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Abstract

This paper considers resource allocation in a network
with mobile agents competing for computational priority.
We formulate this problem as a multi-agent game with the
players being agents purchasing service from a common
server. We show that there exists a computable Nash equi-
librium when agents have perfect information into the fu-
ture. We simulate a network of hosts and agents using our
strategy to show that our resource-allocation mechanism ef-
fectively prioritizes agents according to their endowments.

1 Introduction

Mobile-agent systems allow user programs to au-
tonomously relocate from one host to another. An agent
may jump to one site to filter a database, jump to another
site to access a camera, and to a third to process the re-
sults of the previous two hops before returning the results
to the user. For each of the three hops, there may be alter-
native sites to access compatible resources and this choice
of execution location subjects hosts to greater congestion
volatility.

Code mobility is a software architectural feature that has
many benefits [12]. User programs can reduce the effect
of network latency by updating their execution states to be
closer to their data. Mobility is a flexible abstraction that
can speed software development and deployment. Addi-
tionally, mobility provides an extra layer of fault tolerance.

To regulate mobile agents and provide resource owners
with greater incentive to host agents, we present a market-
based system in which agents bid for computational priority
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from hosts. We derive a bidding strategy that, given perfect
information, computes an agent’s bids to minimize its ex-
ecution time of a sequence of tasks under a fixed budget
constraint.

The added dimension of agents’ choice of execution lo-
cation, however, exposes hosts to additional congestion and
volatility. We propose that agents use a system that creates
incentives for hosts to participate, provides agents feedback
about the costs of their actions, and allows agents of hetero-
geneous priorities to operate simultaneously.

We construct a resource-allocation policy where hosts
take bids from agents for prioritized access to computa-
tional resources (CPU time). The priority of access to a
resource an agent receives is proportional to its bid relative
to the sum of all current bids at the host. Hosts collect rev-
enues from each agent at a rate equal to the agents’ bids.

We apply this policy to a mobile-agent system with sev-
eral different types of resources distributed throughout a
network. Each agent has a sequence of resources to con-
sume (an itinerary) and an endowment of electronic cur-
rency to be used to purchase resource access to complete
its itinerary.

We formulate the hosts’ resource-allocation problem as
a game with the players being agents competing for a re-
source from a common server. We show how to compute the
unique positive Nash equilibrium explicitly under perfect
information when there are two or more players. Starting
from this simple mechanism and an assumption of perfect
knowledge, we develop an optimal agent bidding strategy
that plans an agent’s expenditure over multi-task itineraries.
Our bidding strategy minimizes execution time while pre-
serving a prespecified budget constraint. We complete our
work by presenting a simulation of mobile agents compet-
ing for computational access in a network of heterogeneous
hosts.

The paper is organized as follows. In Section 2, we de-
scribe the system model. In Section 3, we derive the optimal
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bid for a single agent’s first job given load statistics. In Sec-
tion 4, we show the existence of a Nash equilibrium that can
be computed by the server, when all agents submit bid func-
tions of a given form. In Section 5, we show that the Nash
equilibrium obtained in the previous section is unique. In
Section 6, we simulate a network where agents submit the
optimal policies to servers that allocate resources according
to the resulting Nash equilibrium. The results are further
discussed in Section 7, and some related work is described
in Section 8.

2 System Model

The system model follows that presented in [5]. We con-
sider a network graph where agents are generated at some
subset of nodes. These agents are given a task of completing
a set of jobs of different types in a given sequence by pur-
chasing resources from service providers located through-
out the network. An agent begins with an endowment of I i

dollars to spend to complete its task and wishes to minimize
the total time taken to complete a sequence of jobs given its
budget constraint. We assume that there are K types of ser-
vice and that each agent only needs to complete a job of a
particular type at most once. The agent’s task can be rep-
resented as the sequence {qi

k}K
k=1, where qi

k is the size of
the k-th type of job for the i-th agent, and q i

k = 0 implies
that the agent’s task does not include completing a job of
type k. We assume that there are several service providers
for each type of service, and the capacity of the provider
chosen by the i-th agent to complete its job of type k is c i

k .
We make many of the assumptions for the sake of notational
simplicity and the following analysis can easily be extended
to more general cases of multi-job tasks.

