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Abstract. Emerging pervasive computing technologies transform the way we
live and work by embedding computation in our surrounding environment. To
avoid increasing complexity, and allow the user to concentrate on her tasks, ap-
plications must automatically adapt to their changingcontext, the physical and
computational environment in which they run. To support these “context-aware”
applications we propose a graph-based abstraction for collecting, aggregating,
and disseminating context information. The abstraction models context informa-
tion asevents, which are produced bysources, flow through a directed acyclic
graph of event-processingoperators, and are delivered to subscribing applica-
tions. Applications describe their desired event stream as a tree of operators that
aggregate low-level context information published by existing sources into the
high-level context information needed by the application. Theoperator graphis
thus the dynamic combination of all applications’ subscription trees. In this pa-
per, we motivate our graph abstraction by discussing several applications under
development, sketch the architecture of our system (“Solar”) that implements our
abstraction, report some early experimental results from the prototype, and out-
line issues for future research.

1 Introduction

Emerging pervasive computing technologies transform the way we live and work by
embedding computation in our surrounding environment. Users can manage their in-
formation “anywhere and anytime,” using portable devices or devices embedded in the
environment. To simplify a user’s everyday activities, however, users should not be ex-
posed explicitly to the complexity of new technologies. It is unreasonable to expect a
user to configure and manage hundreds of computationally enhanced appliances that
she may use in a pervasive-computing environment, particularly when the devices and
their interactions change as the environment changes around them.

To reduce user distraction, pervasive-computing applications must be aware of the
context in which they run. Thesecontext-awareapplications should be able to learn and
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dynamically adjust their behaviors to the current context, that is, the current state of the
user, the current computational environment, and the current physical environment [20],
so that the user can focus on her current activity.

Context information is derived from an array of diverse information sources, such as
location sensors, weather or traffic sensors, computer-network monitors, and the status
of computational or human services. While the raw sensor data may be sufficient for
some applications, many require the raw data to be transformed or fused with other
sensor data before it is useful. By aggregating many sensor inputs to derive higher-level
context, applications can adapt more accurately.

A fundamental challenge in pervasive computing, then, is tocollect raw data from
thousands of diverse sensors,processthe data into context information, anddisseminate
the information to hundreds of diverse applications running on thousands of devices,
while scaling to large numbers of sources, applications, and users,securingcontext
information from unauthorized uses, and respecting individuals’privacy. In this paper
we address this fundamental challenge by proposing a graph abstraction for context
information collection, aggregation, and dissemination, and show how it should be able
to meet the flexibility and scalability challenges. Its security and privacy features are
addressed in a companion paper [18].

We propose our graph-based abstraction in Section2. In Section3 we show an
example graph shared by several context-aware applications that are being developed
using our Solar prototype, whose architecture and implementation are discussed in Sec-
tion 4. We present some results of early experiments with Solar in Section5. We discuss
related work in Section6 and conclude in Section7.

2 Operator graph

Context-aware applications respond to context changes by adapting to the new con-
text. These applications are active in nature and the their actions are triggered by asyn-
chronous occurrences. Thus they are likely to have an “event-driven” structure, where
context changes are represented asevents. We treat sensors of contextual data asinfor-
mation sources, whether they sense physical properties such as location, or computa-
tional properties such as network bandwidth. An information sourcepublishesevents
indicating its current state or changes to its state. The sequence of events produced are
an event stream. A sensor with only a query interface can be easily wrapped with a
proxy publisher. Context-sensitive applicationssubscribeto event streams that interest
them, and react to arriving events to adapt to their changing environment.

Few context-aware applications, however, want to work directly with raw data from
information sources. It could be that the application only needs portion of the data, the
data is in wrong format, the data is inaccurate, or the data is incomplete and not useful
without aggregating other sensor inputs. Thus, sensor data typically needs to go through
several processing steps before it becomes meaningful contextual knowledge desired by
applications.

