
Dependency Management In Distributed Settings

Guanling Chen and David Kotz
Department of Computer Science, Dartmouth College

Hanover, NH 03755, USA
{glchen, dfk}@cs.dartmouth.edu

Dartmouth Computer Science Technical Report TR2004-495

Abstract

Ubiquitous-computing environments are heterogeneous
and volatile in nature. Systems that support ubicomp appli-
cations must be self-managed, to reduce human interven-
tion. In this paper, we present a general service that helps
distributed software components to manage their dependen-
cies. Our service proactively monitors the liveness of com-
ponents and recovers them according to supplied policies.
Our service also tracks the state of components, on behalf
of their dependents, and may automatically select compo-
nents for the dependent to use based on evaluations of cus-
tomized functions. We believe that our approach is flexible
and abstracts away many of the complexities encountered in
ubicomp environments. In particular, we show how we ap-
plied the service to manage dependencies of context-fusion
operators and present some experimental results.

1 Introduction

Many ubiquitous-computing (ubicomp) applications are
designed to reduce complexity in their users’ lives by adapt-
ing to the context around the user. These environments in-
clude a wide variety of mobile devices, often connected by
wireless networks. As a result, the set of devices, users,
and conditions is highly dynamic. To limit the complexity
faced by ubicomp application programmers, ubicomp sys-
tem software should be self-organized and self-repaired to
require minimum human intervention.

One aspect of coordination is to manage the dependen-
cies among software components, particularly when they
are temporally coupled [3]. We say a componentX depends
on another componentY if X needs service fromY, and we
say X is a dependentof Y. The problem of dependency
management, in face of potentially unexpected failures, has
two aspects: one is to monitor the component’s liveness and
restart it in time, and the other is to control the components

according to dependencypolicies. There are many possible
policies, as we discuss in detail below; they may include
rules such as reclaiming a component when it has no depen-
dents, or selecting a different component when the original
one failed.

In this paper we present a general infrastructure that
monitors and recovers distributed services, which may fail,
migrate, or disconnect during hand-offs. The system pro-
vides a common name space that allows service discovery
and composition [16]. It also executes component objects
supplied by applications for customization, tailed to their
specific needs [19]. These component objects may also be
lost due to host crashes, and may migrate for purpose of bal-
ancing CPU load and network usage. The resulting mobility
requires the system to track component locations to facili-
tate communications between components and their depen-
dents.

As a result, a ubicomp support infrastructure should in-
clude 1) a method for a service to register a name and in-
formation about how to restart itself in case of failure, 2) a
method for applications to query the name space to locate
available services, 3) a way for components to register de-
pendency relationships and associated policies, 4) a method
for applications to inject additional objects into the data-
flow path from services to themselves, and 5) a method for
communication between components and their dependents.
By abstracting most of the complexity of these functions,
developing a reliable ubicomp applications becomes a much
easier task.

We assume that each component is given a globally
unique numeric key that is invariant once the component
is registered, even if it is restarted or moved to another host
later. Thus, we can specify the dependency relationship be-
tween two components as if one key depends on another, for
example,KX → KY if X depends onY andKX andKY are
their keys. We also assume that the network link failures do
not partition the network, and that failing components sim-
ply stop and disappear (no Byzantine faults). To simplify

1

David Kotz
© Copyright 2004 by the authors뛀



the design, we also consider the components are trusted.
In this paper, we present a specific ubicomp system,So-

lar, that provides a collection of services for ubicomp ap-
plications. In particular, Solar provides acontext fusion
service that allows applications to compose context infor-
mation by subscribing to events from a set of sensors and
other information sources. Solar applications insert addi-
tional operatorsto aggregate low-level data into high-level
knowledge. Autonomic systems may make adaptation deci-
sions, for example, by using the Solar service as a substrate
to infer current the state of the devices, network, and users.

