
In "Itinerant Agents: Explanations and Examples with CDROM."
William Cockayne and Michael Zypa (editors), Manning Publishing, 1997.
Copyright 1997 by Manning Publishing and Prentice Hall.
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.

Agent Tcl

Robert Gray�

George Cybenko

David Kotz

Daniela Rus

Department of Computer Science

Dartmouth College

Hanover� NH �����

frgray�gvc�dfk�rusg�cs�dartmouth�edu

May ��� ����

� Overview

Agent Tcl is a simple itinerant�agent system that runs on Unix workstations

and allows the rapid development of complex agents �Gra��� Gra���� Although

Agent Tcl currently lacks the features of commercial systems such as Telescript

�Whi���� it is an e	ective platform for experimentation with itinerant agents and

for the development of small to medium�sized applications� Agent Tcl agents

are written in an extended version of the Tool Command Language
Tcl�� Tcl

�Supported by AFOSR contract F��������������� and ONR contract N���������������

�

is a high�level scripting language that is both powerful and easy to learn� It was

designed to
control and extend �existing� applications �and tools�� �Ous����

This makes Tcl an ideal language for itinerant agents because most agents are

concerned primarily with coordinating high�level communication and resource

access� Agent Tcl agents can use all of the standard Tcl commands as well as

a set of special commands that are provided as a Tcl extension� These special

commands allow an agent to migrate from one machine to another� to create

child agents� to communicate with other agents� and to obtain information about

its current network location� In addition� Agent Tcl� like all Tcl�based systems�

can be extended with user�de�ned commands to create a more powerful agent

system � e�g�� a set of text�processing commands can be made available to all

agents at a particular site�

Migration is accomplished with the agent jump command� which can ap�

pear anywhere within an agent� It captures the current state of the agent and

transfers this state image to a server on the destination machine� The server

restores the state image and the agent continues execution from the command

immediately after the agent jump� In other words� agent jump allows the agent

to suspend its execution at an arbitrary point� transport to another machine�

and resume execution on the new machine at the exact point at which it left

o	� This approach to migration is the same as in Telescript �Whi���� but is dif�

ferent than in Tacoma where an agent executes from the beginning on each new

machine and must explicitly collect state information �JvRS���� Once an Agent

Tcl agent has migrated to a machine� it can access resources and communicate

with other agents on that machine� Once it �nishes its local task� it migrates

to the next machine�

There are two forms of inter�agent communication� The �rst form of com�

munication is message passing� which uses the traditional send and receive prim�

�

itives �SS���� The agent send command sends a message to another agent and

the agent receive command receives an incoming message� The second form

of communication is a direct connection� which is essentially a named message

stream� An agent establishes a direct connection with another agent using the

agent meet command� The two agents then exchange messages over the con�

nection� Direct connections are more e�cient than message passing for long

interactions and are convenient for the programmer since the agent can wait for

messages on a particular connection� A message in Agent Tcl is an arbitrary

string with no prede�ned syntax or semantics� The agents must agree on the

meaning of the messages that they exchange� The base communication mech�

anisms were made purposely low�level to allow experimentation with a range

of communication paradigms� Two paradigms have already been implemented

on top of the base facilities� The �rst is analogous to RPC
Remote Procedure

Call� �NCK���� the second is a conversational approach that views communica�

tion between a pair of agents as an ongoing dialog� An agent can participate in

as many simultaneous dialogs as desired� Each dialog has its own state space�

incoming messages from other agents are automatically turned into events that

execute within the appropriate state space�

Other commands allow an agent to create new child agents and to obtain

information about its current machine� such as the identities of other agents�

In addition� agents can use the Tk toolkit to interact with the user of the

current machine� Tk is a Tcl extension that provides commands for creating

graphical user interfaces
GUI� �Ous���� Tk is event�driven and supports all

of the standard GUI features such as windows� menus� scrollbars� and drawing

areas� Event handlers can be associated with arbitrary window events as well

as with agent events such as incoming messages from other agents� Since Tk

allows a GUI to be written entirely in Tcl� professional�quality interfaces can be

�

created with a relatively small amount of time and code� An agent that wanted

to interact with a user during the course of its travels would carry the necessary

Tk code with it� Once it reached the user�s machine� it would execute the code

and present the interface�

Agent Tcl is an ongoing research project and is far from complete� Our re�

search focuses on the security issues associated with roving code and on support

for mobile computing� since agents become particularly useful when they can mi�

grate to and from portable machines� Portable machines are often disconnected

from their network and often have an unreliable� low�bandwidth connection

when they are connected� By migrating to or from the machine
to interact

with the user or with network resources respectively�� an agent can avoid exten�

sive use of the poor connection� In this chapter� we �rst describe the planned

architecture of Agent Tcl and the prototype that is included on the enclosed

CDROM in directory systems�agent�tcl
along with detailed documentation

and installation instructions in subdirectory doc�� Then we present potential

uses for Agent Tcl and work through a speci�c programming example in which

an agent collects system information from each machine that it visists� We con�

clude with a discussion of the weaknesses and strengths of Agent Tcl and its

future outlook�

� Architecture

Agent Tcl has four main goals�

� Reduce migration to a single instruction� agent jump� and allow this

instruction to occur at arbitrary points� The instruction should capture

the complete state of the agent and transparently send this state to the

destination machine� The programmer should not have to explicitly collect

�

state information� and the system should hide all transmission details

even if the destination machine is a mobile computer that is temporarily

disconnected or has a new network address�

� Provide communication mechanisms that are �exible and low�

level� but that hide all transmission details� including whether the agents

are on the same or di	erent machines�

� Provide a high�level scripting language as the main agent lan�

guage� but support multiple languages and transport mechanisms� and

allow the straightforward addition of a new language or transport mech�

anism� Multiple languages are particularly important since� although a

high�level scripting language such as Tcl is appropriate for most itinerant

agents� it is ill�suited for agents that require large amounts of code or that

perform speed�critical tasks�

� Provide e�ective security in the uncertain world of the Internet�

The overall goal is a simple� �exible and secure itinerant�agent system that

will allow the programmer to select the most appropriate language for her task

and rapidly develop even large�scale applications�

��� Planned architecture

The planned architecture for Agent Tcl is shown in Figure �� The architecture

builds on the server model of Telescript �Whi���� the multiple languages of ARA

�Pei��� and Dixie �Gai���� and the transport mechanisms of two predecessor

systems at Dartmouth �Har��� KK���� The architecture has four levels� The

lowest level is an API for the available transport mechanisms� The second level

is a server that runs at each network site to which agents can be sent� The

server performs the following tasks�

�

Security
State

capture

Interpreter

Server

API

TCP/IP

Tcl

Electronic
mail

Java...

Server or engine

...

Agents

Figure �� The architecture of Agent Tcl� The four levels consist of an API for

the available transport mechanisms� a server that accepts incoming agents and

mediates agent communication� an interpreter for each supported language� and

the agents themselves�

� Status� The server keeps track of the agents that are running on its ma�

chine and answers queries about their status�

� Migration� The server accepts each incoming agent� authenticates the

identity of the owner� and passes the authenticated agent to the appro�

priate interpreter for execution� The server selects the best transport

mechanism for each outgoing agent�

� Communication� The server provides a hierarchical namespace for agents

and allows agents to send messages to each other within this namespace�

The topmost division of the namespace is the symbolic name of the agent�s

network location� A message is an arbitrary sequence of bytes with no pre�

de�ned syntax or semantics except for two types of distinguished messages�

An event message provides asynchronous noti�cation of an important oc�

currence while a connection message requests or rejects the establishment

of a direct connection� A direct connection is a named message stream

�

between agents and is more convenient and e�cient than message passing

for long interactions
since the programmer can wait for messages on a

particular stream and the server often can hand control of the stream to

the interpreter�� The server bu	ers incoming messages� selects the best

transport mechanism for outgoing messages� and creates a named message

stream once a connection request has been accepted�

� Nonvolatile store� The server provides access to a nonvolatile store so that

agents can back up their internal state as desired� The server restores the

agents from the nonvolatile store in the event of machine failure�

As in Tacoma all other services are provided by agents �JvRS���� This ap�

proach provides the most �exibility and� with su�cient engineering work on the

inter�agent communication mechanisms� should be nearly as e�cient as provid�

ing the services directly in the agent servers� Such services include resource

discovery� group communication� fault tolerance� access control� network sens�

ing� and location�independent communication
e�g�� an agent should be able

to communicate with another agent without knowing its current network loca�

tion�� The most important service agents in the internal Dartmouth prototype

are docking agents and resource�manager agents� Docking agents support dis�

connected operation �GKN����� If an agent is unable to migrate to the desired

location because of machine or network failure� the agent is added to a queue

or dock within the network� The dock forwards the agent to the desired loca�

tion once it becomes reachable� Resource�manager agents� in combination with

the Pretty Good Encryption
PGP� encryption system �KPS��� and language�

speci�c security modules such as Safe Tcl �BR�� guard access to critical system

resources such as the screen� disk and speaker �Gra���� PGP authenticates in�

coming agents� the resource managers assign access restrictions based on this

�

authentication� and Safe Tcl enforces the access restrictions� In other words� the