The service providers wish to have as much of their re-
sources utilized as possible, and thus provide their entire
capacity at no cost if only one agent is requesting service.
If more than one agent is currently requesting service, the
capacity is partitioned as follows. The i-th agent receives
service at rate proportional to its bid relative to the sum of
all bids,

vi
k = ci

k

(
ui

k

ui
k + θ−i

k

)
, (1)

where ui
k is the amount (in dollars per second) that the i-th

agent bids for service, the provider receives bids totaling
θk from the set of agents, Jk , and θ−i

k =
∑

j∈Jk,j �=i uj
k.

Thus, if the service rate is constant, the time taken by the
i-th agent to complete its job of type k is:

tik =
qi
k(ui

k + θ−i
k )

ci
kui

k

(2)

and the expenses are:

ei
k =

qi
k(ui

k + θ−i
k )

ci
k

. (3)

3 Single Agent Optimization

The problem facing the i-th agent is how to choose its
bids, {ui

k}K
k=1. Computationally, this can be formulated as

an optimization problem to minimize the total time of com-
pleting its task, Ti =

∑K
k=1 tik , such that the budget con-

straint is preserved, Ei =
∑

k=1 tikui
k ≤ Ii. At this point,

we assume that the agent spends at a constant rate ui
k at the

provider for the k-th type of job, and also that θ−i
k is known,

independent from ui
k and remains constant throughout the

time that server is being utilized. In this section, since we
are dealing with the i-th agent only, we drop the i super-
scripts and subscripts in all our variables except θ−i

k . We
retain the notion of θ−i

k to differentiate the sum of bids at
the host submitted by competing agents from θk , the sum of
all bids including the i-th agent’s, to simplify our derivation
of the bidding procedure.

We have the following optimization problem:

min
K∑

k=1

tik s.t.
K∑

k=1

ei
k ≤ I. (4)

We solve this problem using Lagrangian methods, and
define the Lagrangian:

L =
K∑

k=1

tik + λ

(
K∑

k=1

ei
k − I

)
. (5)

Substituting for t i
k and ei

k into equation (5) and taking
partial derivatives with respect to uk:

∂L
∂uk

=
−qkθ−i

k

cku2
k

+ λ
qk

ck
= 0 ⇒ λ =

θ−i
k

u2
k

. (6)

Note that θ−i
k > 0 implies λ > 0 for all but the trivial

case when only one agent bids. Thus we have the following
relationship between any two bids, j and k:

uk = uj

√
θ−i
k

θ−i
j

(7)

Incorporating the inequality constraint, we get

λ
∂L
∂λ

= λ

(
K∑

k=1

qk(uk + θ−i
k )

ck
− I

)
= 0. (8)

Since λ > 0, it follows that the inequality constraint
must be satisfied with equality. Substituting for {u k}K

k=2 in
terms of u1 using the relationship in equation (7), we have,
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q1

c1
(u1 +θ−i

1 )+
∑
k �=1

qk

ck

√
θ−i
k

θ−i
1

u1 +
∑
k �=1

qk

ck
θ−i
k −I = 0 (9)

Solving the previous equation for u 1, we get

u1 =
I −∑k �=1

qk

ck
θ−i
k − q1

c1
θ−i
1

q1
c1

+
∑

k �=1
qk

ck

√
θ−i

k

θ−i
1

(10)

which yields the bid for the first job for the i-th agent given
the loads of the servers for the jobs in its sequence.

4 Existence of Nash Equilibrium for Multiple
Agents at the Same Provider

Consider now, without loss of generality, a provider with
capacity of resource type 1 and N agents desiring service
are currently at the provider. We assume that the agents
have some estimate of future loads, θ−i

k , so that they are
able to estimate how much of their money to spend for this
current job. An estimate can be obtained by augmenting the
system with “advertising” agents that periodically update
and make available the values of total bids at various servers
throughout the network. A simple estimate of θ−i

k would
be the means of the loads of all the servers of type k jobs.
Given a load estimate for future jobs, the optimal bid from
equation (10) is:

ui
1 = fi(θ−i

1 ) :=
αi − βiθ−i

1

βi + γi√
θ−i
1

(11)

where

αi := I −
∑
k �=1

qi
k

ci
k

θ−i
k (12)

βi :=
qi
1

ci
1

(13)

γi :=
∑
k �=1

qi
k

ci
k

√
θ−i
k (14)

Intuitively,αi represents the estimate of the money avail-
able for the current job, and if that is less than zero, the agent
cannot afford to purchase service under the current state of
the network. We require that the bids be non-negative. We
have βi > 0, θ−i

k > 0, and γi ≥ 0 with equality only if the
agent has one job. If αi ≤ 0, fi will return a negative value.
Thus the agent will only submit a bid if α i > 0.

