Agent Tcl

Robert Gray™
George Cybenko
David Kotz
Daniela Rus
Department of Computer Science
Dartmouth College
Hanover, NH 03755

{rgray,gvc,dfk,rus}@cs.dartmouth.edu

May 29, 1996

1 Overview

Agent Tcl is a simple itinerant-agent system that runs on Unix workstations
and allows the rapid development of complex agents [Gra9h, Gra96]. Although
Agent Tcl currently lacks the features of commercial systems such as Telescript
[Whi94], it is an effective platform for experimentation with itinerant agents and
for the development of small to medium-sized applications. Agent Tcl agents

are written in an extended version of the Tool Command Language (Tel). Tcl

*Supported by AFOSR contract F49620-93-1-0266 and ONR contract N0O0014-95-1-1204

In "ltinerant Agents: Explanations and Examples with CDROM."

William Cockayne and Michael Zypa (editors), Manning Publishing, 1997.

Copyright 1997 by Manning Publishing and Prentice Hall.

THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.

is a high-level scripting language that is both powerful and easy to learn. It was
designed to “control and extend [existing] applications [and tools]” [Ous94].
This makes Tcl an ideal language for itinerant agents because most agents are
concerned primarily with coordinating high-level communication and resource
access. Agent Tcl agents can use all of the standard Tcl commands as well as
a set of special commands that are provided as a Tcl extension. These special
commands allow an agent to migrate from one machine to another, to create
child agents, to communicate with other agents, and to obtain information about
its current network location. In addition, Agent Tcl, like all Tcl-based systems,
can be extended with user-defined commands to create a more powerful agent
system — e.g., a set of text-processing commands can be made available to all
agents at a particular site.

Migration is accomplished with the agent_jump command, which can ap-
pear anywhere within an agent. It captures the current state of the agent and
transfers this state image to a server on the destination machine. The server
restores the state image and the agent continues execution from the command
immediately after the agent_jump. In other words, agent_jump allows the agent
to suspend its execution at an arbitrary point, transport to another machine,
and resume execution on the new machine at the exact point at which it left
off. This approach to migration is the same as in Telescript [Whi94], but is dif-
ferent than in Tacoma where an agent executes from the beginning on each new
machine and must explicitly collect state information [JvRS95]. Once an Agent
Tcl agent has migrated to a machine, it can access resources and communicate
with other agents on that machine. Once it finishes its local task, it migrates
to the next machine.

There are two forms of inter-agent communication. The first form of com-

munication is message passing, which uses the traditional send and receive prim-

itives [SS94]. The agent_send command sends a message to another agent and
the agent_receive command receives an incoming message. The second form
of communication is a direct connection, which is essentially a named message
stream. An agent establishes a direct connection with another agent using the
agentmeet command. The two agents then exchange messages over the con-
nection. Direct connections are more efficient than message passing for long
interactions and are convenient for the programmer since the agent can wait for
messages on a particular connection. A message in Agent Tcl is an arbitrary
string with no predefined syntax or semantics. The agents must agree on the
meaning of the messages that they exchange. The base communication mech-
anisms were made purposely low-level to allow experimentation with a range
of communication paradigms. Two paradigms have already been implemented
on top of the base facilities. The first is analogous to RPC (Remote Procedure
Call) [NCK96]; the second is a conversational approach that views communica-
tion between a pair of agents as an ongoing dialog. An agent can participate in
as many simultaneous dialogs as desired. FEach dialog has its own state space;
incoming messages from other agents are automatically turned into events that
execute within the appropriate state space.

Other commands allow an agent to create new child agents and to obtain
information about its current machine, such as the identities of other agents.
In addition, agents can use the Tk toolkit to interact with the user of the
current machine. Tk is a Tcl extension that provides commands for creating
graphical user interfaces (GUT) [Ous94]. Tk is event-driven and supports all
of the standard GUI features such as windows, menus, scrollbars, and drawing
areas. Event handlers can be associated with arbitrary window events as well
as with agent events such as incoming messages from other agents. Since Tk

allows a GUI to be written entirely in Tcl, professional-quality interfaces can be

created with a relatively small amount of time and code. An agent that wanted
to interact with a user during the course of its travels would carry the necessary
Tk code with it. Once it reached the user’s machine, it would execute the code
and present the interface.