One naive approach is to implement all these steps as a monolithic component
custom-designed for each application. If we place the component on a mobile platform
together with the application, the traffic at the edge of the network may be excessive,
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since the amount of context needed is usually small compared to the amount of raw
data the sources may produce. In addition, placing one independent component for each
application in the network does not scale well given thousands of potential pervasive
applications.

We observe that many adaptive applications ask for similar (though rarely exactly
the same) contextual information, from basics (such as location context) to high-level
social context (such as user activity). It is then natural to re-use the overlapping context
aggregation functions or sub-functions among applications. Our approach is to decom-
pose the context-aggregation process of every application into a series of modular and
re-usableoperators, each of which is an object that subscribes to and processes one
or more input event streams and publishes another event stream. We explore the back-
ground and justification for this design in an earlier paper [5].

We identify four common categories of operators. Afilter outputs a subset of its
input events. For example, a sensor publishes the temperature every 10 seconds while
one application needs alerts only when the reading exceeds 90 degrees. Atransformer
inputs events of type T1 and outputs events of type T2. For example, a location sen-
sor reports coordinates, but the application needs a symbolic value such as “Lobby.”
T2 may be the same as T1 if the transformer only changes some attribute values. The
mergersimply outputs every event it receives. For example, an active-map application
that displays the current location of all employees merges the readings from all location
sensors. While mergers are not strictly necessary, since any of the merger’s subscribers
could directly subscribe to the same inputs, a merger aids re-use of event streams as dis-
cussed later. Anaggregatoroutputs an arbitrary type event stream based on the events
in one or more input event streams. For example, a “max-min thermometer” operator
outputs an event when it detects a new maximum or new minimum on its input stream
of current temperature readings.

Since the inputs and output of an operator are all event streams, the applications
can use a tree of recursively connected operators (starting from sources) to collect and
aggregate desired context. In contrast to the naive monolithic approach, the application
now is able to distribute the tree of operators into network, minimizing the traffic across
the network edge and allowing the computation to be distributed. While each applica-
tion can build its own operator tree, to scale to a large number of applications we must
take advantage of opportunities to re-use operators between applications’ operator trees.
Upon arrival of a new subscription tree, our system attempts to identify subtrees that
match a subtree of an existing subscription tree. We define subtree match recursively:
two operators match if they are objects of the same class, have the same parameters,
and have the same subscriptions. When a match is found, the subtree is clipped from
the new subscription tree, replacing it with a subscription to the output of the existing
subtree; thus the two subscriptions share the subtree.

These inter-connected overlapping operator trees form a directed acyclic graph,
which we call theoperator graph. There are several advantages of the operator-graph
abstraction for context collection, aggregation, and dissemination. First, applications re-
ceive events semantically closer to their needs than those produced by the sources. Sec-
ond, due to the modular, object-oriented design we benefit from operator re-usability,
data abstraction, and maintainability. Third, due to the modular design this operator
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graph can be deployed across a network and achieve the benefits of parallelism and dis-
tribution. Fourth, since filters and aggregators can dramatically reduce traffic along the
graph edges, they reduce inter-process (and often inter-host) communication require-
ments. Finally, by sharing the common operators and event streams the system can
support more such applications and more users.

3 Applications

To learn whether the operator-graph abstraction is helpful to application developers,
we built a prototype of the graph abstraction in a system we call “Solar”, and intend
to develop several context-aware applications. The next section describes Solar. In this
section, we describe a few such applications designed for office environments, and we
show the resulting operator graph. At this writing we have groups of students writing
these applications, and in a future study we will evaluate both user and programmer
experiences.

We have installed an IR-based location system, provided by Versus Technology,1

throughout our CS department building. The location system contains one or more IR
sensors in each room and hallway. These sensors pick up the IR signals emitted from
personnel badges and asset tags and report the sightings to a central Versus server.
Our applications execute on Fujitsu pen-based tablet computers, each of which runs
Windows 2000 and is equipped with a Cisco 802.11b wireless card and a Versus asset
tag.