At the server, we would like to generate a set of bids that
forms a Nash equilibrium [2] with respect to the policies of
the N agents:

{ui
1 = max{0, fi(θ−i

1 )}}N
i=1 . (15)

A Nash equilibrium solution is a set of bids where no
agent can gain an advantage by unilaterally changing its
bid. One possibility of reaching the Nash equilibrium is
a decentralized algorithm where each agent makes an initial
bid and then updates its bid at preset time intervals, t, using
the iteration

ui(t + 1) = fi(θ−i
1 (t)), (16)

where ui(t) and θ−i
1 (t) denote the i-th agent’s bid and sum

of competing bids, respectively, at time t. Unfortunately,
this algorithm rarely converges to a Nash equilibrium and
is suboptimal due to the inconsistency of the initial guesses
and subsequent iterations.

Instead, we focus on a centralized method to obtain op-
timal bids. The agents submit bid functions in the form of
equation (11) and the server produces the optimal bids for
each agent. To formulate this new method, we translate each
agent’s bid function domain from θ−i

1 to a single common
domain, θ1. Once we change the domain, we show that the
space over θ1 is continuous under most conditions and that
we can approximate the remaining instances with our exist-
ing framework.

Using u-space has a deficiency in that its dimension in-
creases with the number of agents. To reduce our search
space, we iterate over a common domain for all agents, θ1-
space, where θ1 := θ−i

1 + ui
1. Modifying the policies in

equation (15), we get the following implicit relations be-
tween ui

1 and θ1:

{ui
1 = max{0, fi(θ1 − ui

1)}}N
i=1 . (17)

From this, we can obtain an explicit function g i(θ1) : θ1 →
ui

1. Figure 1 illustrates how fi(θ − ui
1) shifts as θ1 varies.

Figure 2 demonstrates the shape of gi(θ1). Outside the
range θ1 ∈ (0, αi/βi), gi(θ1) takes the value of 0. We now
derive g(θ1).

Substituting θ1 − ui
1 for θ−i

1 in (11), in the range, θ1 ∈
(0, αi/βi), we have the following:

ui
1 =

αi − βi(θ1 − ui
1)

βi + γi√
θ1−ui

1

(18)

which leads to a quadratic equation in ui
1. Dropping the i

superscript, we have:

γ2u2
1 + (α − βθ1)2u1 − (α − βθ1)2θ1 = 0 (19)

Taking the positive root of the equation with respect to
u1, we have u1 = g(θ1) where
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Figure 2. Form of gi(θ1)

g(θ1) =
(α − βθ1)2

2γ2

(
−1 +

√
1 +

4γ2θ1

(α − βθ1)2

)
(20)

when θ1 ∈ (0, αi/βi) and u1 = 0 otherwise.
We see that g is continuous at θ1 = 0 and θ1 = α/β.

Thus, g(θ1) is a continuous function of θ1. We also note
that on θ1 ∈ (0, αi/βi):

∂g
∂θ1

= 2β(α−βθ1)
2γ2

+−2β(α−βθ1)
2+2γ2(α−βθ1)−4βγ2θ1

2γ2
√

(α−βθ1)2+4γ2θ1

(21)

and when θ1 = 0+, we have

∂g

∂θ1

∣∣∣∣
θ1=0+

=
1

2γ2

[
2βα +

−2βα2 + 2γ2α√
α2

]
= 1. (22)
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Figure 3. Sample plot of
∑N

i=1 gi(θ1) versus θ1

for 16 agents

Returning to the question of the optimal bids for
N agents, we seek θ1 and {ui

1}N
i=1 to satisfy for all

agents the definition θ1 =
∑N

i=1 ui
1 and equation (17).

