
Supporting Adaptive Ubiquitous Applications

with the Solar System

Guanling Chen and David Kotz

Dartmouth College

Hanover, NH, USA 03755

{glchen,dfk}@cs.dartmouth.edu

Dartmouth College Computer Science

Technical Report TR2001-397

May 31, 2001

Abstract

As we embed more computers into our daily environ-
ment, ubiquitous computing promises to make them
less noticeable and help to prevent information over-
load. We see, however, few ubiquitous applications
that are able to adapt to the dynamics of user, phys-
ical, and computational context. We believe that
there are two challenges causing this lack of ubiq-
uitous applications: there is no flexible and scalable
way to support information collection and dissemi-
nation in a ubiquitous and mobile environment, and
there is no general approach to building adaptive ap-
plications given heterogeneous contextual informa-
tion. We propose a system infrastructure, Solar,
to meet these challenges. Solar uses a subscription-
based operator graph abstraction and allows dynamic
composition of stackable operators to manage ubiqui-
tous information sources. After developing a set of di-
verse adaptive applications, we expect to identify fun-
damental techniques for context-aware adaptation.
Our expectation is that Solar’s end-to-end support
for information collection, dissemination, and utiliza-
tion will make it easy to build adaptive applications
for a ubiquitous mobile environment with many users
and devices.

1 Introduction

Ubiquitous (or “pervasive”) computing has the vision
to enhance computer use by making many comput-
ers available throughout the physical environment,

This research has been supported by DARPA contract

F30602-98-2-0107, by DoD MURI contract F49620-97-1-03821,

by Microsoft Research, and by the Cisco Systems University

Research Program.

but making them effectively invisible to the user
[14, 29, 39]. To do so, ubiquitous applications need to
adapt to current context, defined as the situation of
user, physical environment, and computational state.
Context is derived from an array of diverse infor-
mation sources, such as location sensors, weather
or traffic sensors, computer-network monitors, the
status of computational or human services, and so
forth. We have seen, however, no flexible and scalable
information-collection and information-dissemination
support for ubiquitous applications. Cohen et al. [12]
provide an excellent summary of the challenges faced
by context-sensitive applications.

Traditional applications are not designed to cope
with context changes and a large number of users and
devices. While the computational devices and net-
work connections are becoming ubiquitous, adaptive
applications are not. The few recent context-aware
applications use ad-hoc methods to handle heteroge-
neous context. Furthermore, the misinterpretation of
often-unreliable contextual information may lead to
inappropriate application behaviors. The lack of a
general approach to use contextual information, we
believe, is a key obstacle to building adaptive ubiqui-
tous applications.

How should a context-aware computing environ-
ment best support the dissemination of the context
information collected by thousands of diverse context
sensors and needed by dozens of diverse applications
running on thousands of devices? What is the gen-
eral approach to best use this contextual information
in ubiquitous applications? These are the challenges
faced by every such system. Several research projects
have investigated solutions to related problems, and
we discuss them in Section 6 below. We believe that
these approaches, however, provide partial solutions

1

David Kotz
© Copyright 2001 by the authors



without sufficient flexibility or scalability.

1.1 Challenges

It is particularly challenging to build ubiquitous ap-
plications that can flexibly collect current context and
use it to dynamically adapt to changes in their mo-
bile environment with a large number of users and
devices.

Scalability. As more computers and sensors are
embedded in our daily life, the information accessible
to applications explodes dramatically. The prolifer-
ation of computational devices with wireless connec-
tivity also increases the number of potential clients
of ubiquitous applications. As a result, context col-
lected from a large number of information sources
must be shared with dozens of applications over thou-
sands of devices.

Information quality. The quality of information
in a ubiquitous environment, which comes from error-
prone sensors and resource-constrained embedded de-
vices, is not suitable for an application’s direct use.
Also, high-level context might only be derived by
combining the results of many information sources. It
is unreasonable to ask each individual application to
handle this overhead by itself, which restricts greatly
the flexible access and usage of the context. On the
other hand, it is a challenge for the applications to
exhibit appropriate behaviors without 100 percent as-
surance of the accuracy of derived context.

Physical mobility. In addition to network ad-
dress changes and weak connectivity, physical mobil-
ity leads to changes in context. Location is often dif-
ficult to measure, adding unreliability to contextual
information. It may be difficult for ubiquitous appli-
cations to adapt quickly and accurately to changes in
context if the user or device is moving frequently or
rapidly.

2 Our approach

We propose a system infrastructure, Solar1, to meet
the challenges of supporting end-to-end information
collection, dissemination, and utilization for adaptive
ubiquitous applications. Solar uses a subscription-
based operator graph abstraction and allows dynamic
composition of the stackable operators, which are lo-
cated in a context-sensitive namespace together with
information sources and services. We believe that this

1Solar is not an acronym.

novel abstraction is flexible through module compo-
sition to derive refined contextual information, and
is scalable through re-use of common sub-graphs in
the operator graph. We also propose to find funda-
mental approaches for diverse adaptive applications
to use heterogenous context sources, especially when
that information is incomplete or only partially accu-
rate.

2.1 Assumptions

We have chosen to investigate an event-oriented ap-
proach that allows dynamic composition of simple
stackable modules. Information is collected, pro-
cessed, and disseminated through a graph of compo-
nents called operators. We make several assumptions
to clarify our design space:

• We assume we can deploy most of the operators
onto well-connected network nodes, which agree
to run our execution environment. The infor-
mation sources and applications, however, may
reside on the network edge or even on mobile
nodes, communicating with our infrastructure
through low-bandwidth wireless connections.

• Since we treat all information sources as event
publishers as we discuss below, we assume it is
possible to wrap a sensor that only has a query
interface with a proxy that publishes sensed in-
formation as an event. Events may be published
periodically, or only when the sensor changes its
state.

• Our infrastructure is built on top of the TCP
protocol, providing reliable packet delivery.

• We assume there will be widely deployed indoor
location-sensing systems with room-sized granu-
larity in the near future, based on the prolifera-
tion of location-sensing technologies [4, 9, 18, 19,
32, 37, 41] and location models [25, 28, 38].

• The operators may have internal state. They are
deterministic functions of their inputs and their
state and do not have random behaviors. This
assumption is necessary for correct reusability,
as we see below.

2.2 Design goals

To tackle the challenges discussed in Section 1.1,
Solar is designed to meet three key goals.

2



Flexibility. Solar applications must have flexible
access to either low-level raw information or high-
level refined context, and applications should also
have flexible ways to adapt their behaviors to het-
erogenous contextual information.

Mobility. Solar should use location-dependent
information sources and operators as the user trav-
els across geographical space, and provide support for
handling fast context updates and lossy information
due to physical mobility.

Scalability. Solar must collect context from
many information sources and disseminate it to nu-
merous clients, without becoming a bottleneck in the
information flow.

3 The SOLAR system

In this section, we discuss the details of Solar’s ap-
proach for information collection and dissemination
in a ubiquitous and mobile environment. Section 4
talks about our current prototype and implementa-
tion status. We present our plans for supporting in-
formation utilization in Section 5.