resource�manager agents provide the security policy� while Safe Tcl provides the

enforcement mechanism� This approach means that the same resource managers

can provide the security policy for any agent� regardless of the agent�s imple�

mentation language� Only the enforcement mechanism needs to change from

one language to another�

The third level of the Agent Tcl architecture consists of one interpreter for

each available language� We say interpreter since it is expected that most of

the languages will be interpreted due to portability and security constraints
al�

though
just�in�time� compilation is feasible for languages such as Java�� Each

interpreter has four components � the interpreter itself� a security module that

prevents the agent from taking malicious action� a state module that captures

and restores the internal state of an executing agent� and an API that interacts

with the server to handle migration� communication� and checkpointing� Adding

a new language consists of writing the security module� the state�capture mod�

ule� and a language�speci�c wrapper for the generic API� The security module

does not determine access restrictions but instead ensures that an agent does not

bypass the resource managers or violate the restrictions imposed by the resource

managers� the security module for Tcl agents is the existing Safe Tcl extension

that allows a Tcl interpreter to replace
dangerous� commands with safe equiv�

alents that perform access checks �BR�� The state�capture module must provide

two functions for use in the generic API� The �rst� captureState� takes an

interpreter instance and constructs a machine�independent byte sequence that

represents its internal state� The second� restoreState� takes the byte sequence

and restores the internal state� The top level of the Agent Tcl architecture con�

sists of the agents themselves�

�

��� Current status

The architecture has not been completely implemented� The current implemen�

tation does not provide the nonvolatile store or multiple languages and transport

mechanisms
although the framework for incorporating additional languages and

transport mechanisms is in place�� In addition� several components were under�

going �nal revision and testing at the time of publication and were not ready for

public release� Therefore� the CDROM contains the
stripped�down� version of

Agent Tcl that was described in the introduction� This version has the following

features�

� There is a single language
Tcl� and a single transport mechanism
TCP�IP��

Agents can use all of the standard Tcl features� however� as well as the

Tk toolkit�

� Migration� message passing� and direct connections are supported� al�

though the syntax of direct connections is arti�cially tied to the TCP�IP

protocol�

� The namespace is �at rather than hierarchical�

� The docking and resource�manager agents and the authentication subsys�

tem are not included� This means that there is no direct support for mobile

computers and that the security mechanisms are rudimentary� The secu�

rity mechanisms are su�cient� however� for experimentation and for local

applications � i�e�� an agent server will only accept an incoming agent or

message if it originated from an
approved� machine� a list of
approved�

machines is given to each server at startup�

� An agent server can only provide limited status information about the

agents that are running on its machine�

�

More complete versions are likely to be available by the time that this book

appears on shelves� Interested readers should refer to the downloading instruc�

tions in the
Availability� section at the end of this chapter� Although limited�

the current version has proven to be a useful tool both at Dartmouth and at

several external sites� Part of its usefulness comes from the selection of Tcl as

the main agent language� The rest of this section presents the rational behind

the use of Tcl and the details of how a Tcl script interacts with the agent system�

The subsequent sections present existing and potential applications for Agent

Tcl and a speci�c programming example�

��� Tcl

Tcl is a high�level scripting language that was developed in ���� and has enjoyed

enormous popularity �Wel���� Tcl has several advantages as an itinerant�agent

language� Tcl is easy to learn and use due to its elegant simplicity and an imper�

ative style that is immediately familiar to any programmer� Tcl is interpreted�

so it is highly portable and easier to make secure� Tcl can be embedded in other

applications� which allows these applications to implement part of their func�

tionality with mobile Tcl agents� Finally� Tcl can be extended with user�de�ned

commands� which makes it easy to tightly integrate agent functionality with the

rest of the language and allows a resource to provide a package of Tcl commands

that an agent uses to access the resource� A package of Tcl commands is more

e�cient than encapsulating the resource within an agent and is an attractive

alternative in certain applications�

Tcl has several disadvantages� Tcl is ine�cient compared to other inter�

preted languages and is orders of magnitude slower than optimized C �SBD����

In addition� Tcl provides no code modularization aside from procedures� which

makes it di�cult to write and debug large scripts� These disadvantages have not

��

been a hindrance so far since itinerant agents tend to involve high�level resource

access wrapped with straightforward control logic� a situation for which Tcl is

uniquely suited� An itinerant Tcl agent is usually short even if it performs a com�

plex task� and is usually more than e�cient enough when compared to resource

and network latencies� In addition� several groups are working on structured�

programming extensions to Tcl and on faster Tcl interpreters �Sah���� Tcl is

not suitable for every itinerant�agent application� however� such as an appli�

cation that performs search operations against large� distributed collections of

numerical data� For this reason Agent Tcl includes a framework for incorporat�

ing additional languages� We are using this framework to add support for the

new Java language �Sun���� Java is much more structured than Tcl and has the

potential to run at near�native speed through
just�in�time� compilation� We

expect� however� that Tcl will continue to be the main agent language and that

Java will be used only for speed�critical agents
or portions of agents��

The main disadvantage of Tcl is that it provides no facilities for capturing

the internal state of an executing script� Such facilities are essential for provid�

ing transparent migration at arbitrary points� Adding these facilities to Tcl was

straightforward but required the modi�cation of the standard Tcl interpreter�

The basic problem is that the Tcl interpreter evaluates a script by making re�

cursive calls to a function called Tcl Eval� The handler for the while command�

for example� recursively calls Tcl Eval to evaluate the body of the loop� Thus

a portion of the script�s state is on the interpreter�s runtime stack and is not

easily accessible� Our solution adds an explicit stack to the Tcl interpreter� We

split the command handlers into one or more subhandlers where there is one

subhandler for each code section before or after a call to Tcl Eval� Each call to

Tcl Eval is replaced with a push onto the stack� Tcl Eval iterates until the stack

is empty and always calls the current subhandler for the command at the top

��

of the stack� The subhandlers are responsible for specifying when the command

has �nished and should be popped o	 the stack�

The explicit stack is simpler and more �exible than the ARA solution in

which the C runtime stack must be captured in a portable way and the Tcl

interpreter on the destination machine must contain the same set of C functions

�Pei���� On the other hand� the explicit stack is less e�cient� Our modi�ed

Tcl core runs Tcl scripts approximately �� percent slower than the standard

Tcl interpreter� whereas ARA�s modi�ed Tcl interpreter imposes no additional

overhead� Once the explicit stack was available� it became trivial to write pro�

cedures that save and restore the internal state of a Tcl script� These two pro�

cedures� captureState and restoreState� are the heart of the state�capture

module for the Tcl interpreter� They capture and restore the stack� the proce�

dure call frames� and all de�ned variables and procedures� Such things as open

�les and linked variables are ignored�

The advantages of Tcl are strong and the disadvantages are either easily

overcome or do not a	ect most agents� Thus Tcl was chosen as the main lan�

guage for the Agent Tcl system� The same advantages have led to the use of Tcl

in other itinerant�agent systems such as Tacoma �JvRS��� and ARA �Pei����

��� Tcl scripts as agents

An Agent Tcl agent is a Tcl script that runs on top of the modi�ed Tcl inter�

preter and a Tcl extension� The modi�ed interpreter provides the explicit stack

and the state�capture routines� The Tcl extension provides the set of commands

that the script uses to migrate� communicate� and create child agents� Due to

the nature of Tcl extensions� these commands are tightly integrated with the

normal Tcl commands� and� in fact� appear to be a part of the Tcl language

itself� Internally each command uses the generic server API to contact an agent

��

server� transfer an agent� message� or request� and wait for a response� The

main di	erence between the current and planned implementations is that when

migrating� creating a child agent� or sending a message� the current implementa�

tion bypasses the local server and interacts directly with the destination server

