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Abstract

Reactive or proactive mobile applications require contin-
uous monitoring of their physical and computational en-
vironment to make appropriate decisions in time. These
applications need to monitor data streams produced by
sensors and react to changes. When mobile sensors
and applications are connected by low-bandwidth wire-
less networks, sensor data rates may overwhelm the ca-
pacity of network links or of the applications. In tradi-
tional networks and distributed systems, flow-control and
congestion-control policies either drop data or force the
sender to pause. When the data sender is sensing the phys-
ical environment, however, a pause is equivalent to drop-
ping data. Arbitrary data drops are not necessarily accept-
able to the reactive mobile applications receiving sensor
data. Data distribution systems must support application-
specific policies that selectively drop data objects when
network or application buffers overflow.

In this paper we present a data-dissemination service,
PACK, which allows applications to specify customized
data-reduction policies. These policies define how to
discard or summarize data flows wherever buffers over-
flow on the dissemination path, notably at the mobile
hosts where applications often reside. The PACK ser-
vice provides an overlay infrastructure to support mobile
data sources and sinks, using application-specific data-
reduction policies where necessary along the data path.
We uniformly apply the data-stream “packing” abstrac-
tion to buffer overflow caused by network congestion,
slow receivers, and the temporary disconnections caused
by end-host mobility. We demonstrate the effectiveness
of our approach with an application example and experi-
mental measurements.

1 Introduction

Adaptive mobile applications rely on awareness of their
execution context, such as physical location, network con-
dition, and state of their peers. To obtain such informa-

tion, applications typically need to continuously monitor
data streams produced by sensors so that they can react
to events quickly. Due to the potential large data vol-
ume, however, it is necessary to control the data flow from
sender (sensor) to receiver (application) so that the data
rate does not exceed the receiver’s consumption rate or ex-
ceed the network’s transmission capability. We must also
supportdisconnected operationfor mobile clients, (either
senders or receivers).

All three situations involve buffers:flow controlprevents
overflow of receiver’s buffer (such as by informing sender
how much more data the buffer can hold);congestion con-
trol uses certain mechanisms to notify the sender either
explicitly or implicitly when buffers of intermediate net-
work elements are full; disconnection causes the buffer at
the sending side of the broken link grow until the link is
restored. In each case, it is necessary to have a limit on
the buffer size because physical memory is finite and be-
cause latency may grow unacceptably large if data sits in
the queue waiting to be processed.

As a buffer becomes full, it is inevitable that the buffer
must drop some data or tell the sender to pause. As one
example, consider TCP/IP. A TCP receiver explicitly in-
forms the sender about the available space of its receiving
buffer so the TCP sender adjusts its sending window ac-
cordingly to prevent overflow. IP routers drop packets as
an implicit notification to TCP senders about congestion
in their buffers; again, the sender should regulate its send-
ing rate. Traditional transports like UDP/IP or TCP/IP,
exposes little control to the endpoints; they cannot recog-
nize the application’s data semantics and priorities. Thus
the application either gets best-effort data delivery (data
dropped arbitrarily when buffers overflow), or end-to-end
reliable transmission that may require the sender to slow
down or pause. When the data sender is sensing the phys-
ical environment, however, a pause is equivalent to drop-
ping data because a paused sensor no longer collects data.

We argue that we can take advantage of the middle
ground. Some applications do not require reliable trans-
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fer but need some control on what data to drop when a
buffer reaches limit. These “loss-tolerant” applications
are adaptive to informed or controlled data loss by, for
instance, degrading accuracy or other performance as-
pects. The benefits of such strategic data reduction are:
1) it is friendly to “unstoppable” data sources such as
sensors with limited buffering capability; 2) the reduced
data stream preserves application-specific semantics; and
3) the transmission latency is kept low by dropping less-
important data.

There are many examples of loss-tolerant applications in
multimedia. We are mainly interested in non-multimedia
applications. Consider a disaster scenario where victims
and responders carry devices that report their vital signs
and current location. As the monitoring device carried by
a local commander (or its wireless network condition) be-
comes incapable of handling the aggregated data volume,
data senders on sensing or monitoring devices may want
to drop less-urgent data such as pulse rates in the “normal”
range, duplicated values, and those that have not changed
much since previous report. The applications may pro-
duce less accurate results without a complete complete
sensor record, but the result may still be useful if applica-
tion semantics influence the choice of data to drop.

In this paper, we present a data-dissemination service,
PACK, that allows applications to specify data-reduction
policies. These policies contain customized strategies for
discarding or summarizing portions of a data stream in
case of buffer overflow. The summaries of dropped data
serve as a hint to the receiver about the current buffering
condition; the receiver may adapt by, for example, choos-
ing a different data source or using a faster algorithm to
keep up with the arriving data. Unlike congestion con-
trol in the network layer, which makes decisions based on
opaque packets since it does not recognize the boundaries
of application-level data objects, the PACK policies work
at the granularity of Application Data Units (ADU) [9],
which in this paper we callevents. Since PACK is able to
separate the events that follow a common structure, PACK
can get thevaluesinside the event object enabling a much
more flexible and expressive policy space for receivers.

In addition to the policies at the end hosts, it is neces-
sary to install data-reduction policies on the buffers of the
intermediate forwarding nodes, so they can be triggered
closer to congested links or disconnected clients. It is not
practical and may not be efficient to inject PACK func-
tionalities into a widely deployed protocol stack (such as
IP). Instead, we implement packing policies at the appli-
cation layer using the buffers above the networking stack.
We assume forwarding nodes are strategically placed in
the infrastructure to form a multicast overlay service ca-
pable of executing data-reduction policies at any node.

Our PACK service presents three contributions. First,
it enables customized data-reduction policies so loss-
tolerant applications can trade data completeness for fresh
data, low latency, and semantically meaningful data. Sec-
ond, it employs an overlay infrastructure to support mo-
bile data end-points for temporary disconnection and
hand-off. Finally, it provides an adaptation mechanism
so receivers may react to current buffering conditions.

The rest of the paper is organized as follows. We present
the data stream structures and policy specifications in Sec-
tion 2. The overlay architecture, protocols and related
issues are discussed in Section3. We present the uni-
fied buffer management technique in Section4. Then
we discuss the system implementation issues (Section5)
and present evaluation results (Section6). Section7
demonstrates the effectiveness of our approach with some
campus-wide WiFi monitoring applications. We discuss
related work in Section8 and conclude in Section9.