Solar represents context information as events.
Solar sensors, which we call sources, each publish
a stream of events. Solar applications subscribe to
event streams that interest them, and react to arriv-
ing events to adapt to their changing environment.
Few applications, however, want to work with the
raw event streams published by sensors. Applications
need to filter, transform, merge, or aggregate event
streams. Consider these examples. Filtering: a sen-
sor publishes the temperature every 10 seconds while
one application needs alerts only when the reading
exceeds 90 degrees. Transformation: a location sen-
sor reports coordinates, but the application needs a
symbolic value (“Lobby”). Merging: an active-map
application that displays the current location of all
employees merges the readings from all location sen-
sors. Aggregation: a reminder application wants to
know when a user’s calendar indicates it is time for
a meeting and the user is not located in the meeting
room.

Earlier researchers have recognized the need for fil-
tering, transforming, merging, and aggregating event
streams [12, 13, 35]. The challenge in a system like
Solar is to allow applications to define their own
operations, to describe flexible compositions of oper-
ations, and to support many such applications with
scalable performance. Solar provides flexibility by

allowing applications to define and interconnect op-
erator objects. Solar provides scalability by dis-
tributing these operators across hosts in the network
and by sharing identical event streams across users
and applications.

We begin our description of Solar in Section 3.1
by discussing our operator-graph abstraction. Sec-
tion 3.2 presents the context-sensitive naming
scheme used to identify the information sources and
operators. Then we sketch our small language for
building subscriptions in Section 3.3.

3.1 Operator Graph

In this section, we introduce Solar’s concepts
of events, event streams, operators, and operator
graphs. Then we classify several types of commonly
used operators and sketch an example operator graph
for an office scenario. Finally, we discuss the subtle
semantics of operator state and “one-time” subscrip-
tion requests.

3.1.1 Basic concepts

We treat sensors of contextual data as information
sources, whether they sense physical properties such
as location, or computational properties such as net-
work bandwidth. Information sources produce their
data as events. An event is a typed set of typed
attribute-value pairs. Solar implements events as
objects; thus event objects belong to a class that de-
fines their type. The sequence of events produced are
an event stream, which is inherently unidirectional.
Only one type of events may flow through a given
event stream; thus, event streams are also typed. An
event publisher produces an event stream, and an
event subscriber consumes an event stream.

An operator is an object that subscribes to and pro-
cesses (filters, transforms, merges, or aggregates) one
or more input event streams, and publishes another
event stream. Since the inputs and output of an oper-
ator are all event streams, the operators can be con-
nected recursively to form a directed acyclic graph,
an event-flow graph that we call the operator graph.
Solar guarantees that the graph is acyclic through
its incremental construction (see Section 3.3).

Our operator graph consists of three kinds of nodes:
sources, operators, and applications. The sources
have no subscriptions. They are wrappers for con-
text sensors. Operators are deterministic functions of
their input events. They only publish an event when
they receive an input event. Applications are sinks
of the graph. They subscribe to one or more event
streams and react to incoming events (and possibly

3



T
E1 E2

M
E1 E1

E1

F
E1 E1

A
E1 E3

E2

Figure 1: Four types of operators: T as Transformer,
F as Filter, M as Merger, and A as Aggregator.

other stimuli, such as interactions with the user).
In our operator graph, a directed edge from node A

to B represents that node B subscribes to the event
stream published by node A. The operator graph may
not be a tree because an operator may subscribe to
multiple streams, and its published output stream
may have more than one subscriber. In summary, the
publishers in the graph are the sources and operators,
and the subscribers in the graph are the operators and
applications.
There are four common categories of operators

(see Figure 1), related to the four kinds of event-
processing functions we discussed earlier. A filter
outputs a subset of its input events. A transformer
inputs events of type E1 and outputs events of type
E2. E2 may be the same as E1 if the transformer
only changes some attribute values. The merger sim-
ply outputs every event it receives. While mergers
are not strictly necessary, since any of the merger’s
subscribers could directly subscribe to the same in-
puts, we show below that a merger aids re-use of
event streams. An aggregator outputs an arbitrary
type event stream based on the events in one or more
input event streams. A “max-min thermometer” op-
erator outputs an event when it detects a new maxi-
mum or new minimum on its input stream of current
temperature readings.

3.1.2 An example operator graph

Figure 2 presents an example operator graph to show
how the raw events from information sources flow
through the operators to become directly usable by
the applications. Circles represent event publishers;
the letter inside indicates its category (S stands for
source). Squares represent applications that consume
the events.
Suppose we have location-tracking sensors installed

in each room and badges attached to people and de-
vices. Each time a sensor detects a signal from a
badge, it sends out an event containing the badge ID
and the timestamp. In the figure these sources are
labeled “Loc Sensor” with a room number; each has
a transforming operator to map the badge ID to the
person or device’s name associated with it.

007 Loc
 Sensor

Building
Locator

215 Loc
 Sensor

Active Map

Bob’s
Locator

Bob’s
Messenger 

Bob’s
Guide

007
Monitor

Lab
Log

007 Equip
Alerter

215
People

TS

A

.

..

S

M

F

A

007
People

A

T

A F

F

215
Monitor

Figure 2: An example operator graph.

The Building Locator operator subscribes to the
current location of every badge, based on the trans-
formed and merged events that originate from the
location sensors. It records the current location in
its internal state. (We discuss stateful operators be-
low.) It generates a “location change” event when-
ever it sees a badge change location. This output
event stream can be used by the Active Map applica-
tion (such as [27]) to display the badges’ current loca-
tion in real time. Another subscriber, Bob’s Locator,
filters for changes in Bob’s location. Using this infor-
mation, a Guide application [1, 11] running on Bob’s
PDA can display information related to his current
location.

Another reasonable structure, not shown, is to first
merge the events from all location sensors and then
transform them using only one transformer, to which
the Building Locator subscribes. Any application
that cares about location events only in one particu-
lar room can filter the Building Locator’s output. Al-
though that approach seems awkward, it allows the
Building Locator to resolve sensor conflicts (where
multiple location sensors report seeing a badge at the
same time).

Returning to our example, the operator 007 Mon-
itor tracks the set of badges currently in the lab.
When a new badge is sensed, it generates a “badge
entering” event. When a badge has not been sensed
in the past few sensor reports, this operator outputs
a “badge leaving” event. The filter 007 People emits
events about people only, not devices. The appli-
cation Lab Log subscribes to that event stream and
records the events with timestamp for future refer-
ence.

If the 007 Equipment Alerter receives a “leav-
ing” event for certain equipment, without receiving a
“leaving” event for authorized personnel at about the
same time, it publishes an alarm event that should be
sent to the lab administrator (Bob), whoseMessenger
application displays these alarms on his PDA. If there

4



is nobody in the room with Bob, the Messenger beeps
and displays the message. If there are other people
in the room, the Messenger vibrates instead. Notice
the Messenger subscribes to “215 People” operator
(the dashed arrow) because Bob is in room 215 now.
This subscription is dynamic and will change as Bob
moves around. We discuss how Solar supports such
context-sensitive subscription requests in Section 3.2.

There are several advantages of the Solar ap-
proach: First, applications receive events semanti-
cally closer to their needs than those produced by
the sources. Second, due to the modular, object-
oriented design we benefit from operator reusability,
data abstraction, and maintainability. Third, due
to the modular design this operator graph can be
deployed across a network and achieve the benefits
of parallelism and distribution. Fourth, since filters
and aggregators can dramatically reduce traffic along
the graph edges, they reduce inter-process (and often
inter-host) communication requirements. Finally, by
sharing the common operators and event streams the
system can support more such applications and more
users.