over TCP�IP� This approach was adopted to simplify the initial implementation

and will change as additional transport mechanisms are added�

The most important agent commands are agent begin� agent submit�

agent jump� agent send� agent receive� agent meet� agent accept� and

agent end� An agent uses the agent begin command to register with a server

and obtain an identi�er in the �at namespace� An identi�er currently con�

sists of the IP address of the server� a unique integer� and an optional sym�

bolic name that the agent speci�es later with the agent name command� The

agent submit command is used to create a child agent on a particular ma�

chine� The agent jump command migrates an agent to a particular machine�

The agent jump command captures the internal state of the agent� packages the

state image for transport� and sends the state image to the destination server�

The server accepts the state image� selects a new identi�er for the agent� and

starts a Tcl interpreter� The Tcl interpreter restores the state image and re�

sumes agent execution at the statement immediately after the agent jump�

The agent send and agent receive commands are used to send and receive

messages� The agent meet and agent accept commands are used to establish a

direct connection between agents� For direct connections� the source agent uses

agent meet to send a connection request to the destination agent� The destina�

tion agent uses agent accept to receive the connection request and send either

an acceptance or rejection� An acceptance includes a TCP�IP port number to

which the source agent connects� The protocol works even if both agents use

agent meet� The agent with the lower IP address and integer identi�er selects

��

the port and the other agent connects to that port� The agent server will take

on more of the responsibility for establishing a direct connection as additional

transport mechanisms are added�

� Examples

Itinerant agents are best viewed as a tool for developing distributed applica�

tions rather than as an enabling technology� Their advantage lies not so much

in making a particular distributed application possible but rather in unifying

a programming model and improving the performance for distributed appli�

cations� Performance can be a matter of network utilization� completion time�

programmer convenience� or just the ability to continue interacting with the user

during a period of network disconnection� Like most itinerant�agent systems�

therefore� Agent Tcl is intended for and is a useful tool in general distributed

applications�

Some potential applications for Agent Tcl come from existing applications

of other itinerant�agent systems� The Telescript system� for example� is cur�

rently used in active mail� network and platform management� and electronic

commerce �Whi���� In active mail� a program to be embedded inside a mail

message� The program is executed when the mail message is received or viewed�

This embedded program can be a Telescript agent� In one platform�management

application� a Telescript agent is used to perform software updates� The agent

carries the necessary �les onto the machine� It installs the �les itself and then

disappears� Owners of a Sony MagicLink or a Motorola Envoy have received

several software updates this way
the MagicLink and Envoy are two personal

digital assistants that are based around Telescript and the MagicCap operating

system�� In several electronic�commerce applications� a Telescript agent leaves

��

a personal digital assistant
PDA�� searches multiple electronic catalogs for a

certain product� and returns to the PDA with the best purchase price and the

corresponding vendor�

The Tacoma system is used most visibly in StormCast� a distributed sys�

tem for weather simulation in which the data volumes are so immense as to

make data movement impractical �JvRS���� The use of itinerant agents allows

new simulation operations to be rapidly constructed and deployed to the data

locations�

The Mobile Service Agent
MSA� system is used primarily for
follow�me�

computing in which an application moves to the location of the user for more

e�cient interaction� The main MSA demo involves a conference proceedings�

When a user connects his laptop to the conference�s machines� an agent is sent

to the laptop� The user interacts with the conference proceedings via this agent

and can continue interacting even when the laptop is disconnected�

Java applets also suggest many potential applications� A Java applet is

usually� an interactive� graphical application that is automatically brought to

and executed on a user�s machine when the user visits the applet�s enclosing

web page� Existing Java applets include stock tickers� games� and language

tutorials� Java applets would be intolerably slow if they controlled the screen

from a remote location� dynamic deployment allows them to control the screen

e�ciently without the need for pre�installation� Itinerant agents can play the

same role as Java applets by carrying interface code to the user�s location�

Agent Tcl is well suited to most of these applications� although it would

have some trouble with the network and platform�management applications of

Telescript since Tcl has no direct capabilities for working with binary data�

Agent Tcl is being used in three information�retrieval applications� The �rst

involves searching distributed collections of technical reports� the second� med�

��

ical records �Wu���� and the third� three�dimensional drawings of mechanical

parts �CBC���� In each application� there is a collection of
documents� at

one or more network sites� Each collection provides a set of low�level search

primitives� Agents use these primitives to perform a multi�step search at each

site� Since the agents move to the location of the collection and do not transfer

intermediate results� the multi�step searches can be performed e�ciently even

though only low�level primitives are available� In addition� since the agent does

not need to be in continuous contact with the user�s machine� it can continue

its task even if the user�s machine becomes temporarily unreachable�

Agent Tcl is also being used in several work�ow applications �CGN���� al�

though these applications are less mature than the information�retrieval appli�

cations� In one application� an agent carries an electronic form from machine to

machine so that the appropriate people can �ll out their sections of the form� the

form is presented using Tk� In a second application� Agent Tcl handles purchase

orders� An independent traveling salesperson carries a laptop with software that

helps to select vendors and products and to place orders� Agents are sent to

search vendor catalogs for products that meet customer needs� When a prod�

uct and vendor is selected� an agent travels to the vendor�s computers where it

interacts with billing� inventory� and shipping agents to arrange the purchase�

In both cases� the agents can continue working even while the laptop is discon�

nected� This application is easier to implement with some
support� agents for

mobile computing that are not included on the enclosed CDROM� although a

simple implementation can be created without these support agents� Agent Tcl

is also being used outside Dartmouth� most notably to execute complex queries

against remote databases�

��

� Language design

Agent Tcl agents are written in the Tool Command Language
Tcl�� Tcl has

two components� The �rst component is a shell� usually called tclsh� that is

used to execute stand�alone Tcl scripts and interactive commands� The second

component is a library of C functions� The library provides functions to
create�

a Tcl interpreter� de�ne new Tcl commands in the interpreter� and submit Tcl

scripts to the interpreter for evaluation� This library allows Tcl to be embedded

inside a larger application� any application that needs a scripting language can

include the library and allow its users to write Tcl scripts�

A tutorial on Tcl is beyond the scope of this chapter� Tcl is easy to learn�

however� and is similar to other scripting languages such as Perl and the various

Unix shells� The following Tcl script� for example� asks the user for a number

and then displays the factorial of that number� The script keeps asking for

numbers until the user enters Q to stop� For now� we simply examine the key

features of the script� we describe how to actually run the script in the next

section�

� Procedure ��factorial�� recursively computes a factorial�

proc factorial x �

if ��x �	
� �

return

�

return �expr �x
 �factorial �expr �x �
���

�

� Repeat until the user enters �Q� to quit�

set number ��

while ��number �	 �q�� �

��

� Get the integer for which we want the factorial

� �or �Q� to quit��

puts �nonewline �

�Enter a nonnegative integer �or ��Q�� to quit�� �

gets stdin number

� Convert to lowercase in case it�s a �Q��

set number �string tolower �number�

� Compute the factorial if we�re not quitting�

if ��number �	 �q�� �

puts ��number� is equal to �factorial �number��

�

�

There are several important things to note about Tcl in general� First� Tcl

stores all data as strings� The number variable� for example� can be used to

hold both a number and the letter Q because Tcl stores numbers as strings�

Commands that expect numbers� such as expr
which evaluates general math�

ematical expressions�� convert the given strings into an internal numeric repre�

sentation�

Second� Tcl has no �xed grammar that
de�nes� the language �Ous���� The

Tcl interpreter does not treat the while construct above� for example� as a

reserved word� followed by an expression� followed by a repeatedly�executed

subprogram� Instead the Tcl interpreter treats the construct as a command

name� while� followed by two argument strings� the curely bracket characters�

� and �� represent nothing more than a kind of string quotation� The two argu�

ments are passed to the handler for the while command which interprets them

as it sees �t� The standard while handler does� in fact� treat the �rst argument

as an expression� and if the expression is true� passes the second argument back

��

to the Tcl interpreter for evaluation as a Tcl script� If the while handler is re�

placed� however� the behavior of the while command changes� Thus� although

many Tcl commands look and act like traditional programming constructs� it

is important to remember that Tcl parses everything as a command name and

arguments�

Finally� there are two types of special syntactic constructs that can ap�

pear inside the argument strings� These constructs are called substitutions� In

the command expr �x
 �factorial �expr �x �
��� for example� �x is a

variable substitution� and �expr �x �
� is a command substitution� When

the command is parsed� �x will be replaced with the contents of variable x�

and �expr �x �
� will be replaced with the result of executing the command

expr �x �
� namely the value of �x �
� The quotation characters around

the string determine whether these substitutions are actually performed� Curly

brackets� for example� mean that substitutions are not performed and that the

string is passed unchanged to the command handler� Double quotes
�� or no

quotes means that substitutions are performed� In the while command� above�

we use curly brackets around the �rst argument� �number �	 �q�� so that the

string is passed unchanged to the while handler� The variable substitution

�number is then performed once per iteration� each time that the while han�

dler checks the value of the expression� If we had used double quotes instead�

the variable substitution would have been performed when the while command

was �rst parsed� and the string passed to the while handler would have been

�� �	 �q�� This expression is always true so the loop would have run forever�

Proper quoting is the most di�cult aspect of Tcl� it will be easier if you remem�

ber that the Tcl interpreter parses everything as a string� and that the di	erent

quotation characters a	ect the parsing process�

��

Keeping these three points in mind� it becomes straightforward to under�

stand the script� First� the proc command is used to create a new command

called factorial that takes a single argument x and computes x� by making

recursive calls to itself� Then� the puts and gets commands are used to in�

teract with the user and obtain a number� the factorial command is called

with this number as its argument� and puts is used to display the factorial

result� The while command repeats this process until the user enters Q rather

than a number� This script highlights the main features of Tcl but uses only a

small fraction of the Tcl commands� More information on Tcl can be found in

the books by Ousterhout �Ous��� and Welch �Wel���� in the man pages that are

included on the CDROM� and in the comp�lang�tcl usenet group�

In addition to the standard Tcl commands� Agent Tcl agents use a special

set of commands to migrate from machine to machine and to communicate with

other agents� These commands are provided as a Tcl extension� but can be

treated as a native part of the Tcl language when writing an agent� In the

remainder of this section� we brie�y de�ne each command� In the next section�

we use the commands to develop two agents� The commands can be divided into

three main categories� The �rst category of commands allow an agent to register

itself with an agent server and to obtain an identi�er in the agent namespace�

� agent begin �machine�� The agent begin command registers the agent

with the agent server on the speci�ed machine
or on the local machine

if no machine is speci�ed� and returns the agent�s new identi�er within

the agent namespace� In the current system� this identi�er consists of

the symbolic name of the server� the IP address of the server� a sym�

bolic name that the agent chooses for itself� and a unique integer that

the server assigns to the agent� So if an agent issues the command

��

agent begin bald� for example� the command might return the four�

element Tcl list bald�cs�dartmouth�edu
���
���
����� ��
�� The

���
���
����� is the IP address of bald� The empty curly brackets

indicate that the agent initially has no symbolic name� a symbolic name

can be chosen at a later time with the agent name command� The
�

is the integer id that the server on bald has assigned to the new agent�

this integer is unique among all agents executing on bald but not among

all agents everywhere� The agent�s current identi�er is stored in element

local of the global Tcl array agent� This array is always available inside

an Agent Tcl script and is read�only� it contains other useful information

as we will see in the programming examples below� Once the agent has

issued the agent begin command� it can use the other agent commands�

� agent name name� The agent name command selects a symbolic name

for the agent� If the agent in the example above issues the command

agent name FtpAgent� its complete name will become

bald�cs�dartmouth�edu
���
���
����� FtpAgent
��

� agent end� An agent calls the agent end commandwhen it is �nished with

its task and no longer requires agent services�

The second category of commands allow an agent to migrate from machine

to machine and to create child agents�

� agent jump machine� An agent calls the agent jump command when it

wants to migrate to a new machine� This command captures the internal

state of the agent and sends the state to the agent server on the speci�ed

machine� The server restores the state and the agent continues execution

immediately after the agent jump� Certain components of the state� such

��

as open �les and child processes� are intrinsically tied to a speci�c machine

and are not transferred to the new machine� The agent receives a new ��

element identi�cation when it jumps� which again is stored in element

local of the global Tcl array agent� The agent also loses its symbolic

name when it jumps and must request it again if needed�

� agent fork machine� The agent fork command is roughly analogous to

Unix fork� It creates a copy of the agent on the speci�ed machine� Both

the original agent and the copy continue execution from the point of the

agent fork� The agent fork command returns the ��element identi�ca�

tion of the copy to the original agent and the string CHILD to the copy�

� agent submit machine �procs names �vars names �script script�

The agent submit command creates a completely new agent� The pa�

rameters to agent submit are a machine� a list of Tcl variables� a list of

Tcl procedures� and a startup script� A new agent is created on the spec�

i�ed machine� This agent contains copies of the speci�ed variables and

procedures and begins execution by evaluating the startup script� The

agent submit command returns the ��element identi�cation of the new

agent�

The �nal category of commands allow agents to communicate with each

other�

� agent send id code string� The agent send command sends a message

to another agent� A message consists of an integer code and an arbitrary

string� The recipient agent is speci�ed by its ��element id or by any

subset of the ��element id that uniquely identi�es the agent� such as the

server name and the unique integer� The recipient receives the message

��

using the agent receive command� or if it is using Tk� by establishing

an event handler for incoming messages using the mask command�

� agent event id tag string� The agent event command is a variant of

agent send that sends a tag and a string rather than an integer code

and a string� A tag is just an arbitrary string itself� The advantage of

agent event is that the recipient can associate event handlers with speci�c

tags using the mask command� The event handler is called automatically

whenever a message arrives with the corresponding tag� If the recipient is

not using Tk or chooses not to use event handlers� it must receive these

tagged messages with the agent getevent command�

� agent meet id� The agent meet command is used to request a direct

connection with the speci�ed recipient� The recipient accepts the connec�

tion request either by issuing its own agent meet command or with the

agent accept command� Once the connection request has been accepted�

and the direct connection has been established� arbitrary data can be sent

along the connection using the tcpip read and tcpip write commands�

The names of these commands re�ect the current link between direct con�

nections and TCP�IP� they should be changed but have been left alone

for backward compatibility� Direct connections are more e�cient than the

two message�passing variants since they bypass the agent servers�

There are several miscellaneous commands that do not fall into the three

main categories� The agent info command� for example� is used to obtain in�

formation from a server about the agents executing on its machine� the retry

command retries a block of Tcl code until no error occurs or the maximumnum�

ber of tries has been reached� and the restrict command imposes a timeout

��

on an arbitrary block of Tcl code� The documentation on the enclosed CDROM

describes these commands� along with all of the commands listed above� in more

detail�

� Programming examples

The Unix who command lists all the users who are logged into a machine� In this

section� we develop two versions of an agent that will travel from machine to

machine� execute the Unix who command on each machine� and then return to

the home site and show the complete list of users to its owner� These examples

are a simplistic use of an agent� but they illustrate the general structure of

itinerant agents� they do not require support agents at each network site� and

they �t conveniently on a few pages while demonstrating most of the agent

commands� As you work through these examples� you should keep in mind that

the application�speci�c section of each agent � i�e�� the invocation of the Unix

who command � can be replaced with any desired processing�

The �rst step in developing the examples is to install the Agent Tcl system

on two or more machines
the examples work with only one machine but are

somewhat boring�� Detailed compilation and installation instructions are in�

cluded on the CDROM� Once the Agent Tcl system is installed� you will have

three executable �les� agentd� agent and agent�tk� agentd is the agent server�

agent is the agent interpreter� and agent�tk is the agent interpreter that in�

cludes the Tk toolkit� You should start the server agentd on each machine on

which you installed the Agent Tcl system� Detailed server instructions are also

included on the CDROM�

Once the server is running on each machine� you can execute Agent Tcl

��

agents or any Tcl script that is fully compatible with Tcl ��� and Tk ���� Tcl

scripts that require Tcl ��� and Tk ��� will not work with this version of Agent

Tcl� There are three ways to execute a Tcl script using the agent interpreters�

Suppose that the factorial script above is in a �le called factorial�tcl� The

�rst execution method is to start the agent interpreter by typing agent at the

Unix prompt� Then you type source factorial�tcl at the Tcl prompt� You

will return to the Tcl prompt after the factorial script �nishes executing� you

can type in additional Tcl commands or type exit to leave the agent interpreter

and return to the Unix prompt� The second execution method is to type agent

factorial�tcl at the Unix prompt� you will return to the Unix prompt when

the factorial script has �nished executing� The third execution method is to

turn on the Unix execution permissions for �le factorial�tcl and add the line

���usr�local�bin�agent

at the beginning of factorial�tcl� This assumes that the agent interpreter is

in directory �usr�local�bin� you will need to change this line if you installed

agent is in a di	erent directory� Then you simply type factorial�tcl at the

Unix prompt� you will return to the Unix prompt once the factorial script �n�

ishes executing� If the agent uses Tk� you use the same three execution methods�

only with agent�tk rather than agent� Since the Agent Tcl system uses a mod�

i�ed Tcl interpreter� you must execute agents with either agent or agent�tk�

It is impossible to execute an agent with the standard Tcl interpreters� tclsh

and wish� even if you recompile them so that they include the agent extension�

Now we develop the two versions of the
who� agent� The �rst version is

text�based� It asks the user for a list of machines� Then it submits a single child