An equivalent problem is to find a value of θ1 such
that

∑N
i=1 ui

1 − θ1 =
∑N

i=1 gi(θ1) − θ1 =: h1(θ1) = 0.
We know that ∂h1/∂θ1 |θ1=0+ = −1 +

∑N
i=1 1 > 0

if N ≥ 2 and thus, h1 is increasing to the right
of zero and h1(0+) > 0. We also know that
h1(maxi{αi/βi}) = −maxi{αi/βi} < 0 for the
non-trivial case where at least two agents have αi > 0.
Because h1 is the sum of continuous functions, h1 is
continuous as well and must be zero for some value of
θ1 ∈ (0, maxi{αi/βi}). We solve for this value by using
a bisection search of h1 in the given range. We sketch a
sample of

∑N
i=1 gi(θ1) versus θ1 in Figure 3.

If an agent has only one job left to complete, it can be
shown that u1 = θ1 for θ ∈ (0, Ic/q) is its optimal pol-
icy, which is equivalent to having γ = 0, which violates
one of the assumptions made earlier. However, by using
L’Hôpital’s rule, we see that

limγ→0+ g = limγ→0+

1
2

8θ1γ

(α−βθ1)2
(α−βθ1)

2

4γ

√
1+

4γ2θ1
(α−βθ1)2

= limγ→0+
θ1√

1+
4γ2θ1

(α−βθ1 )2

= θ1

Thus, if we require agents with only one job to submit
bid functions with γ > 0, we allow the agents to approxi-
mate their optimal solutions to arbitrary precision and still
preserve the assumed structure, which yields an equilibrium
solution.
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5 Uniqueness of Nash Equilibrium for Multi-
ple Agents at the Same Provider

Let Oi = (0, αi/βi) be indexed such that O1 ⊃ O2 ⊃
· · · ⊃ ON (i.e, α1/β1 > a2

1/β2 > · · · > αN/βN ) where
N is the number of agents at a server. Let us define

hn
1 (θ1) =

n∑
i=1

gi(θ1) − θ1. (23)

We have already shown that h1(θ1) = hN
1 (θ1) = 0 has at

least one solution on O = ∪N
i=1Oi = (0, maxi{αi/βi}) =

O1.

Theorem 1 hN
1 (θ1) = 0 has only one solution on O.

To prove Theorem 1, we must first prove some initial lem-
mas. In Appendix 9, we show that (∂2gi/∂θ2

1) < 0 on Oi.
From the definition of hn

1 in equation (23) and the definition
of the indices, it can be seen that

∂2gi

∂θ2
1

< 0 on Oi ∀i ⇒ ∂2hn
1

∂θ2
1

< 0 on On, (24)

∂gi

∂θ1

∣∣∣∣
θ1=0+

= 1 ∀i ⇒ ∂hn
1

∂θ1

∣∣∣∣
θ1=0+

= n − 1, (25)

gi(0) = 0 ∀i ⇒ hn
1 (0) = 0. (26)

Also, hn
1 is a continuous function of θ1.

Lemma 1 If h(x) is a twice continuously differentiable
function on [r, s], (∂2h/∂x2) < 0 on (r, s), h(r) > 0, and
h(s) < 0, then there exists a unique point x0 ∈ (r, s) s.t.
h(x0) = 0.

Proof. We prove this lemma by contradiction. The Interme-
diate Value Theorem states that there is at least one value
x0 ∈ (r, s) s.t. h(x0) = 0. Because (∂2h/∂x2) < 0 on
(r, s), we know that h is strictly concave on (r, s), i.e.,

ah(x) + (1 − a)h(y) < h(ax + (1 − a)y) (27)

for a ∈ (0, 1) and x, y ∈ (r, s). Suppose there are two
points that satisfy h(x) = 0, say x1, x2 ∈ (r, s) where
x1 < x2. Again, using the Intermediate Value Theorem, we
can show that ∃r0 ∈ (r, x1) ⊂ (r, s) s.t. h(r0) > 0. Then,
we have ah(r0) + (1 − a)h(x2) < h(ar0 + (1 − a)x2)
which implies ah(r0) < h(ar0 + (1 − a)x2). If
a = (x2 − x1/x2 − r0) ∈ (0, 1), then we have
ah(r0) < h(x1) = 0, which is a contradiction since a > 0.
Thus, there can be at most one point where h(x) = 0. ♦