3.1.3 Operator state

Many operators need to keep internal state infor-
mation to be used when processing events. The
state may be simple, as in an aggregator that simply
records the previous event to detect changes. The
state may be complex, as in an operator that tracks
the current location of many users or the current
value of every stock on the market. Filter, trans-
formation, and merger operators are stateless; aggre-
gators may have state.

Solar allows the subscriber to choose one of two
possible semantics for a new subscription to a stateful
operator: 1) the subscription is treated as for state-
less operators, or 2) the operator should “push” its
current state to the subscriber before any new events
are published. In the latter semantics the operator
publishes a special sequence of events to the new sub-
scriber only, events that are marked as “state-pushing
events” and when considered together represent the
current state of the operator. (This feature is remi-
niscent of the Gryphon expansion operation [5].)

Consider Figure 2. The 007 Monitor maintains
a list of badges currently in the lab and publishes
changes to this list. The Lab Log logs all the change
events, and never needs the original state. The Ac-
tive Map, on the other hand, needs a “state push”
when it first subscribes to the Building Locator, so it
can properly locate slow-moving devices like printers.

3.1.4 One-time subscription requests

Solar is an event-oriented publish-and-subscribe
system for disseminating information to applications.
Occasionally an application may not need the ongo-
ing event stream, but simply needs to obtain the cur-
rent value. In another system, the application might
query the information source. In Solar we retain
the publish-and-subscribe abstraction by permitting
“one-time” subscriptions of stateful operators. An
application that needs to obtain the current value of
the information published by an operator makes a
one-time subscription to that operator. The opera-
tor “pushes” its state, as described above, and then
cancels the subscription.

Solar’s one-time subscription approach has sev-
eral advantages, largely resulting from its simplic-
ity. There is only one abstraction: publish and sub-
scribe, which streams events from publisher to sub-
scriber. This simplicity avoids the need for additional
interfaces and maintains the unidirectional data flow.
The subscriber’s control flow remains event-oriented
rather than blocking for the results of a query. The
programmer of the subscriber can choose one-time or
permanent subscriptions based on their needs. The
programmer of the publisher need not know anything
about queries or one-time subscriptions, only about
state push.

3.2 Context-sensitive names

Although we can build operator graphs from the con-
nections described by a subscribing application, and
Solar has a small language for that purpose, it is
frequently useful to name event publishers so that
their streams are easily usable by many subscribers.
By naming a publisher, applications can subscribe
to its event stream without needing to describe that
stream from first principles (sources). It is common
to construct named mergers, for example, to make
pre-defined combinations of event streams available
to many applications.

In addition to information sources, applications
also need to discover services. We expect that
many of the same objects located in our information-
dissemination graph (such as printers that publish
their current print queue) may also provide a ser-
vice (accepting documents to be printed). Thus, the
Solar name space allows naming of both publishers
and services.

A flat name space, such as that used to label pub-
lishers in Figure 2, does not scale. Furthermore, given
the dynamic nature of an application’s context in
a pervasive-computing environment, we desire name

5



bindings that change with the changing context. The
Solar name space is thus hierarchical and dynamic.

3.2.1 Examples

Before we present the details of the name space,
consider a few examples of both static names and
context-sensitive names (CSNs).

A printer is located in room 007. The printer’s
name is [/devices/printers/23], a unique name as-
signed to that printer when it first entered the sys-
tem. That name is static, assigned by the admin-
istrator. The room’s name, also statically assigned,
is [/places/0F/007], indicating that 007 is a room in
the basement floor of the building. The set of de-
vices in 007 are in the directory [/places/0F/007/de-
vices/], which contains a context-sensitive list of de-
vices currently in 007. Similarly, the context-sensitive
name [/devices/printers/23/location] is an alias for
[/places/0F/007].

A graduate student, Alice, wishes to print a doc-
ument from her PDA to the nearby printer. Al-
ice’s name is [/people/students/Alice]. Her loca-
tion, [/people/students/Alice/location], is a context-
sensitive name. When Alice is in 007, that name
is bound to the same object as [/places/0F/007].
Thus the printing application on her PDA can search
directory [/people/students/Alice/location/devices/]
for printers.

Applications can find services in the name space.
The service for the printer [/devices/printers/23]
is called [/devices/printers/23/PrinterService].
(In our implementation, services are named
by convention after the Java class that imple-
ments the service.) Thus, Alice’s PDA can find
the service for all printers in the room as [/peo-
ple/students/Alice/location/devices/*/PrinterService].

Context-sensitive names can be used in
subscription requests. Consider Bob’s Mes-
senger in Figure 2, which requested a sub-
scription to the context-sensitive name [/peo-
ple/profs/Bob/location/people/]. As a result, this
subscription request maps into a subscription to the
node in the namespace at [/places/2F/215/people].
The figure shows this subscription as a dashed line
to indicate that it is the result of a context-sensitive
subscription request, which will change when the
name binding changes.

Here it is important to note the difference between
a subscription request, which refers to a (possibly
context-sensitive) name, and a subscription, which is
an actual connection between a publisher and a sub-
scriber. Subscription requests map a changing set of
zero or more subscriptions, as we see below.

The Solar approach is different from that in most
other pervasive-computing systems. Rather than re-
trieving Alice’s location from a location service, and
then using that as a key to search a name space for
printers in that location, both concepts are included
in the same namespace. “Printers sharing a room
with Alice” thus has a single concise name, a name
whose binding changes when Alice’s room changes.

3.2.2 The naming tree

The name space is organized as a tree of labelled
nodes, with the addition of cross edges (see an ex-
ample in Figure 3). The name for a node is the se-
quence of labels encountered on any path from the
root to the node, separated by slashes. Many nodes
have an associated list of attribute-value pairs de-
scribing the object represented by that node. For ex-
ample, the printer [/devices/printers/23] may be de-
scribed as (category=printer, color=true, laser=true,
maker=xerox).

There are several types of nodes. Some of the leaves
are alias nodes that are representatives of another
node. By analogy to Unix, we call these cross edges
“soft links” and depict them with dashed lines in the
figure. Some leaves may be service nodes, depicted
as squares, which represent available services. Other
leaves are the event publishers we discussed in the
operator graph.

Internal nodes are directories that refer to sev-
eral child nodes. Static directory nodes contain a
list of children, a list updated only by explicit re-
quests. Dynamic directory nodes generate a list of
children dynamically, from internal state that de-
pends on contextual information obtained from sub-
scriptions. Typically the children of dynamic directo-
ries are nodes already located elsewhere in the name
space, another form of soft link that we depict with
dash-dot-dot lines.

Soft links are dynamically generated by a directory
or alias node when needed. These directory and alias
nodes must, therefore, be operators with appropri-
ate subscriptions and sufficient state to be able to
generate the appropriate list of children when asked.
For example, the node [/places/2F/215/people] lists
Bob as child and [/people/profs/Bob/location] refers
to room 215. These links are automatically updated
as the user moves across geographical spaces. Since
both operators derive the location information from
the same source [/places/2F/215/loc-sensor] (refer to
the operator graph in Figure 2) these two views will
remain consistent.