We plan to install a tablet computer on the wall outside of a professor’s office or
other rooms as an interactive “doorpad”, and users can also carry the tablets as mobile
devices. We focus on a set of applications that manage office hours, meetings, and in-
teraction between the visitors and the resident of the office. In the following application
scenarios we assume one tablet doorpad is installed outside David Kotz’s office (room
116).

The display of an office doorpad changes according to the resident’s current context.
Normally there is a “doorbell” button on the touch-sensitive screen, which is green if
David is inside and available, turns yellow if he is on the phone, or turns red if he is in
the meeting. There is also a line of text showing related information, such as the time
the meeting is scheduled to finish according to the calendar. If the visitor Bob chooses
to press the button, the tablet on the David’s desk chimes “Bob is at the door” or, if
David is at a meeting, pops up a text message.

If David is not in the office, the doorbell button is replaced by an “iNote” button.
When Bob clicks the button, iNote recognizes Bob by the proximity of his badge and
can display a message, such as “Bob, our meeting is moved to room 214,” or “My
meeting with George is running late, I will be back in 10 minutes,” which David sent
for Bob using the iNote application on his mobile device. The current location of David,
if available, is also shown on the screen. If Bob decides not to wait, he can simply leave
a note that is delivered to David’s tablet when he is online.

If David is in the office and it is time for “office hours,” an open meeting for students
in his course, the doorbell is replaced with a sign-up GUI that contains a menu of

1 http://www.versustech.com/
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Fig. 1.An example operator graph shared by several context-aware applications. Circles
are sources or operators, and rectangles represent applications. Shaded circles represent
the operators that are directly re-used by several applications. Letters represent types: S
as source, F as filter, T as transformer, M as merger, and A as aggregator.

names (initially including all students in the course), an indication of the number of
students already waiting, and the number of minutes left before office hour is scheduled
to finish. When the student Chris enters the hallway, the menu refreshes itself and puts
Chris on the top. Chris peeks at the doorpad and clicks his name on the menu to sign
up; his name is removed from the menu. This context-sensitive menu is similar to the
proximate-selection pattern in [20].

Chris does not need to wait in the hallway after signing up. Instead he can go back to
the lab for a while, or chat with friends in the lounge. When the previous student is done
and leaves David’s office, Chris is notified by a pop-up message on his mobile device,
or by calling him at the phone in his current room, or (if Chris is still in the hallway)
by the doorpad shouting “Chris, it is your turn for office hour”. The notification may be
delayed if there is an incoming telephone call for David. If Chris is not in the building
or is not detected as moving toward David’s office, then the next student in line will be
notified.

David may hold other meetings in his office or in a conference room. Meeting atten-
dees may interact with a virtual white board using their tablets. While the white board
can be accessed remotely, at the discretion of the meeting’s chair, only the attendees in
the room have write access to the virtual white board. Only the chairperson (David) can
delete things from the white board. The white board’s content is saved when the meet-
ing is finished, and restored at the start of the next meeting so that they can continue
previous discussion.

Consider an operator graph to support these context-aware applications, shown in
Figure1. Circles represent sources and operators, and rectangles represent applications.
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The telephone source lives on a host with a modem attached to the phone line, and
polls the phone line through the modem interface. On each poll, the source reports that
the phone is idle (dial tone detected) or in use (no dial tone detected). The raw event
stream produced by the source is then aggregated to provide an event stream indicating
only changes in the phone line status.

The Versus source, which monitors all IR sensors in the building, emits an event
when a badge’s IR signal is picked up by any sensor. The event contains the badge ID
and sensor ID, which are transformed into symbolic values using a transformer. The
operator labeled as “locator” in the figure aggregates the transformed event stream and
produces only location change events. Then various filter operators are applied to its
output to produce more specific context for different applications.

The calendar source produces events when a pre-defined activity (such as a meeting,
or office hours) is scheduled to start or finish. The calendar information, however, may
not always be accurate. Thus the operator “meeting detector” also uses the context
about the list of people in room 116 to determine whether there is actually a meeting
happening, or whether a meeting is running long.