Solar consists a set of infrastructure nodes, which we
call Planets, peering together to form a service overlay built
with a self-organized and self-repaired peer-to-peer routing
protocol [2]. Each Planet is an overlay node and has its own
unique numeric key. The Planets cooperatively execute the
operators, which are software components with their own
keys. Solar may move operators at run time to balance
the load on Planets. An operator takes one or more event
streams as input and produces an event stream, so operators
can be stacked together to form a directed graph. The de-
pendencies among data sources, operators, and applications
are monitored and managed by Solar’sdependencyservice.

The rest of the paper is organized as follows. We present
background information about Solar in Section2. Section3
discusses design details of Solar’s dependency service, and
Section4 contains some implementation issues. We give
experimental results in Section5. Section6 discusses re-
lated work and we conclude in Section7.

2 Background

Ubiquitous-computing applications must adapt to vari-
ous computational, environmental, and user state to reduce
the need for user intervention [18]. This sort of information
is context, that is, information that affects how an applica-
tion performs its task. Context is typically a piece of high-
level knowledge that may be derived from distributed sen-
sors producing potentially low-quality data. For instance,
the content delivered to a user may be customized by the
user’s current location, which might be aggregated from
several data sources [13]. These context-aware applications
need system support for collection, aggregation, and dis-
semination of contextual information. The supporting sys-
tem itself, however, should be autonomic, self-organized,
and self-repaired.

2.1 Context fusion

Solar provides a flexible and scalable infrastructure to
connect data sources, and allows applications to aggregate
and customize contextual information from sources by in-
jecting data-fusion operators. The operators could be sim-

P

P

P

S

A

A

P

Figure 1. Solar consists a set of functionally
equivalent nodes, named Planets (denoted
as P), which peer together to form a ser-
vice overlay. They connect data sources S
and applications A and cooperatively execute
context-fusion operators (filled circles).

ple filters or they may employ more sophisticated machine-
learning algorithms. An operator takes input from one or
more data sources and acts as another source producing
data. The simple interface allows operators be stacked to-
gether to form an acyclicoperator graphfor more complex
context computation [8].

All Solar sources register a name with a Solar’s dis-
tributed directory service; Solar applications select data
sources by querying the directory [10]. Since an oper-
ator is also a data source, it may optionally register a
name, so it can be selected and shared by multiple appli-
cations. This modular approach encourages both code re-
use (through documented class library) and instance re-use
(through naming and discovery). Solar thus has the advan-
tages of facilitating development of context-aware applica-
tions with a composable framework and increasing system
scalability by reducing redundant computation and network
traffic.

2.2 Planetary overlay

Solar consists of a set of functionally equivalent hosts,
named Planets, which peer together to form a service over-
lay using a peer-to-peer protocol [17] as shown in Fig-
ure 1. A data source may connect to any Planet to adver-
tise its availability and an application may connect to any
Planet to select data sources and aggregate context with
specified operators. The Planets cooperatively provide sev-
eral common services including operator hosting and ex-
ecution, a directory for source registration and discovery,
an application-level multicast facility, policy-driven buffer
management for flow/congestion control, a Remote Proce-
dure Call (RPC) service, a distributed persistence service,
and a dependency management service.

2



The directory service takes name advertisements, or
name queries, encoded as a list of attributes [10]. The direc-
tory also allows an application to register a standing query
and receive notifications about name space changes. Solar’s
multicast service follows a channel-based publish/subscribe
model. A publisher simply sends events into a multicast
channel, identified by a key, while subscribers register with
the channel by supplying their own keys. Our implementa-
tion is based on Scribe [7], with an additional facility that
uses application-specific policies to prevent buffer overflow
[9].

2.3 Peer-to-peer routing

Solar employs a peer-to-peer (P2P) routing substrate,
named Pastry, whose details are described in [17]. Here, we
provide a brief overview to understand how we implement
dependency graph management.

In Pastry, numeric keys represent application objects and
are chosen from a large identifier space. Each Planet in So-
lar is a participating node (peer), which is assigned a key
chosen randomly with uniform probability from the same
key space. Pastry assigns each object key to the live node
whose key is numerically closest to the object key. It pro-
vides a primitive to send a message to the node that is re-
sponsible for a given key. Each Pastry node also maintains
keys for a set of their neighbors (in network proximity),
called itsneighbor set.