Nodes in the name space are also publishers of
changes to name bindings. More precisely, direc-

6



places people

0F
profs

devices

Bob

2F

location

007

devices

loc-
sensor

monitor

215

people

devices

23

Printer
Agent

Printer
Service

(/places
/0F/007)

location

locator

/

printers
students

Alice

location

category=printer
color=true
laser=true

maker=xerox

stock
broker

(/places
/0F/007)

Figure 3: A partial context-sensitive naming tree. Dashed lines represent alias soft links, and dash-dot-dot
lines represent child soft links.

tory nodes are publishers that announce additions
or deletions of their children by publishing events.
(Static directory nodes are sources and dynamic di-
rectory nodes are operators.) Alias nodes are pub-
lishers that announce changes in their bindings. In-
terested applications can subscribe to these sources
to detect changes in the name space. So if Alice
wants to track the location of her advisor Bob, her
application subscribes to the operator at [/people/
profs/Bob/location], the node identified as “Bob’s
Locator” in Figure 2.

3.2.3 Name resolution

An application can locate services or publishers by
using the Solar name syntax. In this section we
show how Solar uses wildcards, attribute matching,
and soft links to provide for dynamic discovery.
We support two types of wildcards. A “?” can

represent any node in one level of the naming tree,
while a “. . . ” symbol represent any number of levels
in the naming tree. So the name for all the location-
sensor sources on ground floor is [/places/0F/?/loc-
sensor] while the name for all the location sensors in
the building is [/places/. . . /loc-sensor]. This latter
form, while equivalent to [/places/?/?/loc-sensor], is
useful if the application is not exactly sure about the
naming tree structure.
A name can contain a selector to identify

names based on attributes. For example, the
services for the color printers at Alice’s cur-
rent location can be found using the name
[/people/students/Alice/location/devices/?(color=true)/
PrinterService].

Solar name resolution starts from the root and
traverses its children recursively by matching the la-
bel with the symbol at the next level in the name.

At an alias node, the algorithm continues resolution
from the target of the alias. When the algorithm en-
counters attribute selectors, it checks for matches in
the attributes of the nodes. If the wildcard “. . . ” ap-
pears in the name, the entire subtree is searched for
matches; the algorithm limits the number of soft-link
traversals to avoid infinite loops.

3.2.4 Combining the naming tree with the

operator graph

Note that the Naming Tree and the Operator Graph
are interconnected data structures, containing many
of the same nodes. As described above, most nodes
in the name tree are event publishers and thus ap-
pear in the Operator Graph: directory nodes pub-
lish changes to the set of children, alias nodes pub-
lish changes in their binding, and of course publisher
leaves are publishers. Only service nodes are not pub-
lishers. The availability of events about changes to
the name space is used by Solar to support context-
sensitive subscription requests; we present the details
in Section 4.1.2.
Not all publishers in the Operator Graph are in

the Naming Tree, however. These unnamed publish-
ers are often created by applications as intermediate
filters and transformations with no need to be named
in the name space.
In summary, we achieve one abstraction for two

concepts. Figure 3 uses filled black nodes to identify
those nodes that also appear in Figure 2. The direc-
tory node with name [/places/2F/215/people] is the
operator labeled “215 People” in Figure 2. As peo-
ple or devices enter or leave room 215, this operator
publishes events as updates to the node’s list of chil-
dren. The alias node [/people/profs/Bob/location]
is the operator labeled “Bob’s Locator” in Figure 2.

7



Changes in Bob’s location are reflected as events
about the change in the binding of that alias.
Note carefully that the links drawn in the Nam-

ing Tree represent the children of directories, or the
targets of aliases, whereas the links drawn in the Op-
erator Graph represent subscriptions.

3.3 A subscription language

In the preceding two subsections we described the
Solar operator graph and the Solar approach to
naming. In this section we show how an application
can request a subscription to the desired stream of
events, and how that request can grow the operator
graph.
In the simplest case, the application wishes to sub-

scribe to a stream of events already published by an
existing source or operator, and that publisher is vis-
ible in the namespace. Thus, the application makes
a “subscription request” by providing the name. If
the name includes wild-card characters, multiple sub-
scriptions may result from the subscription request.
If the name is context-sensitive, the subscription(s)
may change over time.
In many cases, an application desires an event

stream that is not already published. The application
must specify the operator tree that merges, filters,
transforms, and aggregates existing event streams
into the desired stream of events. The events pub-
lished by the tree’s root flow into the application.
The events flowing into the leaves of the tree are the
result of subscription requests to publishers in the
name space. The internal nodes of the tree are oper-
ators identified by the application.

Solar has a small language for applications to
describe their subscription tree. The language con-
strains the structure of the subscription requests to a
tree. By ensuring that the structure is a tree and its
output is to a non-publishing node (the application),
the overall operator graph remains acyclic. The lan-
guage allows, but does not require, the programmer
to specify a new name for each of the operators in the
tree. Thus, some operators may be unnamed.
A key goal of our approach is to allow re-use of

event streams in the operator graph. Re-use keeps
the operator graph small, avoids extraneous compu-
tation and network traffic, and is critical for overall
scalability. First, we allow applications to “export”
published streams for public use by registering the
operator in the name space. Second, we automati-
cally match new subscription trees against the exist-
ing subscription graph, so that the new subscription
tree can re-use any existing common subtree.
With deterministic, stateless operators, it is easy

for Solar to detect opportunities for this implicit
re-use: if a newcomer wants to subscribe to the event
stream produced by an operator from a set of event
streams, and another subscriber has already instan-
tiated the same operator on the same input streams,
then the newcomer need only subscribe to that ex-
isting operator’s published output. If the operators
have state, however, their output depends on their
state as well as their inputs. For now, Solar does
not implicitly re-use stateful operators. We plan to
investigate conditions that may allow re-use of state-
ful aggregators.

4 Current prototype

In this section, we present our current design, and
part of the Solar system architecture, for the oper-
ator graph abstraction and context-sensitive names-
pace. The Solar system is still evolving and the
discussion here is based on a partial prototype imple-
mentation.

4.1 System architecture

The overall architecture is shown in Figure 4. At the
center of any Solar system is a Star, which keeps
a reference to the root of the naming tree, main-
tains the operator graph, and services requests for
new subscriptions. When the Star receives a new
subscription-tree description, it parses the descrip-
tion, checks the name space for imported names,
updates the name space with exported names, and
matches the subscription tree against its internal data
structure representing the operator graph. When it
decides to deploy an operator, it instantiates the op-
erator’s object on one of many Planets. Each Planet
is an execution platform for Solar sources and op-
erators. Applications run outside the Solar system,
on any platform. They use a small Solar library
that allows them to send requests to the Star, and to
manage their subscriptions, over standard network
protocols.

4.1.1 The Star

The Star of the Solar system has two major compo-
nents: an OPerator Space (OPS), and a Subscription
Engine (SE), as shown in Figure 4.

The OPerator Space (OPS) is a data structure that
loosely represents the current operator graph. The
OPS tracks operators and their subscription requests,
rather than the actual subscriptions, for two rea-
sons. First, context-sensitive subscription requests

8



Planet

Planet

Planet

App

App

Planet
Operator
Space

Subscription
Engine

Star

Subscription
Request

Figure 4: The architecture of the Solar system. The
dashed arrows are tree edges in the name space while
the solid arrows represent subscription links in oper-
ator graph.

can cause rapid changes to the underlying subscrip-
tions, and it would be too expensive to track all the
changes. Second, the purpose of the OPS is to match
new subscription requests against existing subscrip-
tion requests.

