
Solar: Towards a Flexible and Scalable Data-Fusion

Infrastructure for Ubiquitous Computing

Guanling Chen and David Kotz

Dartmouth College

Hanover, NH, USA 03755

{glchen, dfk}@cs.dartmouth.edu

Abstract

As we embed more computers into our daily environ-
ment, ubiquitous computing promises to make them
less noticeable and to avoid information overload.
We see, however, few ubiquitous applications that
are able to adapt to the dynamics of user, physical,
and computational context. The challenge is to allow
applications flexible access to these sources, and yet
scale to thousands of devices and sensors. In this pa-
per we introduce our proposed infrastructure, Solar.
In Solar, information sources produce events. Ap-
plications may subscribe to interesting sources di-
rectly, or they may instantiate and subscribe to a tree
of operators that filter, transform, merge and aggre-
gate events. Applications use a subscription language
to describe the tree, based on event streams registered
in a context-sensitive naming hierarchy. Solar is
flexible: modular operators can be composed to pro-
duce new event streams. Solar is scalable: it dis-
tributes operators across hosts called Planets, and it
re-uses common subgraphs in the operator network.

1 Introduction

As wireless computing devices become more com-
mon, their users are exposed to a tremendous amount
of information that comes from an array of diverse
sources, such as location sensors, weather or traffic
sensors, network monitors, information appliances,
the status of computational or human services, and
so forth. One important goal of ubiquitous comput-
ing, however, is to help the user overcome information
overload and concentrate on the current task [7]. To
do so, ubiquitous applications must be aware of the

This research has been supported by DARPA contract
F30602-98-2-0107, by DoD MURI contract F49620-97-1-03821,
by Microsoft Research, and by the Cisco Systems University
Research Program.

situation in which they are running. They must ob-
tain and analyze the data about their context, and
adjust their behavior without unnecessarily distract-
ing the user. This task is challenging because applica-
tions face heterogenous data types, different commu-
nication protocols, unreliable wireless links with lim-
ited bandwidth, low data quality due to error-prone
sensors affected by environmental noises, and many
other issues.

Asking each application to work directly from in-
formation sources overwhelms programmers with de-
tails and complexity. It leads to ad-hoc solutions that
will not scale with N2 pipes between the sources and
applications. The programmers need a toolkit to sim-
plify their task and the toolkit needs an infrastruc-
ture to deliver context data, an infrastructure that
can scale by sharing data streams.

Both Gryphon [1] and Siena [2] are content-based
publish/subscribe systems and provide large-scale
event-routing services. While they can provide some
event-fusion functions, it is unclear how these func-
tions are deployed and whether it is possible to share
them across applications. Since the ubiquitous adap-
tive applications typically gain the high-level “aware-
ness” by filtering, transforming, merging, and ag-
gregating low-level sensor data, what we really need
is a fusion-centric (instead of routing-centric) data
dissemination infrastructure that provides sharing of
both data streams and fusion functionalities. Build-
ing such a data-fusion infrastructure for a ubiquitous
mobile environment has to face many technical chal-
lenges, which are summarized by Cohen et al. [4].

We propose a system infrastructure, Solar, to
meet the challenges. Our goal is to allow appli-
cations to define their own operations, to describe
flexible compositions of operations, and to support
many such applications with scalable performance.
Solar provides flexibility by allowing applications
to define and interconnect operator objects. Solar
provides scalability by distributing these operators

1

David Kotz
© Copyright 2001 by the authors띃



across hosts in the network and by sharing identical
data streams across users and applications.

This paper provides a brief overview of the Solar
infrastructure. We necessarily skip many of the de-
tails here because of the space limitation. For more
information see our Technical Report [3].

2 Operator graph

Solar treats sensors of ubiquitous data as informa-
tion sources, whether they sense physical properties
such as location, or computational properties such
as network bandwidth. Information sources produce
their data as events, implemented in Solar as ob-
jects. The sequence of events produced is an event
stream, which is inherently unidirectional. An event
publisher produces an event stream, and an event sub-
scriber consumes an event stream.

An operator is an object that subscribes to and
processes one or more input event streams, and pub-
lishes another event stream. Since the inputs and
output of an operator are all event streams, the oper-
ators can be connected recursively to form a directed
acyclic graph, an event-flow graph that we call the
operator graph.

Our operator graph consists of three kinds of nodes:
sources, operators, and applications. The sources
have no subscriptions. They are wrappers for in-
formation sensors. Operators are deterministic func-
tions of their input events. They only publish an
event when they receive an input event. Applica-
tions are sinks of the graph. They subscribe to one
or more event streams and react to incoming events
(and possibly other stimuli, such as interactions with
the user).

There are four common categories of operators. A
filter outputs a subset of its input events. A trans-
former inputs events of one type and outputs events
of the same or another type. (The types may be the
same if the transformer only changes some attribute
values.) The merger simply outputs every event it
receives. While mergers are not strictly necessary,
since any of the merger’s subscribers could directly
subscribe to the same inputs, a merger aids re-use of
event streams. An aggregator outputs an arbitrary
type event stream based on the events in one or more
input event streams.

Example. We show a simple example operator
graph in Figure 1. Suppose in a typical office envi-
ronment with location system (such as Active Badge)
installed, each room has a location sensor that peri-
odically reports the badge number it detects in that

007 Loc
 Sensor Building

Locator

215 Loc
 Sensor

Active Map

Bob’s
Locator

Bob’s
Guide

TS

.

..

S

M

A

T

A

F

215
Monitor

Figure 1: An example operator graph.

room. These events are transformed to appropriate
names of the objects associated with the badge before
merged into a single event stream. The aggregator
labeled as “Building Locator” takes this stream and
produces only location-change events about the ob-
jects. Similarly, the “215 Monitor” reports whenever
an object leaves or enters room 215. The Active Map
running on a public wall-mounted screen can then
display the current location of tracked object by sub-
scribing to the “Building Locator” aggregator. The
aggregator’s output can also be filtered to report only
Bob’s movement. The personal Guide application on
Bob’s PDA displays the descriptions about the room
and the list of current resident objects and associated
links, following which Bob can find more information
such as the calendar of a colleague and the manual
of a scanner. The dashed arrow represents a context-
sensitive subscription (assuming Bob is currently in
room 215), which will be discussed in Section 4.

In this example we show how the operator graph
achieves flexibility by allowing dynamic composition
of operators and achieves scalability by re-using event
streams. These applications adapt to high-level con-
text that is derived from the same sources, simply
reusing the operators without having to process raw
data from sensors on their own. The redundant and
irrelevant events have been filtered out before reach-
ing these applications, making it possible to support
a larger number of applications without saturating
network edge links.

In summary, once the data-fusion functionalities
(represented by operators) are isolated from the ap-
plications, Solar can deploy them across the net-
work and promote re-use of these operators by var-
ious applications. This approach achieves several
advantages: 1) It provides a fine-grain application-
partitioning method for flexible adaptation to vari-
ous capabilities of the mobile devices and available
network connectivity; 2) Solar encourages the use
and sharing of filter operators, and the deployment
of those filters close to the information sources, which
can dramatically reduce bandwidth used on slow net-
work links; 3) Re-use of an operator instance in

2



Solar is to re-use all the event streams and oper-
ators in the subgraph rooted by that operator, allow-
ing much easier composition than manually specify-
ing a list of components the data should go through
from source to application (such as the “after list”
in Active Names [6]); and 4) the operator graph can
dynamically grow as an application customizes the in-
formation flow by adding its own fusion operators and
re-using many others, avoiding the limitation (the
need of a large predefined service repository) imposed
by automatic path construction [5].

3 Context-sensitive naming

Although we can build operator graphs from the con-
nections described by a subscribing application, and
Solar has a small language for that purpose, it is
frequently useful to name event publishers so that
their streams are easily usable by many subscribers.
By naming a publisher, applications can subscribe
to its event stream without needing to describe that
stream from first principles (sources). It is common
to construct named mergers, for example, to make
pre-defined combinations of event streams available
to many applications.

A flat name space does not scale. Furthermore,
given the dynamic nature of an application’s con-
text in ubiquitous computing environments, Solar’s
name bindings change with the changing context. So
Solar’s name space is organized as a tree of labelled
nodes, with the addition of cross edges (see an exam-
ple in [3]). The name for a node is the sequence of
labels encountered on any path from the root to the
node, separated by slashes. There are several types
of nodes. Some of the leaves are alias nodes that
are representatives of another node. By analogy to
Unix, we call these cross edges “soft links”. Some
leaves may be service nodes, which represent avail-
able services. Other leaves are the event publishers
we discussed in the operator graph.

Internal nodes are directories that refer to sev-
eral child nodes. Static directory nodes contain a
list of children, a list updated only by explicit re-
quests. Dynamic directory nodes generate a list of
children dynamically, from internal state that de-
pends on contextual information obtained from sub-
scriptions. Typically the children of dynamic directo-
ries are nodes already located elsewhere in the name
space.

Soft links are dynamically generated by a directory
or alias node when needed. These directory and alias
nodes must, therefore, be operators with appropriate
subscriptions and sufficient state to be able to gener-

ate the appropriate list of children when asked. For
example, the node [/places/2F/215/people] lists Bob
as child and [/people/profs/Bob/location] refers to
room 215. These links are automatically updated as
the user moves across geographical spaces. Since both
operators derive the location information from the
same source [/places/2F/215/location-sensor], these
two views will remain consistent.

Nodes in the name space are also publishers of
changes to name bindings. More precisely, direc-
tory nodes are publishers that announce additions
or deletions of their children by publishing events.
(Static directory nodes are sources and dynamic di-
rectory nodes are operators.) Alias nodes are pub-
lishers that announce changes in their bindings. In-
terested applications can subscribe to these sources to
detect changes in the name space. So if Alice wants
to track the location of her advisor Bob, her appli-
cation subscribes to the operator named as [/peo-
ple/profs/Bob/location].

Although Solar’s concept of “operator graph” is
independent of its naming scheme, we believe the con-
text sensitive namespace is ideal for adaptive ubiq-
uitous applications. The namespace re-uses the op-
erator abstraction and connects the physical loca-
tion with entities inside, allowing applications to use
one persistent name to access location-dependent in-
formation sources while Solar automatically selects
and delivers appropriate event streams as user moves
around. This approach removes much of the com-
plexity of location tracking from applications.

4 System architecture

We discuss Solar’s architecture in this section. At
the center of any Solar system is a Star, which
keeps a reference to the root of naming tree, main-
tains the operator graph, and services requests for
new subscriptions. When the Star receives a new
subscription-tree description, it parses the descrip-
tion, checks the name space, and matches the sub-
scription tree against its internal data structure rep-
resenting the operator graph. When it decides to de-
ploy an operator, it instantiates the operator’s object
on one of many Planets. Each Planet is an execu-
tion platform for Solar sources and operators. (In
our implementation, operators are Java objects and
Planets are Java virtual machines.) Applications run
outside the Solar system, on any platform. They
use a small Solar library that allows them to send
requests to the Star, and to manage their subscrip-
tions, over standard network protocols.

Planets play a key role in the subscriptions of res-

3



ident operators. When deploying new subscriptions,
the Star tells the Planets to record a subscription
from one of its operators to an operator in another
Planet. In our implementation there is at most one
network (TCP/IP) connection between any two Plan-
ets, regardless of the number of operators on or sub-
scriptions between the two Planets.

Another critical advantage of our approach is
that the Planet supports subscription requests that
involve context-sensitive names (CSNs). These
subscription requests are mapped to subscriptions,
which need to be changed when the CSN bind-
ing changes. Consider an operator X that records
the name of every person Bob meets. The op-
erator requests subscription to the CSN [/peo-
ple/profs/Bob/location/people], currently bound to
an operator P. X’s Planet subscribes to the name
[/people/profs/Bob/location]. The Planet receives
the current binding and subscribes X to P. When
Bob moves, suppose the binding changes to opera-
tor Q. X’s Planet contacts P’s Planet to remove X
from P’s data structure, and contacts Q’s Planet to
add X to the Q’s data structure. All the work is done
by planets and the namespace operators; P, Q, and
X are never involved.

These and other aspects of the Solar architecture
are key to its scalability and flexibility. Furthermore,
although the operators must execute inside a Solar
Planet, applications may run on any platform. Thus,
legacy or COTS applications may easily be integrated
with a ubiquitous-computing environment built on
Solar technology.

5 Future work

Our focus on Solar so far has been to develop a
useful model for flexible, scalable access of contex-
tual information. There are three critical directions
in which we must refine our design: scalability, relia-
bility, and security. We plan to

• distribute the responsibility of the Star to avoid
a central point of failure and to avoid any pos-
sible performance bottleneck in systems where
new subscriptions occur frequently,

• extend the name space to allow federation of
many name spaces,

• address reliability in the face of failure of a
Planet or a network connection,

• develop a mechanism for flow control between
publishers and subscribers,

• consider security and privacy (Planets need to
execute untrusted operator code securely, Plan-
ets must limit the resource usage, and Solar
must limit subscription to event streams accord-
ing to an access policy), and

• experiment with the use of Solar in several
context-sensitive mobile applications to deter-
mine the value of the abstraction and the per-
formance of the system.

References

[1] G. Banavar, M. Kaplan, K. Shaw, R. E. Strom,
D. C. Sturman, and W. Tao. Information flow
based event distribution middleware. In Pro-
ceedings of the Middleware Workshop at the 19th
IEEE International Conference on Distributed
Computing Systems, Austin, Texas, May 1999.
IEEE Computer Society Press.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Achieving scalability and expressiveness in an
Internet-scale event notification service. In Pro-
ceedings of the Nineteenth Annual ACM Sym-
posium on Principles of Distributed Computing,
pages 219–227, Portland OR, USA, July 2000.

[3] G. Chen and D. Kotz. Supporting adaptive
ubiquitous applications with the SOLAR system.
Technical Report TR2001-397, Dept. of Com-
puter Science, Dartmouth College, May 2001.

[4] N. H. Cohen, A. Purakayastha, J. Turek,
L. Wong, and D. Yeh. Challenges in flexible ag-
gregation of pervasive data. Technical Report
RC21942, IBM Research Division, Thomas J.
Watson Research Center, P.O.Box 704, Yorktown
Heights, NY 10598, January 2001.

[5] E. Kiciman and A. Fox. Using dynamic medi-
ation to integrate COTS entities in a ubiquitous
computing environment. In Proceedings of Second
International Symposium on Handheld and Ubiq-
uitous Computing, pages 211–226, Bristol, UK,
September 2000. Springer Verlag.

[6] A. Vahdat, M. Dahlin, T. Anderson, and A. Ag-
garwal. Active Names: Flexible location and
transport of wide-area resources. In Proceedings
of the 2nd USENIX Symposium on Internet Tech-
nologies and Systems, Boulder, Colorado, Octo-
ber 1999. USENIX.

[7] M. Weiser. The computer for the 21st century.
Scientific American, pages 94–104, September
1991.

4