The overlay network is self-organizing and self-
repairing, and each node maintains a small routing table
with O(log(n)) entries, wheren is the number of nodes in
the overlay. Messages can be routed to the node responsible
for a given key inO(log(n)) hops. Simulations on realistic
network topologies show that: 1) the delay stretch, i.e., the
total delay experienced by a Pastry message relative to the
delay between source and destination in the underlying net-
work, is usually below two; and 2) the paths for messages
sent to the same key from nearby nodes in the underlying
network converge quickly after a small number of hops [6].

3 Service design

In this section, we present the system design details of
Solar’s dependency service, which is used to manage com-
ponents of the context-fusion framework, including both ex-
ternal clients (data sources and applications) and operators
hosted by Planets. Table1 lists explanations for the nota-
tions used in this section.

In following discussion, we indicate implicitly that a
message is delivered through the Pastry P2P routing mech-
anism if the destination is a key. Otherwise, the message is
delivered through a direct UDP/IP connection if the desti-

X, KX A component and its key
RX , MX A component’s root and monitor
PX , PRX , PMX Planet hostingX, RX , andMX

P, PM Planet and its monitoring peer
C, C P A client component and its proxy

Table 1. List of notations used in discussion.

nation is an IP address. There is no delivery guarantee in
either case.

3.1 Component registration

Before using the dependency service, a Solar component
(whether a source, an operator, or an application) must first
register with the service. When registering, a componentX
provides its key and configuration information as follows:
1) the action to take ifX fails, such as to restart it or to
email an administrator; 2) the command (or object class
and initialization parameters) used to startX; 3) any restric-
tion regarding the set of hosts whereX be restarted; and 4)
whether Solar can reclaimX when it has no dependents for
a certain period of time. Solar records such configuration
information and makes it available whenX failed.

Some component may not be restarted on just any host.
For instance, a data source may have to run on a particu-
lar type of host, to access a piece of sensing hardware. On
the other hand, most operators are self-sufficient, process-
ing events as they arrive, so Solar may restart them on any
available Planets when they are lost.

Some components maintain state during operation, and
require that state to be restored after a crash. We assume the
component may checkpoint its state at a different host (us-
ing Solar’s distributed persistence service, for instance) so
the execution state is available during recovery. This state
management is beyond the scope of this paper.

Solar may also migrate a running operator to another
Planet. Solar implements a weak mobility scheme for oper-
ator migration, namely, it asks operator to capture its state
that will be restored at the destination host [4].

Solar requires each component to explicitly identify the
set of components it depends on; since dependencies may
vary with the circumstances, components register (or re-
move) dependencies whenever necessary. A component
may specify two types of dependencies:key-basedor name-
based. In other words, a component may specify the keys of
the components it depends on, or a name query that will be
resolved to discover components, who supply their keys in
name advertisements. Since our directory service may re-
turn multiple components for a query, the requesting com-
ponent may use a customized function to select appropri-
ate components. For instance, a location-aware application
may want to use the location service with maximum gran-

3



ularity or fastest update rate. As data sources come and
go, as is typical in a ubicomp environment, the results of
the query change occasionally; the function is re-evaluated,
permitting quick adaptation for the dependent.

For either type of dependency, the dependent supplies
a policy determining how to handle the failure, restart, or
migration of the other component, or (for name-based de-
pendencies) a change in the results of the name query and
selector function. For example, ifX depends onY andY
fails, the policy ofX may be to wait untilY is restarted. If
the X → Y dependency is name-based, another reasonable
policy is to use the output of the function to select a different
component.

When a component has zero dependents, the component
may be subject to garbage collection to release occupied
resources.

In summary, a component registers with Solar’s depen-
dency service to provide its key, information about its restart
configuration, and a list of its dependencies and associated
policies. Solar monitors the component and restarts it ac-
cordingly; it also tracks the state of its depending compo-
nents and takes appropriate actions stated in its policies.

3.2 Monitoring and recovery

If an operatorX failed due to its internal exception, its
hosting Planet can simply restart it. To recoverX from a
Planet failure, we install a dedicated monitorMX as X’s
watchdog. TheX periodically sends atokenmessage to
MX through direct IP, andMX assumesX is lost if it has
not heard any token for a threshold of time. ThenMX se-
lects a Planet to restartX, and the newX will register with
dependency service and send tokens toMX . On the other
hand,MX also periodically sends a token toX for moni-
toring purpose. SoX could also detect the failure ofMX

and restart it at another Planet. This bi-directional monitor-
ing ensures bothX andMX can be restarted on new Planets
unless they failed simultaneously.

We could have installed one monitor per component, but
that would incur a large amount of monitoring traffic given
many operators and relatively few Planets. It is a waste of
both CPU power and network bandwidth. Thus we group
the operators on the Planet and monitor them as a whole,
so we only need one monitor for the Planet and the moni-
tor restarts all the operators in the group when that Planet
failed. As shown in Figure2, the black circle is a represen-
tative of PlanetP and sends aggregated tokens to monitor
PM for all the operators onP. Unlike operators that are
hosted by Planets, an external clientC (data source or ap-
plication) installs a proxy operatorC P on the PlanetP that
currently servicesC.

At the starting up, a PlanetP first tries to find another
Planet as its monitor, by sending a request to a random key

C

CP

M

X P
P

Figure 2. Component monitoring diagram.
The black circle represents Planet P and
sends aggregated tokens to monitoring
Planet PM . Unlike operator X, C is an external
client that installs a proxy C P on the serving
Planet.

through P2P and the receiving Planet responds with its IP
address. When the request successfully returns,P starts to
send an aggregated token, including the key and configu-
ration of its operators, to its monitoring PlanetPM using
direct IP connection. On the other hand,PM will also send
an acknowledge token toP at a fixed rate. BothP and
PM maintain a timer that is updated whenever a token is re-
ceived from its peer and is expired when it is not updated
for certain time.

Let the token sending interval atP be t , we assume if
PM has not received any token for a period ofk ∗ t , thenP
has crashed. Similarly,P assumesPM has lost if it has not
received any token for that threshold. By tuning the param-
eterk, the protocol becomes more resilient to intermittent
token lost or more quickly to recover from failures.

As the timer atPM expires, it starts the recovering pro-
cess of all operators hosted originally byP. It sends a re-
quest to a random key whose responsible Planet, with the
request containing the key and configurations of those op-
erators. The receiving Planet restarts all the operators and
make them join the local ones. ThenPM removesP from
the list it monitors. IfP detects thatPM has failed, it sends
a monitoring request to a random key until a Planet other
than itself is found.

To move an operatorX from PlanetP to P′, P first re-
movesX from its local repository so the token sent toPM no
longer containsX. The P also sends an explicit request to
PM to removeX’s key and configuration. ThenP requests
P′ to install a new copy ofX. If either P or P′ failed dur-
ing migration process,PM eventually times out and triggers
process of recoveringX.

We now discuss how to monitor and recover an external
clientC. The idea is similar, clientC and its serving Planet
P run a dual monitoring protocol that detects each other’s
liveness. IfC has failed,P tries to restart it ifC’s config-
uration contains instructions. Otherwise, it simply removes

4



C P and de-registersC.
On the other hand, the proxy operatorC P registers with

dependency service and is also being monitored byPM .
WhenP has failed,PM does not try to recoverC P but sim-
ply removesC P from the list of operators to be restored.
If C is still alive while P has failed,C may go through a
discovery protocol to find another Planet for service.

By aggregating operators on the Planets we can signif-
icantly reduce monitoring traffic and processing overhead.
A disadvantage of this approach, however, is that we are
dumping all operators from the failed Planet to another,
which may already be experiencing heavy load. In this case,
we could either rely on Solar’s load balancing mechanism
to migrate some operators out later, or the monitor of the
failed Planet may decide to partition the operator list and
spread them onto several Planets.