The subscription engine (SE) parses the
subscription-tree descriptions received from ap-
plications, and builds the tree of subscription
requests. It locates named publishers using the
name resolution algorithm, and matches the tree
against the OPS to identify opportunities for re-use.
If necessary, it deploys new operators, and informs
the Planets of the subscription requests. It records
the new operators and subscription requests in OPS.
Finally, it updates the name space with any names
exported by this subscription description.

It is challenging to choose appropriate Planets to
deploy operators. Our current prototype chooses a
Planet at random. In the near future we plan to de-
velop a deployment algorithm that attempts to map
the operator graph to the Planets to balance and min-
imize the network traffic. Ideally, the SE would also
consider the topology of the network and the compu-
tational load imposed by the new operator.

4.1.2 The Planet

A Planet is an execution environment for operators.
(In our implementation, operators are Java objects
and Planets are based on Java virtual machines.)

A Planet is identified by its host IP address and
port number. Within a Planet operators are distin-
guished by a unique identification number. When
the SE deploys a new operator, the Planet acknowl-
edges the deployment and includes the identification
number. Thus the SE can record in OPS the new op-
erator’s address as a triple: IP address, port number,

and intra-Planetary id number.

The Planets play a key role in the subscriptions of
resident operators. (For applications, the Solar li-
brary serves in this role.) When the SE asks a Planet
to subscribe one of its resident operators to another
operator, it specifies the subscriber’s and publisher’s
address. The Planet contacts the publisher’s Planet
and asks it to add a new subscriber’s address to the
data structure for that publisher. When the pub-
lisher produces a new event, the event is sent to all
subscribers in the list. More precisely, a copy of the
event is sent to each Planet on that subscription list.
Thus, if several operators on Planet X subscribe to
the same publisher at Planet Y, only one copy of the
event is delivered from Planet Y to Planet X. Along
with the event is a list of the operator’s id numbers,
so that Planet X can dispatch the event to each op-
erator.

So, every event flows from the publisher to the des-
tination Planet, and is then dispatched to the sub-
scriber(s) at that Planet. The Planet maintains a
queue of input events for each resident operator, and
a queue of output events for each remote Planet.
With care, a Planet may avoid duplicating arriving
events, placing a read-only reference to the event into
each input queue.

A key advantage to this structure is that there need
to be only one network (TCP/IP) connection between
any two Planets, regardless of the number of opera-
tors resident on each Planet or the number of sub-
scriptions between the two Planets. When there are
no open subscriptions between two Planets, the Plan-
ets may close the connection at their discretion, and
re-open it when needed.

Another critical advantage of this structure is
that the Planet supports subscription requests that
involve context-sensitive names (CSNs). These
subscription requests are mapped to subscrip-
tions, which need to be changed when the CSN
binding changes. Consider an operator that
records the name of every person Bob meets.
The operator requests subscription to the CSN
[/people/profs/Bob/location/people]. The oper-
ator’s Planet subscribes to the name [/peo-
ple/profs/Bob/location]. In the state push, the
Planet receives the current binding and sub-
scribes the operator to the current publisher, e.g.,
[/places/2F/215/people]. When the binding changes,
the Planet contacts the old publisher’s Planet to
remove the operator’s address from the old pub-
lisher’s data structure, and contacts the new pub-
lisher’s Planet to add the operator’s address to the
new publisher’s data structure.

If a subscription request contains the ? wild

9



card, the list of matches may change. The sub-
scriber’s Planet initially arranges a subscription to
each matching publisher, and then monitors the di-
rectory node above each ? for changes. On any
change, the Planet updates the set of subscriptions.
If a subscription request involves both wildcards

and alias nodes, a change deep in the name space
can affect many subscriptions. Planets subscribe to
each node that may notice the change: the immediate
parent of wildcards, and each alias node. Whenever
such a node changes its bindings, it sends an event
to its direct subscribers. It also invokes a method
of its parent in the naming tree, recursively climbing
the tree from the point of change up to the root;
each node emits an event indicating the change in
their subtree. This approach ensures that the Planets
hear about all relevant changes that may affect the
mapping of subscription requests.
Finally, Planets are responsible for garbage col-

lection of unnamed operators. They monitor resi-
dent operators for lack of subscriptions. Planets may
eliminate operators with no subscriptions, except for
naming nodes, and notify the OPS.

4.2 Status

So far, we have implemented a simplified version of
the Star, which deploys operators to specified Planets
and instruments the subscriptions based on an input
XML file. The subscription language and namespace
are still under development. The Planets are func-
tional in delivering events across the network and dis-
patching received events to resident operators. The
Planet is not optimized, however; for instance, it
sends multiple copies of same event to the subscribers
residing on one Planet. We are using this partial pro-
totype in a location-sensitive appointment-reminder
service, developed by Arun Mathias [26].

5 Planned research

Solar is a work in progress, and we plan more re-
search. Here we outline other research issues about
information collection and dissemination for ubiqui-
tous applications in Section 5.1, and on context uti-
lization in Section 5.2.

5.1 Context collection and dissemina-

tion

We plan to continue our research on the operator
graph abstraction, including the design of a language
to express operators, some directions to refine our
design, and exploration of code mobility in Solar.

5.1.1 Operator state and language

Currently Solar does not provide any specific sup-
port for state push operations. The reason is that
we allow arbitrary Java code for the operator and
Solar lacks the insight of the operator’s state tran-
sitions. It is possible for Solar to archive the events
an operator has published and replay them when a
state push is needed. This brute-force solution is,
however, extremely inefficient and a more favorable
approach, like generating a most economical sequence
of events by finding a shortest path in the state-
transition graph [5], is desired. One approach is to
provide a simple operator language for the program-
mers. With access to the source code of operators,
Solar is able to build the state-transition graph and
know how to generate a more economical sequence of
state-push events.
One-time subscriptions require a state push. What

is the correct reaction when a stateless operator re-
ceives a one-time subscription? Solar can leave it
to the programmer, replay the most recent event the
operator has published, or recursively send one-time
subscriptions to upstream operators to get the latest
state. Another issue is related to implicit re-use of
the stateful operators. Is a state-push operation nec-
essary when there is no explicit indication from the
subscriber? We believe these issues need to be further
investigated and a formalization of the operator state
will help us to understand the correct semantics.

5.1.2 Code mobility

Code mobility [15] is an innovative approach to de-
veloping distributed applications [17] in a large scale
and mobile environment [16, 23]. We recognize three
variations of this technique: mobile code, mobile ob-
jects, and mobile agents.
The mobile code approach is to simply move a code

fragment, which has not been instantiated, to a des-
tination host and initialize and execute it there. The
code hops once and no state information needs to be
transferred. The mobile object approach may move
an already instantiated object from one host to an-
other while the object state is preserved during the
transition. The object is not autonomous and does
not have its own execution thread. The decision to
move is made externally. A mobile agent, instead,
is self-contained and can choose when and where to
move. Either the execution stack state (strong mo-
bility) or only the agent’s data state (weak mobility)
is captured and restored as the agent travels.
We already use mobile code in the current design

of Solar. The operators deployed by the Star are
dynamically loaded to destination Planets from code

10



servers. This technique gives flexibility of code distri-
bution without the need to install all operator code
at every Planet prior to the deployment. Applica-
tions not in a Planet execution environment can sim-
ply download a Solar proxy from the Star, which
hides all the details of communication protocols to
send/receive events, flow control mechanisms, and
handling of system events. This approach is anal-
ogous to Jini’s service proxy and promotes great flex-
ibility to the system evolution.