agent using the agent submit command� This child agent migrates through

the speci�ed machines using the agent jump command� executes the Unix who

��

C

Bald

Tuolomne

C

CC C

Cosmo Lost-ark

P
Submit

Temple-doom

C

Jump

Jump

Message
Jump

Jump

Figure �� The �rst version of the
who� agent� The parent agent
P� submits a

child agent
C� that migrates through a sequence of machines and executes the

Unix who command on each� Then the child
C� sends the complete list of users

to the parent
P� for display to the user� In the speci�c case shown� the child

agent
C� migrates through four machines at Dartmouth� cosmo� lost�ark�

temple�doom� and tuolomne�

command on each machine� and records the users of each machine� Once the

child agent �nishes� it sends the complete list of users to its parent using the

agent send command� The parent displays the list of users and exits� Figure �

illustrates the behavior of this agent�

The Tcl code for this agent is actually quite simple� You can enter the code

using any standard Unix text editor� Once you have entered the code� you should

save it in a �le with extension �tcl� The discussion below assumes that you use

the �lename who�tcl� If you do not want to enter the code yourself� it is included

on the CDROM in �le systems�agent�tcl�book�examples�who�tcl� The Tcl

code for the agent appears below� The code is interspersed with discussion� The

��

code is indented and appears in a �xed�width font� the discussion is �ush with

the left margin and appears in the normal font� Make sure that you do not

type in the discussion as part of the agent� In addition� certain lines end with

a backslash
�� which is the Tcl line�continuation character� There should not

be any spaces or tabs after these backslashes� The �rst piece of code is simply

a comment header�

���usr�local�bin�agent

�

� who�tcl

�

� This agent executes the �who� command on multiple machines�

� It submits a SINGLE child agent� The child jumps from

� machine to machine and executes the WHO command on each

� machine� Then the child returns the complete list of users

� to the parent for display�

The �rst line speci�es the location of the agent interpreter� This line allows

you to execute the agent simply by typing who�tcl at the Unix prompt� You

will have to change this line if you installed agent in a di	erent directory� The

other lines are comments which are indicated by a pound sign
���

The second piece of code is the procedure that implements the child agent�

� Procedure �who� is the child agent that does the jumping�

proc who machines �

global agent

� start with an empty list

set list ��

� loop through the machines and jump to each

foreach m �machines �

� if we do not jump successfully� append an error message

��

� otherwise append the list of users

if ��catch �agent�jump �m� result�� �

append list ��m��nunable to JUMP here ��result��n�n�

� else �

set users �exec who�

append list ��agent�local�server���n�users�n�n�

�

�

� send back the list of users and finish

agent�send �agent�root� � �list

exit

�

There are several important things to note about this procedure� First� the

procedure takes a single argument machines which contains the list of machines

that the child agent should visit� For the purposes of the examples� a Tcl list

is just a string that contains one or more whitespace�separated substrings �

e�g�� the string bald cosmo lost�ark is a Tcl list that contains three elements�

bald� cosmo and lost�ark� Second� the command global agent tells the Tcl

interpreter that we want to access the global array agent from inside the pro�

cedure� this array contains information about the location of the agent� Third�

the foreach command loops through each element in the list of machines� the

variable m is set to the next machine on each iteration� Fourth� the agent jump

command is used to jump onto each machine m� The agent jump command is

enclosed within a catch command� Tcl commands raise exceptions if an error

occurs� these exceptions are caught with the catch command� If the agent jump

command fails� the catch command catches the exception� puts the associated

error message in the variable result� and returns �� The if clause of the if

statement is executed and the agent records an error message� If agent jump

��

succeeds� the catch command returns �� The else clause is executed so the agent

invokes the Unix who command and records the list of users� Finally� once the

child agent has migrated through each machine� it sends the list of users
and

error messages� back to its parent using the agent send command�

When agents create other agents� a parent�child hierarchy arises with a single

agent at the top� The agent at the top is called the root agent and� in both itself

and all of its descendents� its ��element identi�cation is found in element root

of the agent array� Thus� since the parent of the child agent is also the root

agent in this case� we can just send the list of users to agent�root�� A current

limitation of the Agent Tcl system is that it does not record the complete

parent�child hierarchy� If we wanted to send the message to the parent and the

parent was not a root agent� we would have to explicitly record the ��element

identi�cation of the parent in an auxiliary variable before creating the child

agent�

The next piece of code is the start of the parent agent� It asks for the list of

machines and registers the agent with the agent server�

� get the machines

puts �nonewline �Please enter the list of machines� �

gets stdin machines

� register the agent

if ��catch �agent�begin� result�� �

return �code error �ERROR� unable to register on �

�agent�actual�server� ��result��

�

The gets and puts commands let the user enter the list of machines� The

agent begin command registers the agent with the server on the local ma�

chine� The agent begin command is enclosed within a catch command in

��

case the server is not available on the local machine for some reason
element

actual�sever of the agent array always contains the name of the local ma�

chine�� The agent can not use any of the other agent commands until it suc�

cessfully registers using the agent begin command�

The �nal piece of code is the rest of the parent agent� It creates the child

agent� waits for the child agent to send the message containing the list of users�

and �nally displays the list of users�

� catch any error

if ��catch �

� submit the child agent that does the jumping

agent�submit �agent�local�ip� �vars machines �procs who �

�script �who �machines�

� wait for the list of users

agent�receive code message �blocking

� output the list of users

puts ��nWHO�S WHO on our computers�n�n�message�

� cleanup

agent�end

� error�message�� then �

� cleanup on error

agent�end

� throw the error message up to the next level

return �code error �errorcode �errorCode �

�errorinfo �errorInfo error�message

�

��

First� the parent creates the child agent using agent submit� The child

agent is speci�ed with the �script parameter and consists only of a call to

procedure who with parameter machines� Since the child makes this call� it

must have copies of procedure who and variable machines� so this procedure

and variable are speci�ed after the �procs and �vars parameters respectively�

Once the child agent is created� the parent waits for the child�s message using the