The event streams produced by the shaded operators in Figure1 are directly re-
used by several different applications without further processing. Many copies of an
application run by different users on different machines, such as Active Map, can easily
share the operator labeled “locator”. Other sharing of operators in this graph is also
possible by applications we do not discuss; for example, a tour-guide application on
David’s mobile device can re-use the operator labeled “kotz location”. This sharing of
operators dramatically reduces the number of events transmitted across network and
avoids redundant computations. This sharing is critical for scalability to support more
users and applications.

Even if the existing graph does not provide the exact context needed by some appli-
cations, they can start from existing higher-level event streams instead of from scratch.
For instance, a reminder on the doorpad notifying David to pick up his printouts needs
the context that David is leaving his office (116), which can be derived by applying a
filter to either operator “kotz location” or “116 people”, while a new source watching
print commands on David’s workstation provides another piece of context. The new
operators contribute to the existing graph and can be re-used by other applications. This
flexibility and extensibility makes it easier for developers to program context-aware
applications from semantically close event streams, instead of raw sensor data.

Finally, the event-flow and operator-graph abstractions provide a basis for flexible,
decentralized access control. Our approach is based on information-flow principles,
with relaxation mechanisms to allow flexible user control over access to context about
themselves. We describe our security model in a companion paper [18].

4 The Solar system

We are building a prototype infrastructure for context collection, aggregation, and dis-
semination, based on the operator-graph abstraction. In this section we describe the
system architecture of our prototype, the “Solar” system, and discuss some implemen-
tation details.
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Fig. 2.The architecture of Solar.

4.1 Architecture

The Solar system consists of several components (see Figure2). A centralizedStarpro-
cesses subscription requests from applications and deploys operators onto appropriate
Planetsas necessary. A Planet is an execution platform for Solar sources and operators,
and it is responsible for tracking subscriptions and delivering events in the operator
graph. We now discuss each component in detail.

The Star maintains a representation of the operator graph and services requests for
new subscriptions. When the Star receives a new subscription-tree description, it parses
the description, and matches the subscription tree against its internal data structure rep-
resenting the operator graph to see whether there are some existing operators that can
be shared and re-used. When it decides to deploy a new operator, it instantiates the op-
erator’s object on one of manyPlanets, which periodically register themselves with the
Star. The Star determines which Planet should host the new operator by considering the
Planet’s load and network traffic between Planets. In essence, it attempts to map the
operator graph onto the Planetary network to distribute load and avoid congestion

Planets play a key role in the subscriptions of resident operators. When deploying
new subscriptions, the Star tells the Planets to arrange a subscription from one of its
operators to another operator, possibly in another Planet. Thus the Planet maintains
all the subscriptions for each of the resident operators. When an operator publishes
an event, the hosting Planet delivers the event to all the subscribing operators (that
may reside on several Planets) and applications. When a Planet receives an event, it
dispatches the event to the appropriate resident operator.

Applications run outside the Solar system and use a small Solar library to interface
with Solar. The small library allows the applications to send requests to the Star, to
manage their subscriptions, and to receive Solar events over standard network protocols.

4.2 Implementation

Our Solar prototype is implemented in Java. It models events as Java objects and uses
Java serialization for event transmission. The operators are small Java objects that im-
plement a simple publish/subscribe interface.
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A context-aware application uses an XML-based language to describe its subscrip-
tion request, which is a tree of operators and sources. The language allows the appli-
cation to directly import (explicitly re-use) existing operator objects by name. For all
other operators in the subscription tree, the application specifies the class and the pa-
rameters to initialize the instance. The application can optionally name its operators so
other applications can re-use them by name.

The Star parses the subscription request, and matches it against an internal data
structure to determine whether any existing operators can be shared. Explicit sharing
occurs when the subscription mentions an existing operator by name. Implicit sharing
occurs when the Star notices that a subtree in the subscription matches one in the exist-
ing graph, as described earlier.