Mobile objects may have potential in Solar, but
there are several research issues: 1) what benefits can
we get by moving objects and under what conditions?
2) what factors help decide when and where should
which objects move? 3) what is the cost of moving an
object? and 4) how to store events that arrive during
the transition?

5.1.3 Other research issues

The namespace grows as the system extends to wider
area and one name tree can not handle mass-scale
name queries. If we federate individual namespaces
into several hierarchical levels, we need a protocol to
traverse namespaces for global name resolution. The
Star is a central point of failure and a possible perfor-
mance bottleneck in systems where new subscriptions
occur frequently. A distributed set of Stars is needed.
If a Planet or host crashes, a network fails, or a host
disconnects from the network, Solar must adapt
gracefully. We need a mechanism for flow control
between publishers and subscribers to prevent traffic
jams in operator graph. Operators that are no longer
in use need to be garbage collected. Solar’s cur-
rent context-sensitive namespace only encodes loca-
tion context, through which applications can discover
more location-dependent context. Could we include
other types of context in the namespace? Finally,
Solar must protect sensitive user context from tam-
pering and unauthorized access. For instance, Plan-
ets need to execute untrusted operator code securely,
Planets must limit the resource usage, and Solar

must limit subscription to event streams according
to an access policy.

5.2 Context utilization

In the preceding sections we outline the Solar ap-
proach for collecting and disseminating contextual
information. In this section we discuss the use of
context and the development of adaptive ubiquitous
applications.

Part of Solar’s goal is to provide a flexible and
scalable approach to collect context and disseminate

it to applications, which then adjust their behaviors
accordingly. Adaptive applications, however, can not
assume that the derived context is always complete
and correct. An incorrect assumption may lead to
undesired behavior and users will be reluctant to use
the application again. There are several reasons for
imperfect context:

• the sensor itself is not designed to be reliable and
may produce random errors,

• a noisy environment may degrade the accuracy
of sensor readings a lot,

• information may be lost in converting from sen-
sor data to an application-desired format, such
as numeric value to symbolic value or vice versa,
and

• fast sensor update rates and physical mobility
may cause a slow context meditation algorithm
to return an outdated value.

Many existing context-sensitive applications [10]
either assume the context is 100 percent correct or
deal with the imperfection in an ad-hoc way. Several
approaches for adaptive applications coping with un-
reliable context are:

• Each sensor value is assigned with a confidence
level and a corroboration function can be used to
calculate the combined value from several sensor
sources for the same type of context (such as
location) [33].

• The system profiles sensor inputs for a set of con-
text situations during a training phase, and it
generates a probability distribution across these
situations during execution time according to
current sensor values [9, 35]. Like the previous
case, applications are responsible for interpreting
the result.

• Another approach is to ask for user’s explicit
help to distinguish ambiguous situations [13],
and the feedback is used to adjust an internal
model and help future recognition.

In general it is hard to find a universal approach for
all adaptive applications that use heterogenous con-
textual information. We identify several key research
issues for a general approach to context adaptation.

• Context representation. Context has been
represented internally using key-value pairs,
tagged strings, and as an object [10]. Which one
helps an application’s understanding and adap-
tation most? Is a uniform representation possi-
ble and necessary for context adaptation?

11



• Application structure. It is crucial to de-
termine how applications must be structured to
take benefit of context. Shall the applications be
redesigned with adaptiveness in mind or just to
isolate adaptiveness in a few modules [40]?

• Multi-level adaptation. We believe
that adaptive applications should be defen-
sive/conservative, instead of aggressive, when
making adaptation decisions because users
will be reluctant to use the applications again
when she gets the impression that they make
mistakes. Applications need to have multi-level
adaptations when they make choice given cur-
rent context. Is this abstraction generalizable
to all applications, and what is the appropriate
programming model for the developers?

6 Related work

In this section we discuss related work in the following
areas: smart spaces and environments, event-based
middleware and dynamic composition, context-aware
computing, naming systems, application partitioning,
and context fusion. Here we list the work most closely
related to Solar.

6.1 Smart spaces and environments

Of the research on smart spaces and intelligent envi-
ronments, two research projects have made a focus of
the information-dissemination problem.

The proposed DataSpace system [21] uses a query-
based approach. The system sends queries to in-
formation sources that live in spatially partitioned
“datacubes” by mapping the queries to multicast ad-
dresses. The system returns a summary of the results
to the application, which can then “zoom in” to ex-
tract detailed results from the system.

The Cougar system at Cornell [7] is designed
to support queries over millions of sensor de-
vices. Cougar models each information source as a
database. One research focus is to decompose SQL
queries and execute them on the distributed sensor
devices whenever possible.

Both systems use queries to obtain raw informa-
tion from sources, but do not allow the application
to construct any application-specific post-processing
modules. As such, there is no mechanism to develop
shared information derivatives as in Solar.

6.2 Event-based middleware and dy-

namic composition

Siena [8] is a large-scale content-based event distri-
bution service. Events are filtered and delivered, but
not transformed or aggregated. Unlike Solar, Siena

applications do not subscribe to a specific publisher.
Applications describe the desired type of events as a
pattern, and publishers describe the type of events
they will publish as a pattern. Siena uses the pat-
terns to establish routing paths for events to follow
through the broker network, with a goal of minimiz-
ing network traffic.

In the Gryphon system [5] events flow through an
Information Flow Graph (IFG). The IFG is some-
what like a dual of a Solar operator graph, except
that their nodes are “information spaces” and the
edges represent operations to derive one space from
another. Operations include filters, transforms, a
“collapse” operation to create a “state space” from a
stream of events, and an “expand” operation to create
a stream of events from a state space. Gryphon has
a routing algorithm to distribute events from sources
to applications through a network of Gryphon bro-
kers. Gryphon appears to be intended for static flow
graphs, however, because they do not indicate how
to handle changes to the graphs.

In the Cambridge Event Architecture (CEA) [3]
clients can subscribe to event publishers. Or, clients
can ask an “event mediator” to help them subscribe
to publishers that produce events matching a pattern
supplied by the client. Or, clients can ask the “com-
posite event service” to aggregate events produced by
event sources and inform them when a certain pat-
tern is matched. Unlike in Solar, the intermediate
results involved in recognizing a composite event are
not exposed and thus cannot be shared by others.

Kiciman and Fox [22] also propose a solution using
dynamic composition to address a different problem,
which is the protocol and data-format mismatches be-
tween legacy hardware and software or incompatible
COTS. They form a communication path by dynam-
ically inserting appropriate mediators between any
two components that need to communicate. The
mediators along the path are stateless and function
as data transformers. A more general composition
framework called Path has operators and connectors.
They aim to select and deploy the necessary media-
tors automatically.