agent receive command� The �blocking parameter indicates that the agent

will wait until the message arrives rather than timeout� Once the message

arrives� the integer code is placed in variable code and the string is placed in

variable string� Finally� the puts command displays the list of users and the

agent end command ends the agent� This whole sequence is enclosed in a catch

command in case an error occurs� The agent is now complete and can be run

with any of the three methods described above� So if you type agent who�tcl

at the Unix prompt� you will see the request

Please enter the list of machines�

You should type in the desired machine names with one or more spaces

between names� The agent server must be running on the speci�ed machines�

As an example� if the agent were executed at Dartmouth and you entered the

same machine names shown in Figure �
as well as one machine that does not

exist�� you might see the output

Please enter the list of machines�

cosmo lost�ark xxx temple�doom tioga

WHO�S WHO on our computers

cosmo�dartmouth�edu�

��

lost�ark�dartmouth�edu�

lwilson ttyq� Apr �� ���
�

pascalb ttyq� Apr �� ���

pascalb ttyq� Apr �� ���

xxx�

unable to JUMP here �unable to get IP address of �xxx��

temple�doom�dartmouth�edu�

rgray ttyq� Apr �� �����

rgray ttyq� Apr �� �����

tioga�cs�dartmouth�edu�

rgray ttyp� Apr �� �����

There will be a short delay before the child agent �nishes its travels and

the list of users is displayed� Note that the nonexistent machine xxx causes no

di�culties due to the catch command surrounding the agent jump command�

Detecting and handling errors when the agent is moving is no more di�cult than

when the agent is stationary� Uncaught errors cause the agent to terminate�

although an error message will be automatically sent to the root agent

The second version of the
who� agent expands on the �rst� First� it uses

the Tk toolkit to display a window in which the user enters the names of the

machines� Then� the agent itself jumps from machine to machine and executes

the Unix who command on each machine� Once the agent has migrated through

each machine� it jumps again to return to its home machine where it displays

a second window that contains the results� As an additional feature� the agent

leaves behind a tracker agent on the home machine� the agent communicates

with the tracker agent to provide a continuous update of its current status and

network location� This behavior is shown in Figure �� A sample screen dump

is shown in Figure �� This agent is much longer so you will probably want to

use the copy in systems�agent�tcl�book�examples�winwho�tcl rather than

��

T
Submit

Jump

Jump

Jump

Cosmo Lost-ark

A

A

Tuolomne

A

Temple-doom

Bald

A
Jump

Jump

A

Figure �� The second version of the
who� agent� The agent
A� migrates

through the machines itself� returns to the home machine� and displays the list

of users in a Tk window� Before it begins migrating� the agent
A� creates a

child agent that will serve as a tracker
T�� The agent
A� communications with

the tracker
T� as it migrates to provide a continuous update of its location�

typing it in yourself� All of the code should be placed in one �le although

logically there are two agents
the
who� agent creates the
tracker� agent

just before it starts to migrate�� The �rst piece of the
who� agent is again

a comment header� The only di	erence is that the �rst line must specify the

location of the agent�tk interpreter rather than the agent interpreter�

���usr�contrib�bin�agent�tk

�

� who�tk

�

� This agent executes the �who� command on multiple machines�

� It displays a Tk window in which the user enters a list of

� machines� Then it jumps from machine to machine and executes

� the Unix �who� command on each machine� Finally it returns

� to the home machine and displays a Tk window that contains

��

� the complete list of users� While traveling� it leaves

� behind a tracker agent� it communicates with the tracker

� agent to display continuous information about its progress�

The second piece of the
who� agent are procedures GetMachines and

DisplayList� Procedure GetMachines creates the window in which the user

enters the machine names� this window is the top window in Figure �� Procedure

DisplayList creates the output window in which the list of users is displayed�

the output window is the bottom window in Figure �� Procedure GetMachines

is called before the agent starts migrating� procedure DisplayList is called

when the agent returns to the home machine with the list of users� These

procedures use standard Tk commands and do not use any agent commands� so

we do not describe them in detail� The only nonstandard commands are main

create and main destroy� which create and destroy a main window for the

application� The standard Tk interpreter� wish� automatically creates a main

window� Agents� however� do not always need a main window so we introduce

the command main create to explicitly create the main window when desired�

In addition� an agent can not migrate if it is currently displaying a window� For