Proof of Theorem 1. When n = 1, (∂h1
1/∂θ1)|θ1=0+ = 0,

and (∂2h1
1/∂θ2

1) < 0 on O1, which implies that h1
1(θ1) < 0

on O1. When n = 2, (∂h2
1/∂θ1)|θ1=0+ = 1 and h2

1(0) = 0,
thus h2

1(0
+) > 0. Also, h2

1(α
2/β2) = h1

1(α
2/β2) < 0

and (∂2h2
1/∂θ2

1) < 0 on O2. Applying Lemma 1, we get
that there is a unique point θ0 s.t. h2

1(θ0) = 0 on O2. But,
h2

1(θ1) = h1
1(θ1) < 0 on O1 ∩Oc

2; thus θ0 is a unique point
where h2

1(θ0) = 0 on O1.
Uniqueness can be shown using an inductive argument.

Assume that there is a unique point θ0 < αi/βi on O1

where hi
1(θ0) = 0. Also assume (∂2hi

1/∂θ2
1) < 0 on Oi

and hi
1(θ1) < 0 on O1 ∩ Oc

i . Along with the continuity of
hi

1, the previous result implies the following:

hi
1(θ1)




> 0 θ1 < θ0

= 0 θ1 = θ0

< 0 θ1 > θ0

(28)

Rewriting equation (23), we have hi+1
1 = hi

1 + gi+1.
There are two cases to consider:
Case 1. If (αi+1/βi+1) ≤ θ0, then equation (28) is satisfied
for hi+1

1 because gi+1(θ1) = 0 for θ1 ≥ θ0 ≥ (αi+1/βi+1)
and gi+1(θ1) ≥ 0 for θ1 ≤ (αi+1/βi+1). Thus, there is a
unique point θ0 where hi+1

1 (θ0) = 0 on O1.
Case 2. If θ0 < (αi+1/βi+1) < (αi/βi), then
hi+1

1 (αi+1/βi+1) = hi
1(α

i+1/βi+1) < 0 by equation (28).
We also know hi+1

1 (0+) > 0, because hi+1
1 (0) = 0 and

(∂hi+1
1 /∂θ1)|θ1=0+ = i > 0. Since (∂2hi+1

1 /∂θ2
1) < 0 on

Oi+1, we can apply Lemma 1 and arrive at the result that
there is a unique point θ̂0 on Oi+1 where hi+1

1 (θ̂0) = 0.
But since gi+1(θ1) = 0 for θ1 > (αi+1/βi+1), we have
that on O1 ∩Oi+1, hi+1

1 (θ1) = hi
1(θ1) < 0. Thus, we have

a unique point θ̂0 where hi+1
1 (θ̂0) = 0 on O1. ♦

6 Simulation and Results

In this section, we define an algorithm that implements
the resource-allocation policy from Section 4 and describe
a simulation of the policy.

A host accepts bid functions from all agents present any
time an agent arrives to or departs from the site. Agents
express bids through three coefficients defined in equa-
tions (12-14). The host takes all bids to form the bid-
response function, g(θ), and uses a bisection search to find
the bidding level θ = g(θ). Algorithm 1 sketches this oper-
ation.

We base our simulation on the Swarm simulation sys-
tem [13]. In the simulation, there are 100 hosts, each pro-
vides one of eight computational services, and the capacity
is determined from a truncated Gaussian random variable.
The hosts comprise a stochastically generated network gen-
erated from the GT-ITM package [6]. In GT-ITM, a net-
work is built from a hierarchical system of transit domains
connecting stub domains. The user specifies the number

5



Algorithm 1 Allocate Resources for Host k

1: while true do
2: t := time since last arrival/departure
3: for all agents i do
4: deduct tgi(θ) from agent i’s endowment
5: end for
6: add new agent or remove departing agent
7: for all agents i do
8: query agent i for α, β, and γ (equations (12-14))

to build gi(θ)
9: end for

10: search for θ =
∑N

i=1 gi(θ) in (0, maxi(αi/βi))
11: for all agents i do
12: vi

k := ckgi(θ)/θ
13: end for
14: end while

and average size of domains in nodes (hosts) as well as the
probability that nodes are connected within the domain.

Agents are created at a Poisson arrival rate. Their start
location is determined uniformly and they have an exponen-
tially distributed number of jobs in their itinerary. Each job
size is chosen from an exponential distribution. The final
parameter describing an agent is its endowment size rela-
tive to the sum of its job sizes. We generate this parameter
from a truncated Gaussian random variable with positive
mean. This parameter reflects the owning user’s preference
that the task completes quickly.

Once an agent is injected into the network, it must for-
mulate a route. It chooses a route incrementally, choosing
a host for each task after completing the previous task. For
the purpose of expenditure planning, however, for all but
the next immediate host choice, agents plan to visit hosts of
average capacity ck, and average congestion θk , for hosts
offering the corresponding service. Agents then choose the
next site to be the one that minimizes the sum of execu-
tion times, assuming no change in bidding level θ−i

k , and
network transfer times for the next hop. Thus, our routing
algorithm is greedy and naive. We sketch its operation in
Algorithm 2.

Algorithm 2 Choose Next Site for Agent i

1: tmin := ∞; nextHost := ∅
2: for all hosts k offering service next in itinerary do
3: tk := [transferLatency: k from:

currentHost] + ckg(θ−i
k )/(θ−i

k + g(θ−i
k ))

4: if tmin > tk then
5: tmin := tk; nextHost := k
6: end if
7: end for
8: return nextHost

Figure 4. A screen shot of the simulator.

Once an agent jumps to a site, it commits to finishing the
current task at that site. To complete the current task, the
agent submits a bidding function conforming to the restric-
tions in Section 5. Whenever an agent arrives or leaves a
host, the host searches for an equilibrium congestion, θ.

To test the effectiveness of our resource allocation pol-
icy, we compare the endowment of agents with their per-
formance. Once the network has reached a steady state,
we designate seven percent of the agents injected into
the system as test agents. Our test agents have identical
itineraries and starting hosts, but they have differing endow-
ment sizes, spanning two standard deviations, σ, around the
mean endowment, µ. We then measure the performance of
agents compared with the performance that they would have
achieved in a network with zero congestion. We compute
this idealized measurement by computing a shortest path
through the network where the distance between any two
hosts is the sum of the network transfer times and the time
an agent would take to complete a job at the host without
any competition, qk/ck.

Figure 5 shows a plot of agent endowment versus per-
formance relative to the ideal. The figure plots the mean
performance of many agents at various endowment levels,
as well as the standard deviations. There is a very strong
relationship between spending and the speed at which an
agent completes its itinerary. We show a χ2 linear fit of the
performance means to indicate the strength of the relation-
ship.

7 Discussion and Future Work

We have presented a simple resource-allocation policy
and an efficient means for agents to plan their expenditure
given the policy and perfect information. Because agents re-
formulate their expenditure plans after completing every job
in their itinerary and the bidding strategies preserve agents’
budget constraints, theoretically agents will always com-
plete their itineraries. In the implementation of our sim-
ulator, however, we use discrete time units and round up
when assessing agents’ costs to the host, so occasionally
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agents cannot complete their itineraries. This occurrence is
less frequent with finer time-unit granularity. Further agent
failures occur when agents with small endowments cannot
complete their itineraries because higher prioritycongestion
never subsides.

Our planning algorithms rely on exactly knowing agents’
job sizes. This assumption is reasonable for certain appli-
cation domains. However, we would like to relax this re-
quirement in our future work by exploring other strategies
where agents had probability distributions for their job sizes
instead of fixed scalar values.

In constructing our expenditure planning algorithm, we
assumed that agents have already chosen a route to com-
plete their itineraries. In the implementation, however, we
can only estimate the future capacity of hosts based upon
aggregate host statistics and we choose agents’ routes in a
greedy fashion. This technique appears to work well for
a simple network topology but would fall short in a more
complex network, such as a wireless network where hosts
move about their environments. Thus, another area of future
research is to investigate better ways of calculate agents’
routes.