6.3 Context-aware systems

As in smart spaces, context-aware applications adapt
their behaviors to their context, as obtained from per-

12



vasive information sources.
In many systems, a monolithic module transforms

the raw sensor information into high-level context,
which is then available to applications [34, 36]. They
provide no support for applications to derive new re-
fined information, in ways that were not expected by
the information providers.
The Context Toolkit [13] is a distributed system

that encapsulates each sensor as a widget with a ser-
vice component. Applications may subscribe to sen-
sor data produced by widgets. Applications may de-
ploy “aggregators” to combine and transform data
from widgets. It is not clear whether aggregators can
be stacked.
The Context Information Service (CIS) is a pro-

posed architecture [30] that represents the world as
a set of objects (people and devices). The state of
each object is a combination of several values derived
from sensors (such as location, availability, tempera-
ture). The service updates object states by monitor-
ing sensors or synthesizers. “Synthesizer” modules
aggregate data from sensors to produce high-level in-
formation. Applications obtain the states of a set of
objects from existing monitors or by deploying new
monitors from a catalog.
Taking the service composition [22] idea further,

Context Fabric [20] also proposes to automate the
path creation from low-level sensor data to high-level
context data. The high-level automation relieves the
programmers from dealing with specific sensors. The
numerous types of context data, however, make it
hard for the system designer to build all possible op-
erators for the applications that may potentially use
unexpected contextual information. Also, it is un-
clear how the event-oriented service can be composed
through these operators without subscription inter-
faces.

6.4 Context fusion

To handle unreliable contextual information, some fu-
sion and aggregation should be applied on raw sensor
data first. There are several approaches to this diffi-
cult problem.
Rizzo et al. [33] assign every sensor reading a

confidence level and a corroboration function is used
to calculate the combined value from several sensor
sources for the same context. It is unclear, however,
which confidence level should be assigned for the sen-
sor data at the first place, and the corroboration func-
tion seems to be dependent on the type of context to
be retrieved.
Nibble [9] and TEA [35] profile sensor inputs for a

set of predefined locations or context situations dur-

ing the training phase, and generate a probability
distribution across these situations during execution
time according to current sensor values. Like previ-
ous approaches, applications are responsible for in-
terpreting the result.
Another approach is to ask for the user’s explicit

help to distinguish the ambiguous situations [13], and
the feedback is used to adjust the internal model and
aid future recognition. It is not always possible, how-
ever, that the user is available for help and users may
feel the applications are intrusive and become reluc-
tant to use them.

6.5 Naming systems

Solar allows publishers and services to be identi-
fied by context-sensitive names (CSN). Most other
distributed naming systems, like Grapevine [6] and
the Global Naming Service [24], assume name bind-
ings are mostly static. Unix “symbolic links” allow
for aliasing as in Solar, but they are largely static,
and there is no automatic way to learn about binding
changes.
Plan 9 [31] uses a file-system interface to represent

a wide range of system resources in addition to data
files. Like our dynamic directory nodes, the Plan 9
name space has special “directories” that do not con-
tain normal files. Their contents are synthesized on
demand when read or rewritten.
The Intentional Naming System (INS) [2] names

each resource and service with a set of attribute-value
pairs that describes the named object. An object
periodically sends its current name to INS, causing
any change in the description to be reflected in the
name space. A late-binding mechanism that inte-
grates name resolution and message routing makes
it possible for a client to continuously communicate
with a service object that is moving to a new net-
work location. They do not specifically address the
potential for their naming system to encode context.

7 Summary

Large-scale systems that support ubiquitous ap-
plications need flexible and scalable information-
dissemination mechanisms to convey and transform
contextual information to applications, and such sys-
tems also need to provide a general approach for con-
text adaptation to be used by diverse adaptive appli-
cations.
In our Solar system, we treat information sources

as event producers and applications as event con-
sumers. Thus, sources are publishers, and applica-
tions are subscribers. We introduce operators, which

13



subscribe to one or more event streams and produce a
new event stream, either by merging, filtering, trans-
forming, or aggregating their input stream(s). We
encourage the dynamic composition of many such op-
erators into a graph that connects many sources to
many applications. This graph serves to transform
the raw events produced by the sources into higher-
level contextual information usable by applications.

Solar names many publishers in a hierarchical
name space. The real value of the name space is
in the use of dynamic directory nodes, which are op-
erators that produce a list of child nodes based on
the contextual information in their own subscriptions,
and in the use of alias nodes, which are operators
that allow context-sensitive aliases for objects. The
combination provides a constant name for a context-
sensitive concept, such as the list of people in the
room with Bob: [/people/prof/bob/location/people],
which changes when Bob moves or when people join
or leave him. The result is an easy way for many ap-
plications to express their sensitivity to context sim-
ply by requesting a subscription to an information
source through a context-sensitive name.

Solar has a small language to allow application
programmers to express the information it wants in
the form of a tree of operators to transform events
from named publishers into events for the applica-
tion. Solar parses the subscription description to
dynamically deploy operators as needed, re-using ex-
isting operators where possible.

The heart of the Solar system is the Star, which
processes new subscription descriptions. The Star
deploys all sources, operators, and applications on a
distributed network of execution environments, Plan-
ets. All events flow between Planets, directly from
the publisher’s Planet to the subscribers’ Planets. If
the operators are deployed well across Planets, this
infrastructure avoids any unnecessary duplication of
events on the network, and allows Planets to ad-
just context-sensitive subscription requests when the
name bindings change.

We discuss several other important research issues
surrounding the design of Solar. Ultimately, we
expect that Solar’s end-to-end support for infor-
mation collection, dissemination, and utilization will
make it easy to build adaptive applications for a ubiq-
uitous mobile environment with many users and de-
vices.

References

[1] Gregory D. Abowd, Christopher G. Atkeson, Ja-
son Hong, Sue Long, Rob Kooper, and Mike

Pinkerton. Cyberguide: A mobile context-aware
tour guide. Wireless Networks, 3(5):421–433,
October 1997.

[2] William Adjie-Winoto, Elliot Schwartz, Hari
Balakrishnan, and Jeremy Lilley. The design
and implementation of an intentional naming
system. In Proceedings of the 17th ACM Sym-
posium on Operating Systems Principles, pages
186–201, Kiawah Island Resort, South Carolina,
December 1999. ACM Press.

[3] Jean Bacon, Ken Moody, John Bates, Richard
Hayton, Chaoying Ma, Andrew McNeil, Oliver
Seidel, and Mark Spiteri. Generic support for
distributed applications. IEEE Computer, 33(3),
March 2000.

[4] Paramvir Bahl and Venkata N. Padmanabhan.
Radar: An in-building RF-based user location
and tracking system. In Proceedings of IEEE
INFOCOM 2000, Tel-Aviv, Israel, March 2000.
IEEE Computer Society Press.

[5] Guruduth Banavar, Marc Kaplan, Kelly Shaw,
Robert E. Strom, Daniel C. Sturman, and Wei
Tao. Information flow based event distribu-
tion middleware. In Proceedings of the Middle-
ware Workshop at the 19th IEEE International
Conference on Distributed Computing Systems,
Austin, Texas, May 1999. IEEE Computer Soci-
ety Press.

[6] Andrew D. Birrell, Roy Levin, Roger M. Need-
ham, and Michael D. Schroeder. Grapevine: An
exercise in distributed computing. Communica-
tion of ACM, 25(4):260–274, April 1982.

[7] Philippe Bonnet, Johannes Gehrke, and Praveen
Seshadri. Querying the physical world. IEEE
Personal Communications, 7(5):10–15, October
2000.

[8] Antonio Carzaniga, David S. Rosenblum, and
Alexander L. Wolf. Achieving scalability and
expressiveness in an Internet-scale event noti-
fication service. In Proceedings of the Nine-
teenth Annual ACM Symposium on Principles of
Distributed Computing, pages 219–227, Portland
OR, USA, July 2000.