Note theP andPM form a two-node ring to monitor each
other. If bothP and P M failed simultaneously, our proto-
col is not able to recover the lost operators onP. Assuming
a Planet fails with probabilityp and there is no co-related
failures, the probability of simultaneous failure isp2. We
can further reduce this probability by inserting more mon-
itors to expand the circle. Each monitorPM periodically
sends a token to its adjacent neighbor on the ring, which ef-
fectively monitorsPM and restarts it when it failed in a sim-
ilar way to previous discussion. The token contains current
addresses of all participating monitors, so a failure of non-
adjacent members does not break the ring. Withm nodes in
the circle, the protocol failure probability exponentially re-
duces topm, with cost of linearly increased total token rate
to bem ∗ r (assumingr is the token rate on one edge).

3.3 Tracking dependencies

To facilitate coordination between componentX and
those it depends on, we define aroot object for X and de-
note it RX . The root always runs on the Planet responsible
for X’s key, so any party can communicate withX by send-
ing messages toKX without knowing its network address.
RX tracks the current location ofX, and forwards the mes-
sage toX. X’s monitor retainsX’s restart configuration,
and the rootRX keepsX’s dependency policies by receiv-
ing periodic updates fromX as shown in Figure3. Here we
assumeX depends onY.

Upon receiving one ofX’s periodic update messages,RX

recordsX’s current location and list of dependencies. If
any dependency is name-based,RX queries the directory
service and evaluates the selector function on the results.
The output determines the component(s)X should use;X
is notified about any changes in the selection andX updates
RX if it indeed made those changes. ThusRX contains
a list of keys of the componentsX currently depends on,
either explicitly specified or resolved from the name query.

X

RX

update

RY

Y

Multicast

heartbeat

update

Figure 3. A component X has a root RX that
manages its dependencies. The root tracks
the state of its component and publishes the
events to its dependents’ root, which in turn
takes actions specified in dependency poli-
cies. The communication is based on P2P
keys.

Root RX receives notification wheneverX fails, restarts,
or migrates from eitherPX or MX . Then RX publishes
these events through multicast service to channelg(KX),
whereg is a deterministic mapping function to return the
key for that channel. TheRX itself, subscribes to all the
channels of the componentsX depends on, such asg(KY).
These events triggerRX to take actions specified inX’s
dependency policies, for instance, to re-evaluate a selector
function to get other usable components ifY has failed, or
requestPX to rebootX if Y has rebooted. Note for scala-
bility reasons,RX does not keep the keys of its dependents.
Instead, it simply publishes events to a single channel sub-
scribed byX’s dependents.

Given the list of keysX currently depends on,RX sends
a periodicheartbeatmessage to all the keys through P2P at
a low frequency. The root of each components receives the
heartbeat and resets its timer; the timer fires when it has not
heard any heartbeat from any dependents for a long time.
Then that root, sayRY for componentY, assumes there is
no dependents forY anymore. IfY’s configuration permits,
RY requestsPY to stop and de-registerY from dependency
service.

Note the state kept by each root is soft and can be recre-
ated from its component’s periodic updates. This soft state
helps the situation whenPRX crashes, orRX has moved to
a different Planet due to overlay evolution. If theRX times
out onX’s updates, it simply removes itself.

4 Implementation

Solar is implemented in Java 1.4.1 Standard Edition1

and we adopt FreePastry2 as its peer-to-peer routing sub-
strate. In this section, we present the architecture of an

1http://java.sun.com/j2se/
2http://freepastry.rice.edu/

5



UDP/IP
Transport

Pastry
Transport

Dispatcher

RPC Directory Multicast

Dependency

Mobility

PersistencyServices

Operators

Fusion

Figure 4. Architecture diagram of a Planet,
which exposes two kinds of transport in-
terface: normal socket communication and
peer-to-peer routing. The dispatcher multi-
plexes received messages to a set of Solar
services.

Planet and some optimizations to the dependency monitor-
ing and recovering protocol.

4.1 Planet architecture

Planets are functionally equivalent and they all partici-
pate the overlay network, each acting as a Pastry node and
having a unique key. A Planet has two kinds of transports:
normal UDP/IP interface and Pastry interface. Thus a com-
ponent running on Planet may send message with destina-
tion specified either as socket address or a Pastry key. A
dispatcher routes messages from the two transports to a col-
lection of Solar services based on the multiplexer header.
From a service’s point of view, it always sends messages to
its peer service on another Planet. A service may also get a
handle for another service on the same Planet and directly
invokes its interface methods.

At starting up, a Planet loads the set of services speci-
fied in a configuration file. In particular, the “fusion” ser-
vice manages local operators and schedules their execu-
tion. It uses directory service to connect operators to desired
sources or other named operators. Solar disseminates events
through operator graph using an application-level multicast
facility to improve overall scalability. The “dependency”
service implements the functionalities discussed in this pa-
per and is used by fusion service to manage operator graphs.

4.2 Protocol optimizations

Here we discuss two optimization techniques on the pro-
tocols presented in Section3.

In many cases we desireX be restarted on a Planet near
original PX to keep network proximity to other compo-
nents. To achieve this goal, we add one more field in mon-
itoring tokens containing a set of neighbor nodesN BX of
PX . WhenPX fails, MX may request a random Planet from
N BX to startX instead of sending request to a random key.
It is possible to makeMX run on a nearby Planet toPX

in same approach, but with increased possibility of thatPX

and PMX fail together if we consider co-related failures in
reality.

We can user another optimization to further reduce the
traffic of monitoring and recovery by aggregating proto-
col messages that are being sent to the same IP or Pastry
key. There are two places where the dependency service
can group the messages. A Planet as the message origina-
tor may group token messages and heartbeat messages sent
to the same IP address or Pastry key. On the other hand, a
Planet as an intermediate node on the transmission path may
check the destination key of passing by messages and group
them by keys. Simulations on realistic network topologies
show that the paths for messages sent to the same key from
nearby nodes in the underlying network converge quickly
after a small number of hops [6], thus the message aggrega-
tion may significantly suppresses protocol overhead.

5 Experimental results

In this section we present some results on monitoring
and migration protocols. We performed the experiments on
seven Linux-based workstations,3 all being connected us-
ing a 100Mb switch. The average round-trip delay between
any two hosts is about 0.25ms. On each workstation, we run
a single copy of Planet that hosts a number of operators. We
set the token rate to be once per 3 seconds, and the moni-
toring timeout to be 9 seconds. The root update rate is also
once per 3 seconds.

First we measure how long it takes Solar to recover from
a Planet crash and restore the operators on another Planet.
We deliberately crashed a Planet and compute the time that
its monitor detected the failure until the monitor’s recover
request returned. The recover request was sent to a ran-
dom key whose responsible Planet will then re-initiate the
operators from the crashed Planet and registers them with
local dependency service. We show the result in Figure5,
with recovery time measured against various number of op-
erators on the crashed Planet. We notice the time grows
linearly as the number of operators to recover increases.

We then measure the time it takes for an operator to
migrate from one Planet to another. In this test, every 5
seconds each Planet moved a random operator it currently
hosts to another Planet. The migration first requested cur-
rent Planet to remove the information about the moving op-

3Dell GX260, 2.0 GHz CPU, 512 MB RAM, and running RH Linux 9

6



0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Number of operators

R
ec

ov
er

y 
tim

e 
(m

s)

Figure 5. Operator recovery time in millisec-
onds after a Planet crash.

0 30 60 90 120 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Migration time (ms)

C
D

F

Figure 6. Distribution of operator migration
time for 10-minute run.

erator, and then send the migration request to a random key.
The Planet received the request restarts the operator using
the configuration in the request, and the operator joined lo-
cal ones to be monitored together. We measure the time
between a migration request was issued until it successfully
returned to original Planet. We recorded the delay numbers
on all seven Planets during about 10-minute run, and Fig-
ure6 shows the distribution. The median migration time is
about 12 milliseconds. The more hops (P2P) migration re-
quest had to go through, the more latency it incurred. We
also saw a long tails indicating a couple of 120 milliseconds
delay, which might be caused by combined effect of large
number of hops and thread scheduling of destination Planet.

6 Related work

The concept of data fusion is essential for component-
based context-aware systems, such as Context Toolkit [12]

and ContextSphere [11]. Until now, we have not seen a gen-
eral service, like Solar provides, to manage the dependen-
cies between the distributed data-fusion components. We
believe our service abstracts away many complexities for
coordination in a heterogeneous and volatile ubicomp envi-
ronment.

Our dependency service mainly concerns the temporally-
coupled components, and does not directly apply to other
coordination models [3]. For instance, Stanford’s Intelli-
gent Room system provides temporally-decoupled commu-
nication over a tuple space [14]. Here we can only say a
component depends on the tuple-space service while each
component may be individually monitored and recovered.
The functional and restart dependencies between compo-
nents, however, are not clearly defined and may not be suit-
able for Solar to manage.

Recovery oriented computing (ROC) takes the perspec-
tive to reduce recovery time and thus offer higher avail-
ability [15]. One ROC technique is recursive restartability
(RR), which groups components by their restart dependen-
cies instead of functional dependencies [5]. When error or
malfunction is detected, including component failure, RR
system proactively restart the minimum component group
containing the offending one. Our approach has a smaller
scope and focused on the distributed dependency manage-
ment protocols in case of failures. Solar supports restart
dependency, in addition to functional dependency, by re-
quiring explicit component registration.

Solar uses a rendezvous point in the infrastructure to
manage a component’s dependencies. Given a relative sta-
ble overlay network and the soft-state based root, the root
becomes a natural entry point for inter-component coordi-
nation. This indirection-based technique has been used to
manage large-scale event multicast [7] and host mobility
[20].

INS provides a different communication primitive than
P2P routing systems [1]. The destination of the messages is
a name query, which is resolved hop-by-hop by the direc-
tories on the passing nodes. Thus INS is more expressive
on message receivers, but may be less efficient compared to
numeric key based routing. In particular, each service reg-
isters a name together with a metric value. As INS node
resolves name queries, it may pick the name with smallest
value. This is analogous to our approach to continuously
evaluate a customized function over both the name adver-
tisements to decide which components for use.

7 Conclusion
The contribution of this paper is a general service that

manages distributed component dependencies. The goal of
such a service is to abstract away most complexities en-
countered in a heterogeneous and volatile ubicomp envi-
ronments, thus to ease the application or system design and

7



implementation. We present a flexible ubicomp system plat-
form, named Solar, which contains a service overlay built
upon self-organized and self-repaired peer-to-peer routing
protocol. Dependency management is one the services pro-
vided by Solar, and also uses Solar’s directory and multicast
services. In particular, we present how a context-fusion ser-
vice on Solar uses dependency service to manage the oper-
ator graphs.

The dependency service contains two parts. One is to
proactively monitor Planets among themselves and recover
the lost operators on failed Planet. For each component,
we maintain a rendezvous point (root) to manage its inter-
component dependencies. A component registers with de-
pendency service about its restart configuration, which is
used by monitor to restart failed component, and depen-
dency policies, which is used by root to take appropriate
actions when depending components failed, rebooted, and
moved. Our experiments show that the dependency service
incurs small overhead on both recovery and migration pro-
tocols.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The design and implementation of an intentional nam-
ing system. InProceedings of the 17th ACM Symposium on
Operating System Principles, pages 186–201, Charleston,
South Carolina, United States, 1999. ACM Press.

[2] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Looking up data in P2P systems.Communications
of the ACM, 46(2):43–48, February 2003.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile-Agent
Coordination Models for Internet Applications.IEEE Com-
puter, 33(2):82–89, February 2000.

[4] G. Cabri, L. Leonardi, and F. Zambonelli. Weak and strong
mobility in mobile agent applications. InProceedings of the
2nd International Conference and Exhibition on The Practi-
cal Application of Java, Manchester, UK, Apr. 2000.