2 Data-reduction policy

We begin by defining terms. A dataendpoint is either
a senderor a receiver. A client is a non-overlay host
that, mobile or not, may host one or more endpoints. A
sender produces a data stream, a sequence of events car-
rying application data, such as sensor readings. We model
an event as a list ofattributes: each contains atag string
and avalueobject. Currently we assume that all events
from the same sender have same structure, namely, the
same set of attribute tags. To receive a data stream, the
receiversubscribesto some sender. The sender client,
intermediate forwarding overlay nodes, and the receiver
client form a dissemination path for that subscription. We
allow many receivers to subscribe to a single sender, or a
single receiver to subscribe to multiple senders. Concep-
tually there is a FIFOqueueon each host of the path for a
particular subscription, temporarily holding the events in
transition. Abufferconsists of multiple queues for multi-
ple subscriptions (we discuss the detail of buffer manage-
ment in Section4).

Receivers may attach a data-reduction policy (or simply
policy) to their queues (on any node of the path), to spec-
ify how to shorten the queue when it becomes full, by
discarding and summarizing certain events according to
applications’ needs. Figure1 shows the overall structure
of the PACK service, with two receivers subscribed to the
same sender.

PACK puts all events, either from a local sender or from
the network, into its internal queue waiting to be con-
sumed by a local receiver or transmitted to next host on
the path. If a queue becomes full, PACK triggers its as-
sociated policy to examine the events in the queue and
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Figure 1: The PACK service consists of a set of overlay nodes,
which cooperatively serve clients that host endpoints (either
sender or receiver). This example shows two receivers sub-
scribed to the same sender. Each receiver subscribes to the
sender with a customized policy (p1 orp2). Policies are installed
on all the hosts along the path from sender to receiver. Nodes on
multiple paths contain multiple policies (node A contains both
p1 andp2).

determine which should be dropped. The policy may also
specify how to summarize the dropped events intodigests,
which are placed in the resulting queue as well. On the
receiver’s client, PACK pulls events or digests from the
queue and invokes different interface of the receiver. We
now discuss what consists a policy specification and how
PACK executes a policy.

Policy specification

A policy defines an ordered list offiltering levels, and
each level contains a singlefilter or a chain of filters. The
list of levels reflects receivers’ willingness to drop events
under increasingly desperate overflow conditions: more
events should be dropped by filters at higher levels. the
lower levels. The policy may contain arbitrary number
of levels. Given an event queue to be reduced, PACK
determines which level to use and then passes the queue
through all the filters defined up to and including that de-
cided level, starting from the lowest level.

A filter is instantiated with application-defined parame-
ters and determines what events to keep and what to drop
given an event queue as input. The filters are independent,
do not communicate with each other, and do not retain or
share state. Since an event may contain several attributes,
the filter typically requires a parameter indicating which
attribute to apply the filtering.

Filters drop some events. Optionally a policy may also
specify how to summarize dropped events using a single
or chain ofdigesters. The result of summarization, is a
digestevent injected into the event stream. Thus an event
queue may contain a mixed set of events and digests. The
digests give some rough feedback to the receiver about
which events were dropped, and also serve as a buffer

<policy attribute="PulseRate">
<summary>

<digester name="MEAN">
<digester name="COUNT">

</summary>
<level>

<filter name="DELTA">
<para name="change" value="5"/>

</filter>
</level>
<level>

<filter name="WITHIN">
<para name="low" value="50"/>
<para name="high" value="100"/>

</filter>
</level>
<level>

<filter name="LATEST">
<para name="window" value="10"/>

</filter>
</level>

</policy>

Figure 2: An example of PACK policy that is applied to mon-
itor a patient’s pulse rate data stream. Depending on current
buffer fullness, the policy either drops events whose value has
not changed much (DELTA), drops events whose value is out-
side a certain range (WITHIN), or drops all previous events ex-
cept last 10 ones (LATEST). All dropped events are summarized
to compute the number and average value as supplementary in-
formation to the receiver.

overflow indication; the receiving application may take
action such as switching to different sources or using a
faster algorithm to consume events.

We show an example policy in Figure2 using XML syn-
tax (although it is not the only possible specification lan-
guage). First the policy specifies that all the filters ap-
ply on the attribute with tag “PulseRate”. It is also pos-
sible to specify a different attribute for each filter. All
dropped events are summarized to inform receivers about
the number and average PulseRate value of all dropped
events. The example gives a single filter for each buffer-
ing level. The first-level filter drops events whose pulse
rate has not changed much since the previous event; the
second-level drops all events that have pulse rate inside
of a “normal” range (since they are less important); and
the last filter simply keeps the latest 10 events and drops
everything else. In urgent buffering situations, all three
filters are applied in sequence to each event in the queue.

Currently PACK supports basic comparison-based filters,
such as GT (>), GE (≥), EQ (=), NE (6=), LT (<), LE
(≤), MATCH (=∼), and WITHIN ([k1, k2]). We also
provide some set-based operators such as INSET (∈),
CONTAIN (3), SUBSET (⊂), SUPSET (⊃), FIRST (re-
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tains only the first value in a set), and LAST (retains only
the last value in a set). More advanced filters include
UNIQ (remove adjacent duplicates), GUNIQ (remove all
duplicates), DELTA (remove values not changed much),
LATEST (keep only lastN events), EVERY (keep only
everyN events), and RANDOM (randomly throw away a
certain fraction of events). The digesters for summariza-
tion are MAX, MIN, COUNT, SUM, and MEAN, which
have typical semantics as their name suggests.

As indicated in Figure2, our approach is to allow appli-
cations to compose predefined filters into a customized
policy. We could have used a general-purpose language to
express more general policies or even more general filters.
The trade-off is that as the language gets more powerful
and more complex filters are supported, it is more likely
that PACK will have more overhead on filter execution
and eventually reduce system scalability [5]. Based on our
experience so far, many loss-tolerant applications desire
simple and straight-forward policies. Thus our strategy is
to keep the filters simple and efficient, and to expand the
filter repository as necessary.

Policy execution

Due to previous packing operations performed locally or
at upper stream hosts, a queue may consists of a sequence
of mingled digests (d) and events (e) as follows (the se-
quence number reflects the order in the queue instead of
the original counter at the sender):

e1, e2, d3, e4, . . . , e5, d6, e7, e8 .

Suppose a policy is executed on this queue ande2 is to
be dropped, thend3 should be updated usinge2. On the
other hand, if all the events betweene1 and e8 are to
be dropped, a new digest should be computed based on
dropped events. In particular,d3 andd6 should be able to
be combined.

Thus the digesters should be “associative” so they can be
recursively executed on previous results. Note that, since
the same policy exists on every host in a path, that this
associativity applies across hosts as well as within a host
(when a buffer must be packed again). All the digesters
we mentioned above (such as MAX, MIN) satisfy this re-
quirement. If we were to provide a digester that computes
the number of unique values in dropped events, then the
digests have to carry all the unique values so they can be
merged or updated accurately. The number of unique val-
ues, however, may be unbounded and defeat the purpose
of summarization. Although it is possible to use these di-
gests as packing boundaries (so they do not have to be
updated or merged), a queue may end up with many di-
gests with little actual data and reduce the effect of filters
applied later.

Filtere

pass?

Update

Digesters

d

Return
Digest

yesno

e

e
d’

Figure 3: Packing a queue through a single filter. The filter gets
an evente or a digestd from input queue in order. Ife fails to
pass the filter then it is taken by digesters, as are all the digestsd

from input. Otherwise a new digestd′ is computed and put into
output queue together with the satisfyinge.

When a policy is triggered, PACK takes the input queue
and forms a chain of filters up to the filtering level it has
decided. PACK feeds the queue to the first filter, passes
the resulting queue to next filter, and so on until the last
filter. Figure3 visualizes how a single filter executes the
policy. For each evente in input queue, if it fails to pass
then it is used by digesters to update current summary
state, like previously computed digestsd in input queue.
If the e passes the filter, then a new digestd′ is computed
and placed in output queue together with the satisfying
evente.

A design alternative is to take one event from the input
queue and check it against all filters until it is either fails
in middle or passes all. Only after the previous event
has already run through all filters, the next event in input
queue is admitted and follows the same procedure. Our
approach, however, takes the input queue as a whole and
feeds it through all filters. We believe the first approach
limits what a filter can do since the event pass the filter
only once and the filter does not know how many more
events are coming. Our PACK filters, however, are able
to perform tasks on the whole queue, such as LATEST
and GUNIQ. The overhead of two approaches, however,
should be comparable since each event has to be checked
against all filters in sequence.

It is possible that PACK may not be able to reduce a queue
at all even after applying the highest filtering level. The
reasons might be that the policy does not apply well to
current data values so all filters are not effective, or the
link to next host is congested or disconnected and the
queue has already been filtered at the highest level. In
such cases, PACK drops all the events in queue and ap-
plies policy’s digesters, or COUNT if the policy does not
have one.
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3 The service overlay

Strictly speaking, PACK could be implemented only on
sending and receiving hosts, without an overlay infras-
tructure. PACK would only need to manage the input
buffer of the receiver and the output buffer of the sender.
A service overlay, however, is more attractive as the sup-
porting infrastructure for several reasons: 1) the over-
lay node provides an ideal proxy for the mobile clients,
such as handling subscriptions for sender and buffering
data for disconnected receiver; 2) pack operations can be
performed closer to where congestion and disconnection
happens to improve scalability and responsiveness; 3) an
overlay supports application-level multicast in absence of
IP multicast to reduce network traffic [7]; and 4) other
services can also be provided by the same overlay, such
as naming and discovery of data sources [3].

Dissemination path

The clients, which host data endpoints (either senders or
receivers), are not part of the PACK overlay. Instead, a
client has to explicitly attach to an overlay node to re-
quest services for its endpoints. The node to which the
client attached acts as theproxy for all the endpoints on
the client. Each endpoint and overlay node has a unique
ID from the same ID space. Each endpoint also has aroot
node, whose ID is closest to that endpoint’s ID among all
nodes. Note that an endpoint’s root is not necessarily the
same node as that endpoint’s proxy node. All the overlay
nodes are functionally equivalent and may play several
roles simultaneously.

As shown in Figure4, a data dissemination path is con-
structed as follows: the client hosting a senderS forwards
all its published events to the sender’s rootSR via the
proxySP ; the the events are multicasted to the root nodes
of all subscribing receiversRR, hopping through a set of
intermediate forwarding nodesMF ; finally the events are
forwarded to the clients hosting each receiverR via its
proxy RP . Note theSR, set of intermediate forwarding
MFs, and all subscribingRRs form an application-level
multicast (ALM) tree for the event stream published byS.
Castro et al. present and compare some of protocols that
can be used to build ALM on peer-to-peer overlays [7].

This rendezvous-based approach is analogous to ROAM’s
Internet indirection architecture, which was designed to
support host mobility [19]. Our approach, however, re-
quires the client to explicitly attach to a proxy before its
endpoints can send or receive data. The reason is that the
clients typically need to engage in a soft-state protocol to
periodically communicate with some infrastructure host
so each other knows the other party’s liveness. The fre-
quency of the heartbeat is purposefully high, to improve
responsiveness since mobile clients are less stable. The

S R

SP

SR

RP

RR

MF

Figure 4: The data dissemination path in the PACK overlay. We
show a single senderS and receiverR. The overlay nodes are
functional equivalent, and each plays one or more roles at the
same time. TheSP andRP denote the proxies for the mobile
client whereS or/andR runs. The proxy is a bridge between
the endpoints (S or R) and their root nodes (SR or RR). The
root nodes, together with a set of intermediate forwarding nodes
MF , form an application-level multicast tree.

client, however, may host many endpoints and it is ex-
pensive to repeat the heartbeat to all of the client’s end-
points’ roots, increasing the demand on computation and
bandwidth, both of which might be limited on the mobile
clients.

Mobile clients

Mobile clients may experience temporary disconnection
caused by weak links or mobility hand-offs. During dis-
connection, a client may roam and change its network ad-
dress (network mobility), and it may or may not choose
the original proxy when it reconnects (host mobility). A
client may voluntarily decide to change proxy if it finds a
“better” overlay node, such as one that is closer or has a
lighter load. The proxy may also make its own decision to
disconnect a client, if proxy is about to shutdown or is too
crowded, and force the client to select a different proxy.

Thus the client and its proxy engage in a protocol main-
taining the state about each other. A client (thus the end-
points it hosts) may appear in three states to the proxy,
attached, detached, or departed. State transitions from
attachedto detachedare triggered either by an explicit
requests or by missing several heartbeat signals. If the
client has been detached longer than a timer threshold,
the proxy assumes the client has departed (and will not
re-attach). The proxy appears to the client in two states:
eitherattachedor detached, and transitions are managed
in a way similar to the client state.

PACK starts to buffer data on the sender client for all re-
ceivers if it is detached from the proxy, or in the overlay
if some receiver client has detached. If the receiver client
has departed, PACK removes its subscription and all accu-
mulated queues. Since a client may re-attach to a different
proxy, PACK buffers the data for the detached receiver
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on its root rather than on its proxy. The proxy explic-
itly notifies the root for each endpoints in its care When a
client re-attaches to a new proxy, it contacts the old proxy
first to retrieve any buffered events for its receivers, then
it informs the new proxy it is ready to receive new events
buffered at the receivers’ roots. We discuss the details of
buffer management on the dissemination path in the next
section.

4 Buffer management

The queues on the data dissemination path may overflow
for various reasons. For instance, the output queues of
senderS and receiver’s rootRR grow during client dis-
connection. The input queue of receiverR grows if it is
slow consuming arriving events. Network congestion in
the overlay may also cause queue overflow. Instead of
dropping the newest events when the queue fills, PACK
uses the receiver’s policy to discard and summarize por-
tions of the queue.

A buffer is a data structure containing multiple subscrip-
tions, or queues for receivers. We distinguish two kinds of
buffers: one is thelocal bufferfor receivers on the clients,
and the other is theremote buffercontaining events to be
transmitted to clients or some overlay node. Events in a
local buffer are consumed locally by the receivers’ event
handlers, while the events in a remote buffer are transmit-
ted across a network link. While there might be multiple
endpoints on a client, there is only one local buffer for all
resident receivers and one remote buffer for all senders.
On an overlay node, there are several buffers to serve
the different roles the node may play, but all are remote
buffers. We discuss them in detail later in this section.

Both local and remote buffers adopt a two-level index-
ing structure (shown in Figure5), where the first index
is the sender’s ID. The local buffer on a client uses the
receiver’s ID as the second index, while a remote buffer
uses link address as the second index. An entry for a given
link address means there is at least one receiver subscrib-
ing to the corresponding sender across that link. The two
indexes in a local buffer point to a queue for a single re-
ceiver. On the other hand, the two indexes in a remote
buffer point to a shared queue for all receivers across the
same link under normal conditions. As the shared queue
reaches its limit due to, for instance congestion or discon-
nection, a private queue is created for each receiver and
packed using individual policy.

On each client or overlay node, a dispatcher thread pulls
events from the network, adding a reference (pointer to
event object) for each event into one or more queues,
based on the header of received event. The header con-
tains the sender’s IDsid, the receiver’s IDrid, and the

S1
S2
S3
...

S1
S2
S3
...

a)

b)
R1

R2

R3

R1
R2
R3
...

L1
L2
L3
...

Figure 5: Two-level indexing structure of buffers, both hav-
ing the sender’s ID as first index. An input buffer (a) uses the
receiver’s ID as second index, while an output buffer (b) uses
the destination/link address as the second index. Under normal
conditions, all the receivers across the same link share a single
queue. If the shared queue reaches its limit, private queues are
created for each receiver and their policies are executed to shrink
the queues.

destinationtoward. For instance, iftoward=“SP”, then
the event was just admitted into overlay from some sender
client. If rid is empty, then the event is a multicast event
destined to all subscribers of this sender. Otherwise, it is a
unicast event destined to one specific receiver. We discuss
how the event forwarding path is set up in Section4 and
how PACK triggers policy to reduce events in Section4.

An alternative buffer design is to maintain a single queue
for all the received events. Then, when packing is nec-
essary, we need to scan the whole queue to find events
for particular subscription to apply its policy. It may use
less memory, since our approach may put multiple refer-
ences of the same event into several queues if there are
more than one subscriber. We believe memory usage is
not likely to be a significant concern because the events
are not replicated. The two-index structure for separate
queues, however, gives us greater flexibility to choose
queueing and packing policies and reduces a large amount
of implementation complexity.

Event forwarding

There are several types of buffers in PACK system and we
adopt the following naming convention for ease of discus-
sion. A buffer has a name of capitalized letters ended with
“B”, and the prefix denotes the destination of the events
in the buffer. For instance, a buffer named SRB contains
all the events being forwarded to sender’s root SR, where
the SR depends on the sender’s ID and may not be the
same host. Buffer RCB contains events destined to re-
ceiver client RC.

A client has a local buffer RB (Receiver Buffer) for all
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receivers, and a remote buffer SPB (Sender Proxy Buffer)
for all senders. The first index of RB contains a list ofsid
and the second index contains a list of subscribing local
rid. The second index of SPB contains only one entry,
namely, the proxy’s address. When a receiver makes a
subscription, an entry is added to RB (extending the first-
and second-level indices as necessary). When a client re-
ceives an event relayed from its proxy, it enqueues it into
the RB. When a client receives a new subscription from
its proxy, it adds an entry (extending the indices as nec-
essary) to SPB. When a sender publishes an event, it en-
queues it into SPB.

Since an overlay node may play several roles simulta-
neously, it maintains several remote buffers. One is the
Sender Root Buffer (SRB) containing events being re-
layed to their senders’ root. Another is the Receiver
Root Buffer (RRB) containing events being forwarding
down the multicast tree toward RR. The Receiver Proxy
Buffer (RPB) contains events being forwarded to re-
ceivers’ proxy. And finally, the Receiver Client Buffer
(RCB) contains events that should be sent to directly con-
nected clients. There is only one of each these buffers on
a single overlay node.

If a receiverR is currently detached, the RPB at its root
is notified to “suspend” the queue forR, which means the
dispatcher may continue to put events in the queue but the
scheduler is not allowed to pull events from the queue and
send them to proxy RP. The queue is “resumed” when
R is re-attached. Similarly, the SPB on the client may
also be suspended and resumed when that sender client is
detached or re-attached to its proxy.

A typical event flow is thus to traverse the named buffers
as follows (the first and last buffer are on the clients while
the middle four are on overlay nodes):

SPB→ SRB→ RRB→ RPB→ RCB→ RB .

As PACK propagates a receiver’s subscription request
through overlay nodes in reverse direction, it adds a sub-
scription entry in the two-level index structure, together
with a PACK policy, to appropriate remote buffers along
the path. The algorithm is described in Procedure1. Note
all the buffers mentioned here are remote buffers and the
field lasthop is used to set up the second index of the
buffer. The fieldtoward indicates where to forward the
subscription request. The proxy periodically probes the
root to maintain a (proxy–root) address mapping so the
requests can be forwarded correctly.

As mentioned above, the dispatcher receives events from
the network and puts them into appropriate buffers based
on the event header. An event header contains a sender ID

Procedure 1 Propagating subscription requests through
the overlay nodes. Therequestoriginates fromR whose
toward is initialized to be RP.

1: (sid , rid , toward , lasthop)← request
2: if toward is RPthen
3: add subscription toRCB
4: request.toward← RR
5: sendrequestto rid’s root directly
6: else iftoward is RR then
7: add subscription toRPB
8: request.toward← SR
9: sendrequestto sid’s root directly

10: else iftoward is SRthen
11: add subscription toRRB
12: if local-nodeis sid’s root then
13: request.toward← SP
14: sendrequestto sid’s proxy
15: else
16: sendrequestto sid’s multicast parent
17: end if
18: else iftoward is SPthen
19: add subscription toSRB
20: request.toward← SC
21: sendrequestto sid’s client
22: else
23: error
24: end if

sid, a receiver IDrid, and a fieldtoward indicating where
to forward the event. The forwarding procedure is simple
and similar to Procedure1 in the reverse direction. When
an overlay node receives an event, it checks thetoward
field. If the buffer leading totoward contains thesid as
the first index, thentoward is updated to be next stop and
the event is enqueued.

Buffer packing

Each queue in a buffer has a limited size and may over-
flow if its consumer thread runs slower than the dispatcher
adds events, for instance, because of a slow network link
to a mobile device. Whenever a new event arrives to a
full queue, PACK will trigger its PACK policy to reduce
the number of events in the queue. For a local buffer,
this operation is straightforward, since the second index
of the buffer points to a single queue with individual re-
ceiver. The second index of a remote buffer, however, is
the link address that points to a queue shared by several
receivers over that link. When PACK decides to pack a
shared queue, it runs all the events in the queue through
each receiver’s policy, placing each policy’s output in a
private queue for that receiver. Note all the event duplica-
tion is based on references, not object instances.

All newly arrived events are added to the shared queue,
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which is now empty. The buffer’s consumer thread always
pulls events from the private queues first and uses the
shared queue when all private queues are empty. It is pos-
sible that another pack operation is necessary if the shared
queue fills up and adds more events to private queues be-
fore they are completely drained.

It may seem strange to split a single stream of events
into multiple unicast streams when queues are overfull;
the forwarding node may end up with more events to
store than before! We rely on the pack policies to drop
enough events. If the congestion or disconnection lasts
long enough that no filters in a policy can drop any event,
PACK triggers a built-in worst-case policy that drops all
events in the queue and summarizes them using COUNT
or the digester(s) specified in the policy.

When an event is first published, its header fieldrid is
empty, indicating that it is a multicast event to be sent to
all subscribers. A shared queue contains only multicast
events. When a shared queue is packed by a receiver’s
policy into a private queue, therid header is set to that
receiver’s ID,indicating that is now a unicast event. Any
downstream node receiving unicast events will respect the
rid and place them in the appropriate private queue... but
first pushing any events in its shared queue over into pri-
vate queues to preserve event order. If all the private
queues are drained before the shared queue becomes full
again, then the buffer switches to “shared” mode automat-
ically.

As mentioned in Section3, when a mobile client detaches,
all its endpoints’ subscriptions are suspended by suspend-
ing the consumer thread of the RPB and RCB. New
events may continue to arrive, of course, and the queues
may be packed while the client is detached. Once the
client reattaches and the suspended queues are resumed,
their consumer threads are resumed. If the client reat-
taches chooses a different proxy when reattaching, the
new proxy will notify the RR to resume the buffer RPB;
since the new proxy is on a different link, the RPB moves
the suspended queue to the new index slot before resum-
ing the thread.

5 Implementation

Our implementation is based on Java SDK 1.4.1. We
chose Pastry as the overlay routing protocol [16] and used
Scribe as the basic application-level multicast layer [7],
although others would suffice. In the rest of this section,
we discuss our implementation.

TCP
Transport

Dispatch

Mobile Client

PACK

MHOST

RPC

Endpoint

Pastry
Transport

TCP
Transport

Dispatch

PACK

MHOST

RPC

Overlay Node

Other Overlay Node

Figure 6: Service structure of clients and overlay nodes. PACK
relies on the MHOST service to monitor mobile client (and its
endpoints) state, while the endpoints use the PACK interface to
publish events or make subscriptions. Communication between
overlay nodes and clients uses a different transport service than
the one used for inter-overlay protocol; clients do not participate
in the PACK overlay.

Service architecture

Each node of the PACK system adopts a service-oriented
architecture as shown in Figure6. Each node contains
the same set of services, such as a transport service, a
simulated RPC service that blocks its caller until a re-
ply is received, a mobility service (“MHOST”) that man-
ages the state between a client and its proxy (see Sec-
tion 3), and a PACK service that allows endpoints to
publish events, subscribe, and specify packing policy.
Each service communicates with its peer on other nodes
through the transport service. Note the transport used for
client-overlay communication is separate from the one
used for inter-overlay communication. Thus PACK ex-
cludes clients from participating in the peer-to-peer proto-
col. Inter-service communication within a client or over-
lay node uses local service interface invocation, masking
the fact that a service is distributed across all participat-
ing nodes. For instance, PACK service registers a lis-
tener with MHOST to be notified about state change of
the proxy.

Currently we connect overlay nodes using TCP/IP, which
provides reliable, ordered transmission and congestion
control of a single hop between overlay nodes and clients.
We use Scribe [7] to maintain application-level multicast
trees so PACK populates the subscription requests from
leaves toward root as in Section4. PACK uses its own
TCP transport service to disseminate events rather than
Pastry’s transport library, which has a mixed UDP/TCP
mode and its own internal message queues. Since PACK
works on the queues accumulated above TCP (namely,
after a sender’s TCP buffer is filled), the events in TCP
sending buffer are not accessible to PACK and they may
be blocked until they get through to the other end. Rather
than developing a customized protocol to replace TCP, we
limit TCP’s send buffer size (as 1024 bytes) to diminish
TCP’s overhead for now. Ultimately it may be best to re-
place TCP with UDP and extend our transport service to
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handle event (packet) retransmission and congestion de-
tection, which may also relieve the problem of lost events
in TCP buffer as the client disconnects/moves without ex-
plicit request.

Ladder packing

When packing an event queue is necessary, PACK must
determine which level of filters to apply. Packing at a high
level may drop many important events. On the other hand,
packing at a low level may not drop enough events, and
the time spent packing may exceed the time saved pro-
cessing or transmitting events. Unfortunately there is no
straightforward algorithm for this choice, because there
are many dynamic factors to consider, such as the event
arrival rate, current network congestion, the filter drop ra-
tio (which depends on values in events), and the receiver
consumption rate.

PACK employs a heuristic adaptive approach in which
each queue is assigned a specific filtering level, initially
one. The heuristic changes the filtering level up or down
one step at a time (like climbing up and down a ladder),
based on the observed history and current value of a sin-
gle metric. We define that metric, theturnaround time
t, to be the amount of time between the current packing
request and the most recent pack operation (at a particu-
lar level l). The rational is that the change oftl captures
most of the above dynamic factors. An increase intl is
due to a slowdown in the event arrival rate, an increase in
the departure rate, or an increase in the drop rate of filters
up to levell, all suggesting that it may be safe to move
down one level and reduce the number of dropped events.
A decrease oftl indicates changes in the opposite direc-
tion and suggests moving up one level to throw out more
events.

PACK keeps a history of the turnaround time of all levels,
tl, smoothed using a low-pass filter with parameterα =
0.1 (empirically derived) from an observation̂tl:

tl = (1− α)t̂l + αtl .

We define the change ratio of the turnaround time at a
particular levell as:

δl = (t̂l − tl)/tl .

To respond to a current event-reduction request, PACK
chooses to move down one filtering level tol− 1 if δl ex-
ceeds a positive threshold (0.1), or to move up one level to
l+1 if δl exceeds a negative threshold (−0.1). Otherwise,
PACK uses the previous level.
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Figure 7: Average latency for one sender and multiple receivers,
using a single-node PACK overlay. The sender publishes an
event at the fixed interval of 200ms. Each receiver computes
its own average delivery latency, andy axis shows the average
of all receivers’ averages and the bar indicates the standard de-
viation.

6 Evaluation

In this section we present some experimental results from
the PACK service, using the Emulab testbed at Utah.1 We
constructed a network of five hosts interconnected by a
switched 100Mbps LAN. The loss rate and latency on all
links were set to zero. We turned off the just-in-time com-
piler and garbage collector in the Java VM. We measured
the overhead of PACK buffering on the overlay nodes, ex-
amined the queueing behaviors when PACK polices were
triggered, and the delay as clients disconnect and recon-
nect to proxies.

Buffering overhead

We set up a single data sender and a single overlay node
on the same Emulab LAN host (although a normal PACK
deployment would place data senders on client hosts that
are distinct from overlay hosts, this configuration allows
this experiment to focus on the cost of buffer operations
rather than the network latency). We used 1 to 16 receiver
clients, distributed evenly across the other four LAN hosts
(again, a normal PACK deployment would place each re-
ceiver client on a separate client host, but for the pur-
pose of this experiment four hosts were sufficient). The
sender published an event every 200ms and all receivers
subscribed to the same sender. The single overlay node
played the role of proxy and root for all end points. We
ran each experiment for 3 minutes and each receiver com-
puted the average latency over all events it received. We
compare two sets of tests, one using PACK and another
using Scribe’s ownjoin andmulticast interface. We
plot the results in Figure7.

As the number of receivers increased, the plot shows that
both the delivery latency of PACK and Scribe grew lin-
early. PACK’s larger slope indicates a non-trivial over-
head compared to the baseline Scribe. The overhead
mainly comes from buffering and thread synchronization.

1http://www.emulab.net/
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Figure 8: Queueing behavior of event reduction using Drop-
Tail (steady line) and a three-level PACK policy (line with jig-
saw variances). The first plot shows the running sequence of
perceived latency of all events by receivers. The second plot
shows the loss rate perceived by receivers over past 1 second
window. And the last plot, derived from a trace of the overlay
node, shows pack operations at various times with the ratio of
event reduction.

Each event has to traverse four buffers on the single PACK
overlay node (see Section4), and another two on the
clients. The bufferRCB contains one entry in the sec-
ond index for each receiver since they all reside in differ-
ent JVMs (or clients). Each receiver queue has a worker
thread to pull events and transmit across corresponding
TCP connection. We believe that a non-blocking network
transport service should reduce the overhead [18].

Queueing tradeoff

To measure the queueing behaviors when policy is trig-
gered, we used Emulab to set up two hosts connected by a
50Kbps network link. We placed a single receiver on one
host, and a single sender and an overlay node on the other.
The sender published an event every 30ms, and the events
accumulated at the overlay node due to the slow link to
the receiver. We compared two approaches to drop events
when the queue fills: one is to drop the new event, simu-
lating “drop-tail” behavior, the other is to use a three-level
PACK policy. Each level of the policy contains a single
filter, randomly throwing out events (10%, 25%, and 50%
respectively). We show the results in Figure8.

Figure8(a) shows the latency perceived by the receiver.
After the buffer filled up, events in the DropTail queue
have a (nearly constant) high latency because each event
has to go through the full length of the queue before trans-
mission. On the other hand, events in the queue managed
by the PACK policy exhibit lower average latency because
events may be pulled out of the middle of the queue, so
other events have less distance to travel.

From these results it is clear that application designers
should use filters that are more likely to drop events in
the middle (such as EVERY, RANDOM, GUNIQ) rather
than at the tail (such as LATEST).

Figure 8(b) plots a running sequence of the event loss
rate for each 1 second window at the receiver. We see
that the DropTail queue’s loss rate was about 30% be-
cause the arrival rate was one third more than the bot-
tleneck link could handle, and after the queue filled it
was always saturated. The loss rate of PACK was high
during intervals when the queue was packed, and zero in
intervals when the queue was not packed. The loss rate
depended on which level pack operation was performed.
Figure8(c) shows a trace from the overlay node denoting
when the queue was packed and what fraction of events
were dropped. It shows that most pack operations were
performed at the second level, dropping events at rate of
0.1+0.9∗0.25 = 0.325, which fit well with this event flow
because the arrival rate was one third higher than the con-
sumption rate (link bandwidth). The filtering level var-
ied, despite the steady publication rate, because the RAN-
DOM filter dropped varying amounts of events and our
heuristic adapted to longer or shorter inter-packing inter-
vals by adjusting the filtering level.

Client attach/detach

As a mobile client detaches from and re-attaches to its
proxy, PACK suspends and resumes its event queue in
the RPB buffer (located at RR). To measure how this op-
eration scales with many moving clients, we again set
up one sender and one overlay node on one LAN host
in the Emulab topology, and varied the number of re-
ceiver clients (distributed evenly across the other four
LAN hosts). Each client had one endpoint. Each client
explicitly repeated the operations of attaching to and de-
taching from the overlay node 20 times, while waiting
5 seconds before each state transition. We measured the
delay from the client-issued “attach” request until the first
buffered event arrived, and Figure9 shows that the de-
lay was less than one second. This latency is important
because it directly affects the user experience in many ap-
plications.

While the average delay clearly grew as the number of re-
ceiver clients increases, there was a large variance of the
delay across receivers. We saw a similar wide variance
across the 20 requests within a single receiver. We be-
lieve that this variance was due to thread scheduling and
synchronization effects in the Java VM. The detach/attach
requests, implemented by the RPC service, were handled
by the proxy using a small thread pool. Also, the RPB
buffer had one queue for each client; each had a consum-
mer thread that transmitted events across the TCP con-
nection to a client. The threads compete for the network
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Figure 9: Detach/Attach delay measurements. Each receiver
client attached to and detached from the overlay node, with
5 seconds interval between state transitions. The delay is mea-
sured as the time between the client issued an attach request un-
til the first buffered event was released and arrived at the client.
The points on the curve are the average delay of the 20 requests,
and the bars are the standard deviation across the receivers.

since every queue in the RPB buffer had events buffered
during client disconnection. This competition may be the
more significant effect because Figure7 shows little la-
tency variation under a light load.

We could further improve PACK performance with sev-
eral optimization techniques. A non-blocking network li-
brary could reduce the number of threads. Each thread
could pull more than one event from its queue each time
to reduce synchronization overhead. We could also study
whether PACK fairly treats receivers that may subscribe
to different sources with varying policies. All these topics
are future research.

7 Applications

As an example application, we use PACK to monitor a
campus-wide wireless network. Our campus is covered
by more than 550 802.11b access points (AP), each con-
figured to send its Syslog messages to a computer in our
lab. We run a data source on that host to parse the raw
messages into a more structured representation and to
publish a continuous event stream. By subscribing to this
Syslog source, applications can be notified when a client
associates with an AP, roams within the network, leaves
the network, and so on.

One of our goals is to provide an IP-based location ser-
vice: given a wireless IP address, the service can identify
the AP where the device is currently associated. This en-
ables us to deploy location-based applications, often with-
out modifying legacy software. Figure10 shows a Web
proxy, modified from an open-source Java proxy [12],
that is able to push location-oriented content to any re-
questing Web browser on wireless devices based on the
IP address in the HTTP header. Currently we insert infor-
mation about the building as a text bar on top of the client
requested page. Similarly, a location-prediction service
could instruct a Guide application [8] on a mobile device

Web
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Syslog
Source

MAC/IP
Locator

PACK
Overlay

Location
PredictorHTTP

Query

Access Point

syslog

Wireless
Client

HTTP

Associate

Figure 10: The MAC/IP locator monitors the syslog message
stream and polls the AP for MAC-IP mapping. Then the locator
publishes another stream with location updates of the mobile de-
vice. The Web proxy and a location-prediction service subscribe
to the output of the locator to, for instance, push location-related
content to clients.

to prefetch content based on next likely stop.

To provide this kind of service, a locator subscribes to the
syslog source and monitors all devices’ association with
the network. The association message contains the de-
vice’s MAC address and associated AP name, but does
not always include the IP address of that device. In such
cases, the locator queries the AP for the IP address of its
associated clients using a HTTP-based interface (SNMP
is another choice, but appears to be slower). The query
takes from hundreds of milliseconds to dozens of seconds,
depending on the AP’s current load and configuration. We
also do not permit more than one query in 30 seconds to
the same AP so our queries do not pose too much over-
head over normal traffic. As a result, we frequently find
that the locator falls behind the syslog event stream, con-
sidering the large wireless population we have.

MAC/IP locator

We focus our dicussion on the subscription made by the
locator to the syslog source, where the events tend to over-
flow the receiver’s queue RB. The locator uses a 6-level
set of filters, some of which could be chained on the same
level, but we chose to separate them for easier tracing.
These filters are listed as follows (the policy is not shown
to save space):

1. EQ: retain only events whosemessage typeis “Info”;

2. INSET: discard certain events such as “Authenti-
cated” or “roamed”;
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Figure 11: Statistics derived from the PACK trace collected on
behalf the MAC/IP locator, who made a subscription to syslog
source with a 6-level filtering policy.

3. MATCH: discard the events whosehost namerepre-
sents an AP instead of mobile clients;

4. FIRST: retain only the first event whoseactionis any
of the four messages indicating the clients’ departure
from the network;

5. GUNIQ: remove all events with duplicatedAP name
except the first one (see the optimization discussed
below);

6. EVERY: drop one event out of every three.

To accelerate the query performance, we made two opti-
mizations to the locator. First, we do not query the AP
if the syslog event already contains an IP address for the
client. Second, when querying the AP we retrieved the list
of all its associated clients and cached the results to speed
up lookups for other clients. We collected the PACK trace
for a hour-long run and Figure11shows some basic statis-
tics.

The upper-left plot presents the distribution of the filter-
ing levels triggered by PACK service. All filtering levels
were triggered, varing from 31 times to 61 times, out of
304 pack operations. The upper-right plot shows that the
filters had a wide variety of packing ratios over that one-
hour load. It seemed that the filter 2 and 4 discarded most
of the events while filters 1, 3 and 5 did not help much.
This suggests strongly that an application programmer
should study the work load carefully to configure more
efficient policies. The lower-left plot indicates that PACK
triggered the policy rather frequently, with the median ap-
proximately 11 seconds. The lower-right plot shows the
latency, derived by the time the query is resolved and the
timestamp in the original syslog event. Although we set

the connection timeout to be 30 seconds for each poll, the
longest delay to return a query was 84 seconds suggesting
some AP was under heavy load and slow to return results
even the connection was established.

Discussion

The locator could adapt to situations when level 6 is fre-
quently triggered by creating multiple threads for parallel
polling, so fewer events (which might be association mes-
sages) might be dropped. We are currently reluctant to
take this approach since the downstream application may
want in-order event delivery. The location predictor, for
example, is sensitive to the sequence of moves.

We note that filters 1, 2, and 3 throw out events having no
value to the locator service. If the source supports filtered
subscription then none of those events need to be trans-
ferred across the network. The source, however, might
become the bottleneck as the number filters to run in-
creases. Rather than using PACK as a filtering system, we
believe a more general infrastructure is necessary, such
as a content-based event system with built-in (limited) fil-
tering or a data composition network supporting a more
powerful language [10]. PACK complements these sys-
tems to deal with buffer overflow issues.

8 Related work

The design choices made by PACK generally follow the
principle of Application-Level Framing [9]. The data ma-
nipulation and transfer control are based on Application
Data Units (ADU). In our case, pack operations are per-
formed on the queued data units with a particular struc-
ture. On one hand, it is simplest to drop the recent ADU
when a queue is about to overflow. On the other hand, this
policy is inadequate or even incorrect for many applica-
tions with different requirements. Although this flexibil-
ity could be implemented at both sender and receiver, it is
not easily deployable to intermediate IP routers. Thus an
application-level overlay infrastructure is attractive since
we can push the “packing” function closer to congestion
and disconnection to improve scalability and responsive-
ness.

Traditional congestion and flow control protocols concern
both unicast and multicast. They are typically transpar-
ent to applications and provide semantics such as reli-
able in-order data transport. When computational and
network resources are limited, these protocols have to ei-
ther regulate the sender’s rate or disconnect the slow re-
ceivers [11, 15]. The usual alternative, UDP/IP, has no
guarantees about delivery or ordering, and forces applica-
tions to tolerate any and all loss, end to end. Our goal,
on the other hand, is to trade reliability for quicker data

12



delivery and service continuity for loss-tolerant applica-
tions. Our PACK service applies to data streams with a
particular structure. This loss of generality, however, en-
ables PACK to enforce receiver-specified policies. The
PACK protocol does not prevent or bound the amount of
congestion, which is also dependent on cross traffic. But
with appropriate customized policy, a receiver is able to
get critical data or summary information during the time
of congestion or the recovery period. For many applica-
tions this outcome is better than a strict reliable service
(TCP) or a random-loss (UDP) service.

Recent work using an overlay of event brokers to provide
a content-based publish/subscribe service has been fo-
cused on routing and matching scalability and has largely
ignored end-to-end flow control [4, 6]. Pietzuch and
Bhola, however, study the congestion-control issues in the
context of the Gryphon network during the course [14].
Congestion in the whole system can not be solved by sim-
ply interconnecting nodes with TCP because the overlay
is constructed in application space above TCP. Their so-
lution is to apply additional protocols for end-to-end reli-
ability for guaranteed event delivery. The sender (or the
broker serving the sender) then has the responsibility to
store all the events during congestion for later recovery,
such as using a database. From the application’s point
of view, their protocols are no different than traditional
approaches and there is no explicit support for mobile
clients.

Receiver-driven layered multicast (RLM) [13] leverages
the fact that multimedia streams can be encoded in dif-
ferent layers (rates), each of which requires different
bandwidth. The receivers then join only the multicast
group (corresponding to layer or encoding rate) that best
matches available network capacity. In a way, this idea
is similar to the PACK service, which enforces receiver-
specified policies. RLM, however, focuses only on multi-
media applications, works at the packet level, and requires
IP multicast. PACK is built in application space and re-
quires no special capability in an IP network; it uses the
same “packing” mechanism for flow control (managing
the queues at end hosts) and congestion control (man-
aging queues in overlay nodes); and it provides explicit
support for mobile clients (either data sources or sinks).
On the other hand, PACK needs a deployed overlay in-
frastructure, and PACK requires more applications effort
since layer selection is transparent in RLM and requires
no explicit application policies.

Researchers in the database community provide a query-
oriented view on continuous stream processing. One of
the goals is to design algorithms (or approximations) to
realize SQL-like operators (such as join) over the data
stream. It is desirable for these algorithms to use only
limited memory and time so the system can keep up with

the arriving data [2]. In the Aurora system, Tatbul et al.
propose to reduce system load by dynamically injecting
data-drop operators in a query network [17]. Choosing
where to put the dropper and how much to drop is based
on the “QoS graph” specified by applications. While this
approach is analogous to PACK’s policy-driven flow con-
trol, there are several differences. First, Aurora assumes
a complete knowledge of the query network, using a pre-
generated table of drop locations as the search space. Sec-
ond, PACK works on all buffers along the delivery path
and supports mobile clients while Aurora only works at
the centralized query engine. Finally, their QoS function
provides quantitative feedback when dropping data while
PACK allows explicit summarization of dropped events.

ROAM uses indirection points in the infrastructure to sup-
port robust and efficient hand-off [19]. Our PACK service
adopts a similar approach and retains the transport state
on these rendezvous points. PACK excludes the (mobile)
clients from participating in the overlay and PACK clients
use a single proxy to help manage the endpoints it hosts.
A quite different approach taken by the Intentional Nam-
ing System (INS) is to route messages to a name, whose
destination is resolved as the message hops through the
overlay network so the receiver is free to move in the
mean time [1]. Currently PACK flow control may not be
applied directly on top of INS since the messages from
same sender may be sent to different receivers.

9 Summary and Conclusion

Ubiquitous computing applications often need context in-
formation to adapt to their changing environment. The
flow of context information from sensors and other infor-
mation sources to applications is highly dynamic. Tra-
ditional flow control and congestion control approaches
either stop the sender or drop arbitrary data (packets) be-
tween sender and receiver. Our PACK service allows
applications to specify data-reduction policies that selec-
tively drop and summarize context events when the flow
exceeds the capacity of wireless network links or an appli-
cation’s ability to consume the data, or when the mobile
device is temporarily disconnected.

PACK enables customized data-reduction policies so loss-
tolerant applications can trade data completeness for fresh
data, low latency, and semantically meaningful data.
PACK employs an overlay infrastructure to support mo-
bile data end-points for temporary disconnection and
hand-off. Finally, PACK’s summaries allow receivers to
meaningfully react to current buffering conditions.
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