[9] Paul Castro, Patrick Chiu, and Richard Muntz.
A probabilistic room location system for wire-
less network environment. Submitted for publi-
cation, April 2001.

14



[10] Guanling Chen and David Kotz. A survey of
context-aware mobile computing research. Tech-
nical Report TR2000-381, Dept. of Computer
Science, Dartmouth College, November 2000.

[11] Keith Cheverst, Nigel Davies, Keith Mitchell,
and Adrian Friday. Experiences of develop-
ing and deploying a context-aware tourist guide:
The GUIDE project. In Proceedings of the
Sixth Annual International Conference on Mo-
bile Computing and Networking, pages 20–31,
Boston, MA, August 2000. ACM Press.

[12] Norman H. Cohen, Apratim Purakayastha, John
Turek, Luke Wong, and Danny Yeh. Challenges
in flexible aggregation of pervasive data. Tech-
nical Report RC21942, IBM Research Division,
Thomas J. Watson Research Center, P.O.Box
704, Yorktown Heights, NY 10598, January
2001.

[13] Anind K. Dey. Providing Architectural Support
for Building Context-Aware Applications. PhD
thesis, College of Computing, Georgia Institute
of Technology, December 2000.

[14] Mike Esler, Jeffrey Hightower, Tom Anderson,
and Gaetano Borriello. Next century challenges:
Data-centric networking for invisible computing.
In Proceedings of the Fifth Annual ACM/IEEE
International Conference on Mobile Computing
and Networking, pages 256–262, Seattle, WA,
August 1999. ACM Press.

[15] Alfonso Fuggetta, Gian Pietro Picco, and Gio-
vanni Vigna. Understanding code mobility.
IEEE Transactions on Software Engineering,
24(5):342–361, May 1998.

[16] Robert S. Gray, George Cybenko, David Kotz,
and Daniela Rus. Mobile agents: Motivations
and state of the art. In Jeffrey Bradshaw, edi-
tor, Handbook of Agent Technology. AAAI/MIT
Press, 2001.

[17] David Halls. Applying Mobile Code to Dis-
tributed Systems. PhD thesis, Computer Lab-
oratory, University of Cambridge, June 1997.

[18] Andy Harter, Andy Hopper, Pete Steggles, Andy
Ward, and Paul Webster. The anatomy of a
context-aware application. In Proceedings of the
Fifth Annual ACM/IEEE International Con-
ference on Mobile Computing and Networking,
pages 59–68, Seattle, WA, August 1999. ACM
Press.

[19] Jeffrey Hightower, Roy Want, and Gaetano Bor-
riello. SpotON: An indoor 3D location sens-
ing technology based on RF signal strength.
UW CSE 2000-02-02, University of Washington,
Seattle, WA, February 2000.

[20] Jason I. Hong and James A. Landay. An infras-
tructure approach to context-aware computing.
Human-Computer Interaction, 16(2&3), 2001.

[21] Tomasz Imielinski and Samir Goel. DataSpace:
Querying and monitoring deeply networked col-
lections in physical space. IEEE Personal Com-
munications, 7(5):4–9, October 2000.

[22] Emre Kiciman and Armando Fox. Using dy-
namic mediation to integrate COTS entities in
a ubiquitous computing environment. In Pro-
ceedings of Second International Symposium on
Handheld and Ubiquitous Computing, pages 211–
226, Bristol, UK, September 2000. Springer Ver-
lag.

[23] David Kotz, Robert Gray, Saurab Nog, Daniela
Rus, Sumit Chawla, and George Cybenko. Agent
Tcl: Targeting the needs of mobile comput-
ers. IEEE Internet Computing, 1(4):58–67,
July/August 1997.

[24] Butler W. Lampson. Designing a global name
service. In Proceedings of the 4th ACM Sym-
posium on Principles of Distributed Computing,
pages 1–10, Minaki, Ontario, 1986. ACM Press.

[25] Ulf Leonhardt. Supporting Location-Awareness
in Open Distributed Systems. PhD thesis,
Imperial College of Science, Technology and
Medicine, University of London, May 1998.

[26] Arun Mathias. SmartReminder: A case study on
context-sensitive applications. Technical Report
TR2001-392, Dartmouth College, Hanover, NH
03755, June 2001.

[27] Joseph F. McCarthy and Eric S. Meidel. AC-
TIVE MAP: A visualization tool for location
awareness to support informal interactions. In
Proceedings of First International Symposium
on Handheld and Ubiquitous Computing, pages
158–170, Karlsruhe, Germany, September 1999.
Springer Verlag.

[28] Giles John Nelson. Context-Aware and Location
Systems. PhD thesis, Clare College, University
of Cambridge, January 1998.

[29] Donald A. Norman. The Invisible Computer.
The MIT Press, 1999.

15



[30] Jason Pascoe. Adding generic contextual capa-
bilities to wearable computers. In Proceedings of
the Second International Symposium on Wear-
able Computers, Pittsburgh, Pennsylvania, Oc-
tober 1998. IEEE Computer Society Press.

[31] Rob Pike, Dave Presotto, Ken Thompson,
Howard Trickey, and Phil Winterbottom. The
use of name spaces in Plan 9. Operating System
Review, 27(2):72–76, April 1993.

[32] Nissanka B. Priyantha, Anit Chakraborty, and
Hari Balakrishnan. The Cricket location-support
system. In Proceedings of the Sixth Annual Inter-
national Conference on Mobile Computing and
Networking, pages 32–43, Boston, MA, August
2000. ACM Press.

[33] Mike Rizzo, Peter F. Linington, and Ian A. Ut-
ting. Integration of location services in the open
distributed office. Technical Report 14-94, Com-
puting Laboratory, University of Kent, Canter-
bury, UK, August 1994.

[34] William Noah Schilit. A System Architecture for
Context-Aware Mobile Computing. PhD thesis,
Columbia University, May 1995.

[35] Albrecht Schmidt, Kofi Asante Aidoo, Antti
Takaluoma, Urpo Tuomela, Kristof Van Laer-
hoven, and Walter Van de Velde. Advanced in-
teraction in context. In Proceedings of First In-
ternational Symposium on Handheld and Ubiqui-
tous Computing, pages 89–101, Karlsruhe, Ger-
many, September 1999. Springer Verlag.

[36] Mike Spreitzer and Marvin Theimer. Provid-
ing location information in a ubiquitous com-
puting environment. In Proceedings of the 14th
ACM Symposium on Operating Systems Princi-
ples, pages 270–283, Asheville, NC, December
1993. ACM Press.

[37] Roy Want, Andy Hopper, Veronica Falcão, and
Jonathan Gibbons. The Active Badge location
system. ACM Transactions on Information Sys-
tems, 10(1):91–102, January 1992.

[38] Andrew Martin Robert Ward. Sensor-driven
Computing. PhD thesis, Corpus Christi College,
University of Cambridge, May 1999.

[39] Mark Weiser. The computer for the 21st century.
Scientific American, pages 94–104, September
1991.

[40] Girish Welling and B.R. Badrinath. An archi-
tecture for exporting environment awareness to
mobile computing applications. IEEE Transac-
tions on Software Engineering, 24(5), May 1998.

[41] Jay Werb and Colin Lanzl. A positioning sys-
tem for finding things indoors. IEEE Spectrum,
35(9):71–78, September 1998.

16