Finally, market systems require that agents have infor-
mation from which to make decisions. Our future research
will attempt to evaluate both the cost of distributing infor-
mation, such as site congestion, as well as the cost of agents
using inaccurate or dated information.

8 Related Work

Our earlier work in this area adopted a currency model
of resource allocation, in which agents use electronic cash
to purchase needed resources and participate in an elec-
tronic market with a banking system [3]. There are several

methods to determine the price of a certain resource in a
given market structure. We investigated the derivation of the
equilibrium pricing scheme in a single seller market with a
number of buyers, having a Cobb-Douglas type utility func-
tion [4]. In more recent work, we determine prices in a mar-
ket structure in which the servers provide a price curve for
the resources that they sell, and we obtain the equilibrium
price as the result of a utility maximization problem [15].

We are not the first to research the possibility of using
market-based control for mobile-agent systems. Telescript
supported a system where agents carried permits whose
strength diminished over times and as they moved around
the network [18]. The weakening of permits approximates
currency exchange. The Geneva Messengers mobile-agent
system includes support for agents to buy CPU priority,
memory, and network access [17]. Neither system, how-
ever, explores how agents should plan in market-based en-
vironments.

POPCORN is a market-based system where users sub-
mit Java programs to a centralized server that contracts the
programs’ executions out to servers [16]. User programs in
POPCORN, however, are not autonomously mobile and do
not relocate once assigned to a server.

Modeling telecommunication network problems as dy-
namic games has produced Nash equilibria solutions in
many settings such as capacity allocation in routing [10],
congestion control in product form networks [11], flow con-
trol in Markovian queuing networks [7], and combined rout-
ing and flow control [1]. Incorporating electronic market
concepts such as pricing congestible network resources has
been shown to encourage efficiency [14]. Network resource
allocation where users were charged per unit time has also
been investigated under various criteria of fairness [8, 9].

9 Conclusion

We presented a simple means of resource allocation that
prioritizes agents through a single parameter, endowment
size. To utilize the mechanism, we derived a bidding policy
that minimizes an agent’s execution time for an itinerary,
while preserving a fixed budget constraint. Furthermore, we
proved that the use of our optimal bidding strategy results
in a unique computable Nash equilibrium. We simulated a
network of mobile agents and their hosts using our bidding
strategy and resource-allocation policy to show that agents
are prioritized by their endowments.

Appendix Proof of Concavity of gi(θ1)

For the variables αi, βi, γi defined in equations (12-4)
we drop the superscripts and consider the bidding function
of only single agent. Let w(x) be a function defined as:
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w(x) = −x2 +
√

x4 − bx3 + bαx2 (29)

where x ∈ (0, α) and b = (4γ2/β).
Then, g1(θ1) = 1

2γ2 w(α − βθ1) for θ1 ∈ O1 and

∂2g1/∂θ2
1 = (β2/2γ2)(∂2w/∂x2). (30)

To prove the concavity of g1 on O1, it suffices to show
that (∂2w/∂x2) < 0 for x ∈ (0, α). We have

∂2w/∂x2 = (2p(x)p′′(x) − p′(x)2 − 8p(x)
3
2 /4p(x)

3
2 ) (31)

where p(x) = x4 − bx3 + bαx2. Since p(x) > 0 for x ∈
(0, α), it is sufficient to show

v(x) = 2p(x)p′′(x) − p′(x)2 − 8p(x)
3
2 < 0. (32)

After substituting for p(x) and simplifying, we get

v(b, x) = −4αb2x3 + 12αbx4 + 3b2x4 + 8x6

−12bx5 − 8(x4 − bx3 + bαx2)
3
2

(33)

We note that v(0, x) = 0 ∀x. Taking the partial deriva-
tive of v(x) w.r.t. b, we get

∂v
∂b = −(α − x)[6bx3 + 12x2γ(x)] − 2bαx3

γ(x) =
√

x4 + bx2(α − x) − x2 (34)

hence ∂v/∂b is negative for x ∈ (0, α) and b > 0.
v(b, x) < 0 for all b > 0 for x ∈ (0, α), which implies

(∂2w/∂x2) < 0 for x ∈ (0, α), and thus (∂2g1/∂θ2
1) < 0

on O1.
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