this reason main destroy is used to destroy the main window before migration�

Unlike wish� destroying the main window does not terminate the agent� Because

of the need to destroy windows before migrating � and because agents can not

jump from inside a Tk event handler � Tk agents make heavy use of the tkwait

command� The agent displays the desired interface� uses tkwait to stay in the

event loop until the agent needs to migrate� and then destroys the interface and

jumps to the next machine� This approach imposes a useful structure on the

agent and is more convenient than it might seem�

� Procedure GetMachines creates the Tk window in which the

� user enters the list of machines� It returns �OK� if the

��

� user enters a list of machines and selects the �GO� button

� It returns �FORGET� if the user selects the �FORGET� button�

proc GetMachines �� �

� The global variable �machines� holds the list of machines

� and the global variable �status� is either �GO� or

� �FORGET� depending on which button the user hits� The

� global variable �display� holds the name of the display

� ��� e�g�� � �cosmo�dartmouth�edu����

global display

global machines

global status

� create the main window

main create �name �List of machines� �display �display

� fill in the main window with an entry box and two buttons

entry �entry �width � �relief sunken �bd � �

�textvariable machines

button �go �text �Go�� �command �set status GO�

button �forget �text �Forget it�� �command �set status FORGET�

pack �entry �side top �fill x �expand

pack �go �side left �padx �m �pady �m �expand

pack �forget �side left �padx �m �pady �m �expand

bind �entry �Return! �set status GO�

focus �entry

� wait for the user to fill in the entry box correctly�

� first making sure that the �status� variable does not yet

� exist

catch �unset status�

while ���info exists status�� �

� wait for the user to hit a button

tkwait variable status

� if the user hit button �GO�� see if the entry box is

��

� filled in

if ���status 		 �GO�� "" ��string trim �machines� 		 ���� �

tk�dialog �t �No machine�� �

�You must enter at least one machine name�� error � OK

unset status

�

�

� return the status ��� e�g�� �GO� or �FORGET� �� but first

� destroy the window

main destroy

return �status

�

� Procedure DisplayList creates the window in which the list

� of users is displayed� The �users� argument contains the

� list of users�

proc DisplayList users �

� The global variable �display� contains the name of the

� display and the global variable �status� will be set to

� DONE when the user finishes looking at the results�

global display

global status

� create the main window

main create �name �WHO�S WHERE#� �display �display

� make the placeholder frames

frame �top �relief raised �bd

frame �bot �relief raised �bd

pack �bot �side bottom �fill both

pack �top �side bottom �fill both �expand

� make a text box that will hold the list of users

text �text �relief raised �bd � �width �� �

��

�yscrollcommand ��scroll set�

scrollbar �scroll �command ��text yview�

pack �scroll �in �top �side right �fill y

pack �text �in �top �side left �fill both �expand

� make the �DONE� button

button �done �text �Done�� �command �set status DONE�

pack �done �in �bot �side left �expand
 �padx �m �pady �m

� fill in the text area

�text delete
�� end

�text insert end �users

� wait for the user to finish looking at the results� first

� making sure that the �status� variable does not yet exist

report �Done� You should see the results window��

catch �unset status�

tkwait variable status

main destroy

�

The next piece of the
who� agent is actually the tracker agent that displays

the progress of the
who� agent through the network� The
who� agent uses

the agent event command to send tagged messages back to the tracker� Rather

than explicitly receiving these messages with the agent getevent command�

the tracker uses the mask command to establish two message handlers� These

handlers are automatically called when a tagged message arrives� Procedure

messageHandler is automatically called if the message tag is MESSAGE� The

source parameter is �lled in with the ��element identi�cation of the sender� the

tag parameter is �lled in with the message tag� and the string parameter is

�lled in with the message string� Similarly procedure errorHandler is called if

the message tag is ERROR� Procedure Tracker is the main body of the tracker

agent� It creates a simple text window� establishes the two message handlers

��

using the mask command� and calls tkwait to sit in the event loop� The two

handlers are automatically called whenever a message arrives and simply insert

the status information into the text window� This text window is the middle

window in Figure �� The tracker agent illustrates that agents can use the Tk

event model e	ectively� In fact Tk agents should almost always establish event

handlers for incoming messages� otherwise the agent will not respond to user

events while it sits at an agent receive or agent getevent command
or it

will have to continuously poll�� Procedure LeaveTracker actually starts up

the tracker agent using agent submit� it is called by the
who� agent just

before the
who� agent starts migrating� The procedure returns the ��element

identi�cation of the tracker so that the
who� agent knows where to send its

status messages�

� Procedure errorHandler� messageHandler and Tracker make up

� the tracker agent� Procedure LeaveTracker starts the

� tracker agent and returns either the �element id of the

� tracker or the string �FAILED��

proc messageHandler �source tag string� �

�text insert end ��string�n�

�

proc errorHandler �source tag string� �

�text insert end ��nERROR� �string�n�n�

bell

�

proc Tracker �� �

� The global variable �display� holds the name of the

� display� The global variable �status� will be set to

� DONE when the user decides to exit� The global array

� �mask� ��� which is available inside every agent ���

� specifies event handlers�

global display

��

global status

global mask

� create the tracker window

main create �name �Tracker agent� �display �display

� make the placeholder frames

frame �top �relief raised �bd

frame �bot �relief raised �bd

pack �bot �side bottom �fill both

pack �top �side bottom �fill both �expand

� make a text box that will hold the list of users

text �text �relief raised �bd � �width �� �

�yscrollcommand ��scroll set�

scrollbar �scroll �command ��text yview�

pack �scroll �in �top �side right �fill y

pack �text �in �top �side left �fill both �expand

� make the �DONE� button

button �done �text �Done�� �command �set status DONE�

pack �done �in �bot �side left �expand
 �padx �m �pady �m

� turn on the event handlers

mask add �mask�event� �ANY �tag MESSAGE �

�handler messageHandler�

mask add �mask�event� �ANY �tag ERROR �handler errorHandler�

� wait for the user to finish looking at the results� first

� making sure that the variable �status� does not yet exist

catch �unset status�

tkwait variable status

main destroy

�

proc LeaveTracker �� �

global agent

��

global display

� try to submit the tracker agent

if ��catch �

set tracker �

agent�submit �agent�local�ip� �vars display �

�procs errorHandler messageHandler Tracker �

�script �Tracker� exit�

�

� result�� �

set tracker FAILED

�

return �tracker

�

The next piece of the
who� agent is procedure who� which routes the agent

through the speci�ed machines using agent jump and executes the Unix who

command on each� This procedure is almost the same as the who procedure

from the �rst version� The only di	erence is that it reports its current loca�

tion and status to the tracker agent by calling the report and reportError

procedures� These two procedures use agent event to send a tagged message

back to the tracker� When the tracker receives the tagged message� either proce�

dure messageHandler or procedure errorHandler is automatically called� and

the status information is inserted into the tracker window�

� Procedure who executes the Unix �who� command on each

� machine� Procedure report sends normal information back to

� the tracker agent whereas Procedure reportError sends error

� information back to the tracker agent�

proc report message �

��

� The global variable �tracker� holds the �element id of

� the tracker agent�

global tracker

� send the message� ignoring errors

catch �

agent�event �tracker MESSAGE �message

�

�

proc reportError error �

� The global variable �tracker� holds the �element id of

� the tracker agent�

global tracker

� send the message� ignoring errors

catch �

agent�event �tracker ERROR �error

�

�

proc who machines �

global agent

global tracker

� start with an empty list

set list ��

� jump from machine to machine

foreach m �machines �

� if we do not jump successfully� append an error message

� otherwise append the list of users

if ��catch �agent�jump �m� result�� �

reportError �Failed to jump to machine �m ��result��

��

append list �

��m��nunable to JUMP to this machine ��result��n�n�

� else �

report �Jumped to machine �agent�actual�server��

set users �exec who�

append list ��agent�local�server���n�users�n�n�

�

�

return �list

�

The last piece of the
who� agent simply calls the procedures above� First�

the
who� agent calls procedure GetMachines to get the machine names from

the user� the machine names are stored in the global variable machines� Once

the machine names have been obtained� the agent calls agent begin to register

the agent with the local agent server� and then calls procedure LeaveTracker to

start up the tracker agent� Then the
who� agent jumps through the speci�ed

machines by calling procedure who� procedure who returns the list of users� Once

procedure who is �nished� the agent calls agent jump one more time to return

home� Once the agent is home� it calls procedure DisplayList to show the list

of users in an output window� Finally the agent calls agent end and exits�

� remember the display

if ���info exists env�DISPLAY��� �

set display ����

� else �

set display �env�DISPLAY�

�

� get the list of machines

if ��GetMachines� 		 �FORGET�� �

exit

�

��

� register the agent with an agent server and remember the

� home machine

if ��catch �agent�begin� result�� �

puts �Unable to register on �agent�actual�server� ��result��

exit

�

set home �agent�local�ip�

� try to leave behind the tracker agent

set tracker �LeaveTracker�

if ��tracker 		 �FAILED�� �

puts �Unable to leave behind the tracker agent��

exit

�

� jump from machine to machine� executing the �who� command on

� each machine� and then jump back home

set users �who �machines�

agent�jump �home

� display the results

DisplayList �users

� done

exit

The agent is now complete� It can be run with any of the three methods

discussed above except that you must use agent�tk rather than agent� One

important note is that� if you followed the installation instructions carefully

which is highly recommended�� an agent will start running under a special

userid as soon as it jumps for the �rst time� On most Unix machines� you will

need to use the xhost command
or equivalent� to allow this special userid to

��

create windows on your screen� otherwise the agent will not be able to create

the output and tracker windows� The reference documentation for your Unix

machine will have more details about screen access� Once the agent starts

executing� you will �rst see the entry form where you enter the names of the

machines� Once you hit
GO�� to send the agent on its way� the entry form will

disappear� and the tracker window will appear� Lines will appear in the tracker

window one at a time as the
who� agent makes its ways through the network

and reports back its current location� Finally the
who� agent will return and

the output window will appear showing the list of users� A sample run is shown

in Figure �� the machine names are the same as were used before�

Although these two versions of the
who� agent perform a simple task� they

use most of the agent commands and can serve as building blocks for more com�

plex agents� There is no reason for the agent to be self�contained� for example�

There might be service agents on each machine with which the agent commu�

nicates as it migrates� These service agents should be given well�known names

with the agent name command so that client agents can communicate with them

easily� In one of our information�retrieval applications� for example� there is an

agent named TechReports on each machine which provides a low�level search

interface to a collection of technical reports� Agents� migrating from collection

to collection� combine the low�level search primitives into complex queries�

One area of di�culty for new agent programmers is debugging a moving

agent� Agent Tcl does not include a visual debugger� but several debugging

strategies are discussed in the documentation� and each is reasonably e	ective�

One of the best is illustrated by the second
who� agent � i�e�� a moving

agent continually reports its status to some speci�ed tracker agent� To report

Tcl exceptions� the main body of the agent can be surrounded with a catch

��

Jump

Submit

Figure �� A sample run of the second
who� agent� The �rst window that the

user sees is the entry box at top where the machine names are entered� Once the

machine names are entered� the agent uses agent submit to create the tracker

agent in the middle� Then the agent jumps frommachine to machine� eventually

returning to the starting machine and displaying the list of users at bottom� As

the agent migrates� it communicates its position to the tracker agent� the text

in the tracker window appears one line at a time�

��

command� if this catch command catches an error� the complete error message

can be sent to the tracker
as well as the error location since Tcl maintains a

stack trace in the global variable errorInfo�� Once the agent is debugged� the

tracking code can be removed�

� Pros�cons�advantages

Agent Tcl involves several tradeo	s� Like Tacoma �JvRS��� and ARA �Pei����

Agent Tcl uses the simple scripting language� Tcl� as the main agent language�

Other itinerant�agent systems such as Telescript �Whi��� and Java �Sun��� re�

quire the programmer to use a complex� object�oriented language even for simple

agents� In addition� few systems other than Tacoma �JvRS��� and Visual Obliq

�BC��� provide a graphical toolkit that is as high�level and �exible as the Tk

toolkit� Agent Tcl� therefore� allows much more rapid development of small� to

medium�sized applications� Tcl� however� is slow compared to other scripting

languages and is much slower than interpreted bytecodes and native machine

code� In addition� Tcl provides no code modularization aside from procedures�

Agent Tcl� therefore� can not be used in speed�critical or large applications�

Searching a large� distributed collection of numerical data or performing inten�

sive mathematical calculations� for example� would be intolerably slow without

at least some low�level support at each site� Developing a mobile� full�featured

word processor would involve too much Tcl code to be practical
although the

application would potentially be fast enough with careful Tk programming��

Java� Telescript� and ARA� which compile their agents into interpreted byte�

codes� are the only reasonable choice for such applications� although even these

systems would be too slow for such things as distributed scienti�c computing�

��

Agent Tcl provides simple� �exible migration and communication primitives�

Like Telescript� Agent Tcl provides the jump primitive� which captures the

complete state of the agent and transparently sends the state to the destination

machine� Tacoma� on the other hand� requires the programmer to explicitly

collect state information in a
briefcase� and then submit this briefcase along

with the migrating agent� the agent starts execution from the beginning and

must use the information in the briefcase to determine which task to perform

next� Both approaches are equally powerful� but the jump primitive is more

convenient� There is the potential to overuse jump and write hard�to�understand

code � e�g�� calling a procedure might unexpectedly move the agent to a new

location because there is a jump buried in the code� This problem is much less

severe than the historic goto problem� however� since there are no unexpected

changes in control �ow� and it appears that the problem is not severe enough

to outweigh the convenience�

Agent Tcl�s communication primitives hide all the transmission details but

are low�level enough to e�ciently support a range of higher�level communi�

cation services� Some systems� such as SodaBot �Coe���� provide a speci�c

high�level communication paradigm
e�g�� actor�based� declarative logic� etc��

that is inappropriate for many applications� The programmer is either locked

into this paradigm or forced to communicate outside of the agent framework�

Agent Tcl�s communication primitives have two drawbacks� however� First� if

a higher�level communication protocol is desired� it must be implemented on

top of the low�level primitives� Second� there is no common
language� that

every agent understands� The �exibility of low�level primitives outweighs these

drawbacks� We expect that several standard� high�level communication pro�

tocols will eventually be provided as part of the Agent Tcl system� RPC and

��

dialog�based mechanisms have already been implemented but are not included

on the CDROM� In addition� we might require agents to understand one simple�

common protocol for exchanging status information� but allow them to use any

other protocol that they saw �t�

Agent Tcl�s main weakness is that it does not provide the features of more

mature systems� Agent Tcl lacks the visual debugging tools of Java and Tele�

script� A simple visual debugger for Agent Tcl exists� however� and is being

tested� Similarly� the version of Agent Tcl on the CDROM does not provide

the security features of Telescript� Telescript authenticates all incoming agents