When the Star decides it is necessary to deploy a new operator, it randomly chooses
a Planet to host the operator. While randomization can achieve some load balancing,
we plan to investigate more clever graph-embedding algorithms that attempt to balance
the load and minimize network traffic.

When the Star asks a Planet to deploy an operator, the Planet loads the operator’s
Java class from the local CLASSPATH or remote Web server and initializes a new in-
stance with parameters supplied in the XML subscription request. The Planet maintains
one outbound event queue for each resident source or operator, and a dedicated thread
takes events from this queue and sends them to Planets hosting the subscribers. We
multiplex operator subscriptions onto inter-Planetary TCP/IP sockets, so that there are
at most two one-way TCP/IP connections between any two Planets, regardless of the
number of operators on or subscriptions between the two Planets. The Planet’s Network
Manager thread monitors the inbound sockets and fills an inbound event queue; a dis-
patcher thread removes events from this queue and enters a reference for the event into
the incoming event queue for each destination operator. Each operator has a dedicated
thread to invoke the operator’s event handler as new events arrive.

4.3 Programming model

Solar provides a framework for developers. Developers can write a new source or opera-
tor by inheriting from the appropriate base class and implementing a few abstract meth-
ods. When a source or operator needs to publish an event, it simply calls an inherited
publish(IEvent)method. An operator’shandleEvent(IEvent)is automatically invoked
when the Planet receives an event destined to that operator. The application developer
uses an XML-based subscription language to construct its event-flow tree, and a small
library to interact with Solar as discussed earlier.

To determine the value of the operator-graph abstraction and programming model,
and the performance of the Solar system, we are developing several real-world context-
sensitive mobile applications, some of which are discussed in Section3. We installed
an IR-based location system to supply location context to our Solar system and its
applications. We plan to add more information sources to enrich the context space and
to explore the performance and flexibility of the operator-graph abstraction.
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5 Experiments and results

In this section we present early results of our experiments with the Solar prototype.
Solar’s graph-based abstraction decomposes a particular application into several pieces
and distributes them across network. From a single application’s viewpoint, its com-
putation is scattered, leading to additional latency and overhead. Our expectation is
that these inefficiencies can be traded against overall system scalability due to distribu-
tion, shared processing, and the migration of computation toward information sources.
In this initial round of experiments, we quantify the fundamental overhead of Solar’s
publish/subscribe implementation.

5.1 Experiments

To measure event-delivery throughput and latency, we set up a single event source and
multiple event sinks on different hosts. We compare three approaches to send messages
from source to sinks: 1) a message is a byte array and the source sends it directly through
sockets, 2) a message is an event object and the source sends serialized events without
Solar, and 3) the source sends serialized events through Solar’s publish/subscribe inter-
face. This approach allows us to identify the overhead of serialization separately from
the overhead of Solar.

In the throughput measurement, the source first sends a message to start the sinks’
clocks and then sends another 1000 messages. The sinks compute throughput (messages
per second) when the last message arrives. We then plot the average result from all sinks,
which are deployed on different hosts. In the latency test, we set up the source and sink
on the same host and another “bouncer” on a different host. The sink computes the
round-trip delay and averages over 1000 messages.

In the experiments, message content is simply a string and we vary its sizeN
from 0 to 1000 one-byte characters, reflecting our expectation that the payload of most
events will be small. The byte-array approach adds 4 bytes (indicating the length) to
the outbound data. The approach sending serialized events without Solar sends a Mes-
sageEvent that contains the content string and some meta-data, such as timestamp and
event-publisher information. The actual size transferred through sockets after serializa-
tion is365 + N bytes for anN -character string. Solar further wraps the MessageEvent
with additional fields such as the subscriber’s ID; Solar sends463 + N bytes through
the socket. In each case, the event is serialized separately for each receiver.

We ran the experiments on a set of identical Linux workstations (VA Linux VarSta-
tion 28, Model 2871E, 450 mHz Pentium II, 256 MB RAM, 5400 rpm EIDE disk) run-
ning the Linux 2.4.2-2 (RedHat 7.1) operating system and Sun’s Java VM (1.4.0-rc).
We interconnected the computers with a full-duplex 100 mbps Ethernet. The computer
and the network were dedicated to our experiments (no other users or traffic).

5.2 Results

Figure3 shows the results of the latency experiments. It is not surprising to see that
Java serialization adds significant overhead, because of the time needed for serialization
and because more bytes needs are transmitted through the Socket. The main overhead
caused by Solar comes from its queue-based structure. An event passes through several
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Fig. 3.Latency Tests

queues when traveling from source to a subscribing operator: thepublish() method
places the event in the source’s outbound queue (1), the Network Manager thread re-
moves it and places a reference in the outbound queue (2) for each Planet hosting a
subscriber, a thread for each connection removes it and pushes it into the socket where
it lands in the kernel’s TCP buffer (3), in the receiving Planet the event is pulled from
the kernel’s TCP buffer (4) and placed in the dispatcher’s queue (5), the dispatcher
thread removes it and places it in the input queue (6) for each local subscriber, and fi-
nally the subscriber’s thread removes it and calls the event handler. The same process
is reversed to bounce an event back to the sink: a total of four system queues and eight
Solar queues. The round-trip latency of Solar events is about 1.5 milliseconds more than
a similar test that does not use Solar. Thus, Solar adds about .75 milliseconds to each
event publication. While acceptable for many applications, we clearly need to optimize
this path for better performance and scalability.

Figure4 shows the results of throughput experiments for 1 sink and 10 sinks. Again,
Java serialization causes the throughput to drop significantly compared to sending a byte
array, due to the serialization time and additional data to transmit. Solar’s throughput
is lower still, due to the larger events and additional processing. Solar’s throughput is
mostly independent of message size, indicating that the fixed overhead for serialization
and queue management are dominant. While 1000 events/sec between one source and
one sink, or 120 events/sec between one source and ten sinks, is a reasonable perfor-
mance for many applications, there is clearly room to improve.

In summary, our experimental results indicate that Java serialization overhead was
non-trivial, and the overhead would increase for event objects more complex than a
simple String. Solar’s queuing overhead, on the other hand, was relatively small. Any
approach based on object serialization gives the programmer tremendous flexibility, but
at the cost of significant serialization overhead.

We are considering several approaches to reduce event-serialization overhead. First,
an event should be serialized only once, when sending to multiple subscribers. The la-
tency and 1-sink results show, though, that even one serialization is significant. Special-
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ized Java serialization packages, such as JavaParty,2 are fast but require each class to
implement its own marshaling and de-marshaling methods. Finally, we could represent
events as a set of (attribute, value) pairs, rather than as full Java objects; Solar can pro-
vide fast generic event serialization, although there is less flexibility in defining event
types.

We are also considering ways to improve event distribution in large-scale Solar sys-
tems. For large subscriptions, it may be more efficient to deliver events by multicast
through an overlay network formed from the Planets, rather than directly to each sub-
scribing Planet.

6 Related work

Many have studied context-aware applications and their supporting systems. In Xe-
rox Parc’s distributed architecture each user’s “agent” collects context (location) about
that user, and decides to whom the context can be delivered based on that user’s pol-
icy [21,23]. AT&T Laboratories at Cambridge built a dense network of location sensors
to maintain a world model shared between users and applications [13]. Location con-
text can be used to select on-the-spot information for tourist guide applications [1,6].
HP’s Cooltown project adds Web context to the environment by allowing mobile users
to receive URLs sent by ubiquitous beacons [16]. Microsoft’s Easyliving focuses on a
smart space that is aware of the user’s presence and adjusts environmental settings to
suit her needs [3].

A few projects specifically address the flexibility and scalability of context aggre-
gation and dissemination. Like Solar, the Context Toolkit is a distributed architecture
supporting context fusion and delivery [7]. It uses awidget to wrap a sensor, through
which the sensor can be queried about its state or activated. Applications can subscribe
to pre-defined aggregators that compute commonly used context. Solar allows applica-
tions to dynamically insert operators into the system and compose refined context that

2 http://wwwipd.ira.uka.de/JavaParty/
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can be shared by other applications. The Context Toolkit allows applications to supply
filters for their subscriptions, while Solar introduces general filter operators to maintain
a simple abstraction. IBM Research’s context service, Owl, addresses similar issues
such as scalability, extensibility, and privacy [8], but provide no details.

Targeted for distributed sensor networks, Michahelles et al. propose to use context-
aware packets to detect desired context [17]. These smart packets contain a retrieval
plan that indicates what context sensors to visit to get results. The plan can be updated
at run time according the results from certain sensors. The packets may also contain a
context hypothesis, which can be evaluated at compute-empowered nodes, that derive
higher-level context information based on the retrieved raw sensor data. At this point,
it is unclear whether these smart packets could be used to deliver notifications about
context changes.

Given the type of desired data, some systems automatically construct a data-flow
path from sources to requesting applications, by selecting and chaining appropriate
components from a system repository [15,14]. CANS can further replace or rearrange
the components to adapt to changes in resource usage [11]. To apply this approach
to support context-aware applications, the system manager must foresee the necessary
event transformations and install them in the component repository. These systems offer
no specific support for applications to provide custom operators. Active Names, on the
other hand, allow clients to supply a chain of generic components through which the
data from a service must pass [24]. Also, Active Streams support event-oriented inter-
process communication, and allow application-suppliedstreamletsto be dynamically
inserted into the data path [9].

All of these approaches encourage the re-use of standard components to construct
custom event flows. None, to our knowledge, specifically encourage the dynamic and
transparent re-use of event streams across applications and users. Solar’s re-use of op-
erator instances, and their event streams, avoids redundant computation and data trans-
mission, and improves scalability.

Solar is designed to support a wide variety of sensor data, including computational
as well as physical parameters. Solar may then be the delivery mechanism for systems
that allow mobile applications to adapt to changes in computational resources. For ex-
ample, Odyssey applications are aware of the state of resources and can adapt to varia-
tions in bandwidth [19] and battery power [10]. Project one.world [12] promotes a new
application structure designed to cope with frequent changes in pervasive computing
environment. Solar could be a complementary system used by one.world applications
to detect the contextual changes.

There are many options for event routing. Solar currently uses point-to-point links
between a publisher and its subscribers. Although the implementation multiplexes links
on Planet-to-Planet socket connections, and implements multicast within a Planet, we
may eventually construct an overlay multicast network on the Planets. We may also use
content-based event dissemination [2,4,22] to support the operator graph. Ultimately,
we need to evaluate whether Solar’s explicit filter operators will be more or less efficient
than the implicit filtering in a content-based event-forwarding system like Siena.
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7 Summary

To support context-aware pervasive-computing applications, we propose a graph-based
abstraction for context aggregation and dissemination. The abstraction models the con-
textual information sources as event publishers. The events flow through a graph of
event-processing operators and become customized context for individual applications.
This graph-based structure is motivated by the observation that context-aware applica-
tions have diverse needs, requiring application-specific production of context informa-
tion from source data. On the other hand, applications do not haveuniqueneeds, so we
expect there is substantial opportunity to share some of the processing between appli-
cations or users. The situation calls for both flexibility and scalability, and our proposed
operator-graph abstraction meets both challenges. It allows the flexible construction of
event streams through composition of generic and custom operators. It encourages scal-
ability through re-use of event streams across applications and users wherever possible,
by migrating the load off weak, mobile application platforms and into powerful network
servers, and by distributing that load among many network servers.

We discuss the details of the operator graph abstraction, and we give an example
operator graph shared by several context-aware applications that are under develop-
ment using the Solar infrastructure, which is our prototype system that implements the
operator-graph abstraction. We present Solar’s architecture and some implementation
details, and we show some early results of our experiments with Solar. We describe
Solar’s access-control model in a companion paper [18].
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