[5] G. Candea and A. Fox. Recursive Restartability: Turning
the Reboot Sledgehammer into a Scalpel. InProceedings of
the 8th Workshop on Hot Topics in Operating Systems, pages
125–130, Elmau, Germany, May 2001.

[6] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Topology-aware routing in structured peer-to-peer overlay
networks. Technical Report MSR-TR-2002-82, Microsoft
Research, 2002.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralised application-level
multicast infrastructure.IEEE Journal on Selected Areas in
Communications, 20(8), Oct. 2002.

[8] G. Chen and D. Kotz. Context Aggregation and Dissemina-
tion in Ubiquitous Computing Systems. InProceedings of
the Fourth IEEE Workshop on Mobile Computing Systems
and Applications, pages 105–114, Callicoon, New York,
June 2002. IEEE Computer Society Press.

[9] G. Chen and D. Kotz. Application-controlled loss-tolerant
data dissemination. Submitted to Mobisys 2004, November
2003.

[10] G. Chen and D. Kotz. Context-Sensitive Resource Discov-
ery. InProceedings of the First IEEE International Confer-
ence on Pervasive Computing and Communications, pages
243–252, Fort Worth,Texas, March 2003.

[11] N. H. Cohen, H. Lei, P. Castro, J. S. Davis II, and A. Pu-
rakayastha. Composing Pervasive Data Using iQL. InPro-
ceedings of the Fourth IEEE Workshop on Mobile Com-
puting Systems and Applications, pages 94–104, Callicoon,
New York, June 2002. IEEE Computer Society Press.

[12] A. Dey, D. Salber, and G. D. Abowd. A context-based infras-
tructure for smart environments. InProceedings of the 1st
International Workshop on Managing Interactions in Smart
Environments, pages 114–128, Dublin, Ireland, Dec. 1999.

[13] J. Hightower, B. Brumitt, and G. Borriello. The Location
Stack: A Layered Model for Location in Ubiquitous Com-
puting. In Proceedings of the Fourth IEEE Workshop on
Mobile Computing Systems and Applications, pages 22–28,
Callicoon, New York, June 2002. IEEE Computer Society
Press.

[14] B. Johanson and A. Fox. The Event Heap: A Coordination
Infrastructure for Interactive Workspaces. InProceedings of
the Fourth IEEE Workshop on Mobile Computing Systems
and Applications, pages 83–93, Callicoon, New York, June
2002. IEEE Computer Society Press.

[15] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft. Recovery Oriented Computing (ROC): Moti-
vation, Definition, Techniques, and Case Studies. Technical
Report CSD-02-1175, U.C. Berkeley, 2002.

[16] B. Raman and R. H. Katz. Load balancing and stability is-
sues in algorithms for service composition. InProceedings
of the 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies, pages 1477–1487, San Fran-
cisco, CA, April 2003. IEEE Computer Society Press.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-
Peer Systems. InProceedings of the 2001 International Mid-
dleware Conference, pages 329–350, November 2001.

[18] M. Satyanarayanan. Pervasive computing: vision and chal-
lenges.IEEE Personal Communications, 8(4):10–17, 2001.

[19] A. Vahdat and A. Aggarwal. Active Names: Flexible Loca-
tion and Transport of Wide-Area Resources. InProceedings
of the 2nd USENIX Symposium of Internet Technologies and
Systems, Boulder, CO, October 1999.

[20] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker. Host
Mobility Using an Internet Indirection Infrastructure. In
Proceedings of the First International Conference on Mo-
bile Systems, Applications, and Services, pages 129–144,
San Francisco, CA, May 2003. USENIX Association.

8


	Introduction
	Background
	Context fusion
	Planetary overlay
	Peer-to-peer routing

	Service design
	Component registration
	Monitoring and recovery
	Tracking dependencies

	Implementation
	Planet architecture
	Protocol optimizations

	Experimental results
	Related work
	Conclusion