and assigns access restrictions based on this authentication� The development

version of Agent Tcl� however� does exactly this using PGP and Safe Tcl
the

development version will be released in mid to late ������ Agent Tcl�s secu�

rity model� in which resource managers assign access restrictions based on the

agent�s identi�cation� is simpler than the Telescript model� Telescript agents

communicate by exchanging references to each other�s objects� Handling the

security problems that arise when agents call into each other�s objects requires

awkward class syntax and
paranoia� programming on the part of the agent

programmer �TV���� Exchanging object references has the additional drawback

of making it di�cult to include new languages in a Telescript system� One of

our main research areas is to expand on existing security mechanisms so that

the system protects agents and groups of machines in addition to individual

machines�

The version of Agent Tcl on the CDROM also does not include direct sup�

port for mobile computing� both Telescript and MSA �TLKC��� provide such

support� We have implemented a �exible system of support agents for mobile

computing� however� and are successfully using these agents in several appli�

��

cations �GKN����� Agent Tcl does not provide the fault tolerance of Tacoma

which uses
rear�guard� agents and the Horus toolkit �JvRS���� Although these

fault�tolerance mechanisms are not incompatible with Agent Tcl� we do not

plan to add them as part of our research work� Agent Tcl does not yet sup�

port multiple languages� Work on incorporating Java� however� is progressing

well� Finally� from an architectural standpoint� Agent Tcl is ine�cient since the

server and each agent run as separate processes� rather than in an integrated

execution environment such as ARA or Telescript� We do not plan to change

this in the near future�

Agent Tcl� therefore� is best�suited for experimentation with itinerant�agent

ideas and for the development of small� to medium�sized applications in which at

least some low�level support is available at each site� Agent Tcl agents combine

the low�level services at each site into complex operations� coordinate their

e	orts with other agents� and handle unexpected error conditions� The �exibility

of Agent Tcl allows such agents to be developed rapidly�

Availability

Directory systems�agent�tcl on the enclosed CDROM contains the version of

Agent Tcl described here
along with complete documentation and installation

instructions in subdirectory doc�� By the time that you read this� however� it

is likely that a new version of Agent Tcl will be available� The new version will

provide security mechanisms to protect a machine against malicious agents� full

compatibility with Tcl ��� and Tk ���
as opposed to ��� and ����� and one or

more of the higher�level communication mechanisms such as the RPC analog�

All of these are present in the internal Dartmouth version and are undergoing

��

�nal testing� The version may also include a visual debugger and support for

Java agents� work on both is in progress� Readers who are interested in the new

version should consult the WWW site http���www�cs�dartmouth�edu�$agent

for release dates and downloading instructions�

Acknowledgements

Agent Tcl represents the work of many people� Many thanks to Saurab Nog

and Sumit Chawla for developing the RPC system� to Joe Edelman for creating

the dialog�based communication mechanism� to Fred Henle and Scott Silver for

providing an agent tracker and the basic encryption services� to Melissa Hirschl

for implementing an agent debugger� to Keith Kotay and Ken Harker for their

work on the Dartmouth ancestors of Agent Tcl� to Brian Brewington� Aditya

Bhasin� Kurt Cohen� Yunxin Wu� and Katsuhiro Moizumi for writing the �rst

Agent Tcl applications� and to all the members of the agents research group and

the CS ��� topics course who have developed several applications as well as the

service� agents that support resource discovery and mobile computing� Much

of their work was undergoing �nal revision at the time of publication and is not

included on the CDROM� interested readers are urged to visit the WWW site

listed above� Many thanks also to Bob Sproull of Sun Microsystems and Gisli

Hjalmtysson of AT�T Bell Labs for extensive discussion� to the Navy and Air

Force for their gracious �nancial support
AFOSR contract F���������������

and ONR contract N����������������� and to the external users of Agent Tcl�

especially Gregory Jorstad of Lockheed Martin�s Arti�cial Intelligence Lab� who

have provided invaluable feedback�

��

References

�BC��� Krishna A� Bharat and Luca Cardelli� Migratory applications� SRC
Research Report� Systems Research Center� Digital Equipment Cor�
poration� February �����

�BR� N� S� Borenstein and M� Rose� Safe Tcl� Available at
ftp���ftp�fv�com�pub�code�other�safe�tcl�tar�Z�

�CBC��� Kurt Cohen� Aditya Bhasin� and George Cybenko� Pattern recog�
nition of �D CAD objects� Towards an electronic yellow pages of
mechanical parts� International Journal of Intelligent Engineering
Systems� ����� To appear�

�CGN��� Ting Cai� Peter A� Gloor� and Saurab Nog� DartFlow� A work�ow
management system on the web using transportable agents� Techni�
cal Report PCS�TR������� Deptartment of Computer Science� Dart�
mouth College� May �����

�Coe��� Michael D� Coen� SodaBot� A software agent environment and
construction system� In Yannis Labrou and Tim Finin� editors�
Proceedings of the CIKM Workshop on Intelligent Information
Agents� Third International Conference on Information and Knowl�
edge Management �CIKM ���� Gaithersburg� Maryland� December
�����

�Gai��� R� Stockton Gaines� Dixie language design and intepreter issues�
In Proceedings of the USENIX Symposium on Very High Level Lan�
guages �VHLL�� Sante Fe� New Mexico� October �����

�GKN���� Robert Gray� David Kotz� Saurab Nog� Daniela Rus� and George Cy�
benko� Mobile agents for mobile computing� Technical Report PCS�
TR������� Dept� of Computer Science� Dartmouth College� May
����� Submitted to ACM MobiCom ����

�Gra��� Robert S� Gray� Agent Tcl� A transportable agent system� In James
May�eld and TimFinin� editors� Proceedings of the CIKM Workshop
on Intelligent Information Agents� Fourth International Conference
on Information and Knowledge Management �CIKM ���� Baltimore�
Maryland� December �����

�Gra��� Robert S� Gray� Agent Tcl� A �exible and secure mobile�agent sys�
tem� In Mark Diekhans and Mark Roseman� editors� Proceedings of
the Fourth Annual Tcl	Tk Workshop �TCL ��
�� Monterey� Califor�
nia� July �����

��

�Har��� Kenneth E� Harker� TIAS� A Transportable Intelligent Agent Sys�
tem� Technical Report PCS�TR������� Department of Computer
Science� Dartmouth College� �����

�JvRS��� Dag Johansen� Robbert van Renesse� and Fred B� Scheidner� Op�
erating system support for mobile agents� In Proceedings of the �th
IEEE Workshop on Hot Topics in Operating Systems �HTOS�� pages
������ �����

�KK��� Keith Kotay and David Kotz� Transportable agents� In Yannis
Labrou and Tim Finin� editors� Proceedings of the CIKM Workshop
on Intelligent Information Agents� Third International Conference
on Information and Knowledge Management �CIKM ���� Gaithers�
burg� Maryland� December �����

�KPS��� Charlie Kaufman� Radia Perlman� and Mike Speciner� Network Se�
curity� Private Communication in a Public World� Prentice��all�
New Jersey� �����

�NCK��� Saurab Nog� Sumit Chawla� and David Kotz� An RPC mechanism
for transportable agents� Technical Report PCS�TR������� Depart�
ment of Computer Science� Dartmouth College� March �����

�Ous��� John K� Ousterhout� Tcl and the Tk Toolkit� Addison�Wesley Profes�
sional Computing Series� Addison�Wesley� Reading� Massachusetts�
�����

�Pei��� Holger Peine� The ARA project� WWW page http���

www�uni�kl�edu�AG�Nehmer�Ara� Distributed Systems Group� De�
partment of Computer Science� University of Kaiserlautern� �����

�Sah��� Adam Sah� TC� An e�cient implementation of the Tcl language�
Master�s thesis� University of California at Berkeley� May �����
Available as Technical Report UCB�CSD��������

�SBD��� Adam Sah� Jon Blow� and Brian Dennis� An introduction to the
Rush language� In Proceedings of the ���� Tcl Workshop� June
�����

�SS��� Mukesh Singhal and Niranjan G� Shivaratri� Advanced Concepts in
Operating Systems� Distributed� Database and Multiprocessor Oper�
ating Systems� McGraw�Hill Series in Computer Science� McGraw�
Hill� New York� �����

�Sun��� The Java language� A white paper� Sun Microsystems White Paper�
Sun Microsystems� �����

��

�TLKC��� Bent Thomsen� Lone Leth� Frederick Knabe� and Pierre�Yves Cheva�
lier� Mobile agents� ECRC External Report� European Computer�
Industry Research Centre� �����

�TV��� Joseph Tardo and Luis Valente� Mobile agent security and Tele�
script� In Proceedings of the ��th International Conference of the
IEEE Computer Society �CompCon ��
�� February �����

�Wel��� Brent B� Welch� Practical Programming in Tcl and Tk� Prentice�
Hall� New Jersey� �����

�Whi��� James E� White� Telescript technology� The foundation for the
electronic marketplace� General Magic White Paper� General Magic�
Inc�� �����

�Whi��� James E� White� Telescript technology� Scenes from the electronic
marketplace� General Magic White Paper� General Magic� �����

�Wu��� Yunxin Wu� Advanced algorithms of information organization and
retrieval� Master�s thesis� Thayer School of Engineering� Dartmouth
College� �����

��

