 16 agents’ bids a func-
tion of the sum of all bids at
the server. Equilibrium oc-
, curs at the intersection of the
dotted line and the plotted
800 1000 curve, where no agent wishes
to change its bid.
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given their bidding functions. This means that the underlying game has a
unique Nash equilibrium.

Note that to utilize Equation 0.8, an agent must already have formulated
a route. If we fix the costs and times required for an agent to complete its
tasks at every host, the problem of choosing the hosts to visit to minimize
execution time under its budget constraint is NP-complete. The problem is
the constrained shortest path problem to which the knapsack problem can
be reduced [1, 5]. We are currently working on algorithms that use dynamic
programming to approximate optimal routing with performance guarantees.

As a reasonable heuristic, the i-th agent can use Equation 0.8, by setting
the values of #% and ci parameters for tasks after the present task, to rep-
resent the mean values of hosts that may complete the agent’s k-th job. We
demonstrate the effectiveness of the heuristic in the next section.

0.5 Simulation

We generate a network topology with the GT-ITM stochastic network topol-
ogy generator [7] to implement a simulation of a network of mobile-agent
hosts in the Swarm simulation system [16]. In GT-ITM, a network consists
of a hierarchal system of transit domains connecting stub domains. The net-
works in our simulation have 100 host nodes in three levels of transit domains.
Because we focus on expenditure planning, we choose network delays that do
not dominate job execution times.

Host capacity is determined by a positively truncated Gaussian random
variable with a positive mean. Hosts offer one of eight services to mobile
agents that are created at a Poisson rate uniformly across the network.

At creation, we give each agent an itinerary of tasks and an endowment
of currency with which to buy computation from hosts. The number of tasks
comprising itineraries is exponentially distributed. We choose tasks uniformly
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from the eight services that hosts offer. In our simulations, job sizes are
either exponentially or Pareto distributed. We choose the endowment to be
a positively truncated random variable multiplied by the sum of the agent’s
task sizes. This random variable represents the agent’s owner’s preference
that the agent completes its itinerary quickly.

Algorithm 1 Choose Next Site for Agent ¢

1: tpmin := 00; mnextHost =

2: for all hosts k offering service next in itinerary do

3: ¢ := [transferLatency to: k from: currentHost]

+arg(6; )/ (cr (05" + 9(6; 1))

4 if tin > tr then

5: tmin :=tk; nextHost:=k
6: end if

7: end for

8: return nextHost

Algorithm 1 demonstrates how agents choose which sites to visit. For all
but the next set of hosts to be visited, the agent plans to visit sites with
average capacity, ci, and congestion, 6, for hosts offering the k-th service.
The agent assumes that there will be no change in bidding level, H,C_i, and
chooses the next site to be the one that minimizes the sum of execution times
and network transfer times for the next hop. Thus, our routing algorithm is
greedy and naive.

When an agent arrives at the site, it commits itself to finishing its next
task at the site. The agent submits parameters «;, 8;, and ~;, from Equa-
tions 0.5-0.7, to describe its current task and ability to pay for service. The
host uses Algorithm 2 to redistribute priority whenever an agent arrives or
departs. The algorithm forms a bid-response function, >, g;(¢), and conducts
a bisection search to find a positive value of # at which no agent wishes to
change its bid.

0.5.1 Effectiveness

We would like to first verify that our resource-allocation method stratifies
agents’ performance in a reasonable fashion. After the network has reached a
steady state, we designate seven percent of all new agents to be test agents.
These test agents all share a common start host and task-type sequences,
but their endowments uniformly span two standard deviations, o, around
the mean endowment, y. We measure the performance of each test agent
against what it could achieve in a network with zero resource contention.
This idealized measure is the shortest path from the start host to visit hosts
that offer services to complete the agent’s itineraries. The edge lengths of the
path are the sum of the network transfer latencies from the previous host
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Algorithm 2 Allocate Resources for Host k

1: while true do
2:  t:= time since last arrival/departure

3 for all agents ¢ do

4 deduct tg;(f) from agent i’s endowment
5: end for
6.

7

8

9

add new agent or remove departing agent
for all agents 7 do
query agent ¢ for o, 3, and ~y
: use Equations 0.5-0.7 to build g;(0)
10:  end for
11:  search for § = Zivzl gi(#) in (0, max; (a;/Bs))
12:  for all agents ¢ do
13: v = crgi(6)/0
14:  end for
15: end while

and the time required to process the job given that no other agent requests
service, qi/ck.

0.7

exponential —— Fig. 0.6. Endowment versus
° 06 " Pareto ] ideal time relative to actual
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F [ ' S ] mean and standard devia-
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£ 03 f H I ; LT .
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g 02t HHHHHHH‘H 1 tions, o, around the mean

H}H endowment, p. One experi-
01 HH{#H} 1 ment has exponentially dis-

‘ ‘ ‘ ‘ ‘ ‘ tributed job sizes and the
u-20 u-o u w+o w+20 other uses a Pareto distribu-
Endowment tion.

We run four experiments to show how agents are prioritized. There are
two variables describing the experiments: workload and utilization. The two
workloads are differentiated by agents’ job size distribution. One workload
uses an exponential distribution and the other uses a Pareto distribution.

There are two levels of utilization in the experiment. One level is approx-
imately 70 percent of capacity while the other has agents arriving with jobs
of about 140 percent of capacity. In the latter situation, it must be the case
that some agents will not be able to complete their tasks.

Figures 0.6 and 0.7 show the performance of agents with different endow-
ments at 70 and 140 percent utilization, respectively. We plot the means as
well as the standard deviations for each endowment level. The Pareto dis-
tribution has a much lower median than an exponential distribution with
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the same expected value. Hence there are more small jobs that are easier
to schedule and agents with Pareto distributed jobs generally perform their
itineraries more quickly than those with exponentially distributed job sizes.

In the experiments run at 70 percent utilization, there is a weak linear
relationship between agents’ expenditure and their performance. Since the
system can accommodate all agents, there is little need to discriminate against
agents with low endowments to improve the performance of agents with larger
endowments.

When agent demand exceeds system capacity, however, hosts must ignore
poorer agents to allow richer agents to complete their tasks. In this scenario,
there is a strong relationship between agents’ endowment and performance
and agents with endowments below the mean do not complete their jobs.

0.5.2 Network Delay

One criticism of market systems is the belief that they are sensitive to the
accuracy of knowledge concerning the state of the world. We test this belief
by varying the latency incurred by agents jumping from one host to another.
Agents have accurate information concerning the current state of the network,
but increasing the transfer latency delays agents’ actions and simulates agents
using aged information.

Figure 0.8 demonstrates that agents’ performance decays gradually as the
quality of their network information decreases. The figure plots network delay
compared to a reference network with the performance that agents receive in
the reference network. We observe that increasing network delays does not
cripple our resource-allocation or planning algorithms.

0.5.3 Price Structure

Figure 0.9 shows a histogram of the logarithm of price of computation at a
server in our simulation. We observe that price is log-normally distributed
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over time. With a log-normal distribution, agents can expect that price will
be stable for the most part, punctuated with intense, but brief, periods of
high prices.
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Fig. 0.9. A histogram of the
logarithm of price at a host
0.1F over time. We observe that
price is roughly log-normally
o ‘ ‘ ‘ ‘ distributed, resulting in in-
0 2 4 6 8 10 12 tense but brief periods of

In (8) high prices.

These periods of contention aggravate agents’ ability to complete their
tasks. When the price of computing is high, it is frequently the case that
one agent is consuming the majority of the host’s computational resources to
complete a small task. While the price is high, other agents’ tasks are put on
hold, but the flow of agents into the system continues. So it is imaginable that
the host’s load will not fall back to its initial level for an extended period.
These periods add to the variability of agents’ performance and in Section 0.7
we will discuss methods for agents to trade risk to decrease their performance
volatility.
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0.6 Related Work

Economic ideas for controlling computational resources are not new; in the
sixties, Sutherland established auctions to schedule computer time among
users [23]. Spawn is perhaps the most cited work dealing with computational
economic systems [25]. In Spawn, agents participate in auctions to buy pro-
cessor time to run computationally intensive jobs. The pricing system pairs
idle processors with jobs and improves utilization in distributed systems.
Clearwater et al. use double auctions to allow agents to trade climate-control
resources within an office building [10]. The result is that climate control re-
sources are more effectively allocated with energy saving of up to ten percent.

Forms of market-based control have been a part of mobile-agent sys-
tems from the field’s beginnings. One of the first mobile-agent systems, Tele-
script [26], supports a fault-tolerance and security measure where agents carry
“permits” to access specific resources. A permit’s power diminishes over an
agent’s lifetime, thus limiting the agent’s lifetime. A permit for one resource is
not easily converted to another resource permit. A more general policy would
be for hosts to issue a common permit in the form of a verifiable electronic
currency.

The Geneva Messengers project [24] applies market ideas to allocate CPU
usage and memory to visiting “messengers,” lightweight mobile programs
implemented in a Postscript-like language. Host sites heuristically set prices
by examining the amount of resources requested by the present messengers.

POPCORN [21] is a system for distributing “computelets” to hosts on
the network. POPCORN assigns computelets to anonymous entrepreneurial
hosts through a double auction. Because agents do not choose their sites and
no mobility after initial placement is allowed, there is no reason for agents to
plan their expenditures. Additionally, the framework does not permit inter-
computelet communication. POPCORN is ideal for parallel computation in-
tensive programs where interaction among threads is limited. Our system is
more general, but mobile agents must weigh many factors in choosing their
hosts and agents are accountable for planning their routes and expenditures.

Boutilier et al. solve sequential resource-allocation problems [3]. It is dif-
ficult to construct mechanisms where it is rational for buyers to truthfully
reveal their preferences, but Boutilier et al. resolve the problem by ensur-
ing that all users vying for resources interact with identical agents. They
prove that it is rational for users to express their preferences to their agents,
who then compete in iterated sequential auctions until a stable resource al-
lotment is found. The method can handle many traditionally difficult as-
signment problems where goods may be complements or substitutes to one
another. The technique is centralized and more general than what we model
in that it makes no assumptions on resource values and relations, but it is
also computationally more expensive.

Tatonnement is another centralized resource-allocation method where
buyers iteratively adjust purchase amounts in response to sellers’ changing
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prices. The WALRAS algorithm [9] is a system for finding equilibrium where
participants have convex utility functions and there is gross substitutability
among goods (goods are not complementarities for one another), but often
converges to a solution even when gross substitutability is violated.

Market-based resource control appears in areas accessible to the general
public. In 1997, distributed.net [17] entered a contest held by RSA Labs to
break a 56-bit secret-key encrypted message. The project wrote a client pro-
gram that users downloaded to search portions of the key space on users’
computers. The owner of the computer that found the secret received a prize
from distributed.net. The prize is a probabilistic payment for users’ computing
resources used by distributed.net.

Another use of market-based control is Enron Communications’ [14] es-
tablishment of network bandwidth trade among its customers. Enron Com-
munications’ customers can resell their unused bandwidth to other customers
in an automated fashion. Currently, trade is restricted to bandwidth of a sin-
gle link connecting New York and Los Angeles.

0.7 Conclusions

We provide the framework upon which to build market-based resources in
the D’Agent mobile-agent system. This framework includes a secure currency,
well-known resource manager agents, arbiter agents for larger transactions,
and an environment with repeated interaction to foster cooperation among
agents and their hosts. We provide a resource-allocation method for compu-
tational priority and derive an algorithm that allows a mobile agent to plan
execution of a sequence of tasks to minimize execution time given a budget
constraint.

It is possible to supplement our serial bidding algorithms with other al-
gorithms to minimize parallel task execution time. An extension would likely
accompany more complex task planning as well. Our model applies to gen-
eral agent uses, not just mobile ones, as our policy and algorithms minimize
execution time for sequential tasks. Using our policy, it is possible to allo-
cate any divisible resources. For example, we can apply our algorithm as a
decentralized method of flow control for network bandwidth by auctioning
off bandwidth.

We simulate our allocation mechanism and agents using our planning al-
gorithms to show that our system handles different workloads and adapts
to handle situations where resources are over-constrained by ignoring lower-
priority agents’ requests. Additionally, our system degrades gracefully as net-
work latency increases and suggests that agents can reason effectively without
complete network state information.

We observe that prices in our computational markets can be volatile,
however. This volatility adds uncertainty to agents’ performance and it is de-
sirable for users to have the knowledge of how their agents will perform when
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agents are launched. For this reason, we are currently researching reservation
systems where hosts issue call options to agents. A call option gives an agent
the right, but not the obligation, to buy computation at a specified time and
price in the future. There will still be volatility in agents’ performance, but
the uncertainty associated with an agent’s performance will be eliminated
once the agent holds options for its computation.

Another limitation with our work is that we assume that we can pa-
rameterize every application through controlling access to a single good. In
reality, the good that we control is a bundle of resources that we label “com-
putational priority.” If agent applications have similar resource usage habits,
controlling the bundled resources will suffice to regulate the system. If the
application space is more diverse, then it may be more efficient to separately
allocate multiple resources among agents. For example, some agents may wish
to purchase high-quality network connections, but not consume very much
processor time, while there may be other agents with opposite needs.

Traditionally, multiple resource allotment has been a computationally dif-
ficult problem. The problem becomes intractable when an agent may substi-
tute one good for another. Recently, however, there has been much effort
spent towards allocating many resources to agents [3, 11, 19, 22]. So far,
there are no bounds on the amount of time necessary to compute an al-
lotment, but these recent projects investigate allocating numbers of goods
ranging from ten to hundreds. We imagine that allocating half a dozen re-
sources to agents will provide an efficient allocation and it may be reasonable
to allocate multiple resources to agents.
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