Agent Tcl is an ongoing research project and is far from complete. Our re-
search focuses on the security issues associated with roving code and on support
for mobile computing, since agents become particularly useful when they can mi-
grate to and from portable machines. Portable machines are often disconnected
from their network and often have an unreliable, low-bandwidth connection
when they are connected. By migrating to or from the machine (to interact
with the user or with network resources respectively), an agent can avoid exten-
sive use of the poor connection. In this chapter, we first describe the planned
architecture of Agent Tcl and the prototype that i1s included on the enclosed
CDROM in directory systems/agent-tcl (along with detailed documentation
and installation instructions in subdirectory doc). Then we present potential
uses for Agent Tcl and work through a specific programming example in which
an agent collects system information from each machine that it visists. We con-
clude with a discussion of the weaknesses and strengths of Agent Tcl and its

future outlook.

2 Architecture

Agent Tecl has four main goals:

¢ Reduce migration to a single instruction, agent_jump, and allow this
instruction to occur at arbitrary points. The instruction should capture
the complete state of the agent and transparently send this state to the

destination machine. The programmer should not have to explicitly collect

state information, and the system should hide all transmission details
even if the destination machine is a mobile computer that is temporarily

disconnected or has a new network address.

e Provide communication mechanisms that are flexible and low-
level, but that hide all transmission details, including whether the agents

are on the same or different machines.

e Provide a high-level scripting language as the main agent lan-
guage, but support multiple languages and transport mechanisms, and
allow the straightforward addition of a new language or transport mech-
anism. Multiple languages are particularly important since, although a
high-level scripting language such as Tcl is appropriate for most itinerant
agents, it is 1ll-suited for agents that require large amounts of code or that

perform speed-critical tasks.
e Provide effective security in the uncertain world of the Internet.

The overall goal is a simple, flexible and secure itinerant-agent system that
will allow the programmer to select the most appropriate language for her task

and rapidly develop even large-scale applications.

2.1 Planned architecture

The planned architecture for Agent Tcl is shown in Figure 1. The architecture
builds on the server model of Telescript [Whi94], the multiple languages of ARA
[Pei96] and Dixie [Gai94], and the transport mechanisms of two predecessor
systems at Dartmouth [Har95, KK94]. The architecture has four levels. The
lowest level i1s an API for the available transport mechanisms. The second level
is a server that runs at each network site to which agents can be sent. The

server performs the following tasks:

Interpreter

Electronic

TCP/IP res .
mail

Figure 1: The architecture of Agent Tcl. The four levels consist of an API for
the available transport mechanisms, a server that accepts incoming agents and
mediates agent communication, an interpreter for each supported language, and

the agents themselves.

e Status. The server keeps track of the agents that are running on its ma-

chine and answers queries about their status.

e Migration. The server accepts each incoming agent, authenticates the
identity of the owner, and passes the authenticated agent to the appro-
priate interpreter for execution. The server selects the best transport

mechanism for each outgoing agent.

e Communication. The server provides a hierarchical namespace for agents
and allows agents to send messages to each other within this namespace.
The topmost division of the namespace is the symbolic name of the agent’s
network location. A message is an arbitrary sequence of bytes with no pre-
defined syntax or semantics except for two types of distinguished messages.
An event message provides asynchronous notification of an important oc-
currence while a connection message requests or rejects the establishment

of a direct connection. A direct connection is a named message stream

between agents and is more convenient and efficient than message passing
for long interactions (since the programmer can wait for messages on a
particular stream and the server often can hand control of the stream to
the interpreter). The server buffers incoming messages, selects the best
transport mechanism for outgoing messages, and creates a named message

stream once a connection request has been accepted.

e Nonwvolatile store. The server provides access to a nonvolatile store so that
agents can back up their internal state as desired. The server restores the

agents from the nonvolatile store in the event of machine failure.

As in Tacoma all other services are provided by agents [JvRS95]. This ap-
proach provides the most flexibility and, with sufficient engineering work on the
inter-agent communication mechanisms, should be nearly as efficient as provid-
ing the services directly in the agent servers. Such services include resource
discovery, group communication, fault tolerance, access control, network sens-
ing, and location-independent communication (e.g., an agent should be able
to communicate with another agent without knowing its current network loca-
tion). The most important service agents in the internal Dartmouth prototype
are docking agents and resource-manager agents. Docking agents support dis-
connected operation [GKNT96]. If an agent is unable to migrate to the desired
location because of machine or network failure, the agent is added to a queue
or dock within the network. The dock forwards the agent to the desired loca-
tion once it becomes reachable. Resource-manager agents, in combination with
the Pretty Good Encryption (PGP) encryption system [KPS95] and language-
specific security modules such as Safe Tcl [BR], guard access to critical system
resources such as the screen, disk and speaker [Gra96]. PGP authenticates in-

coming agents; the resource managers assign access restrictions based on this

authentication; and Safe Tcl enforces the access restrictions. In other words, the
resource-manager agents provide the security policy, while Safe Tecl provides the
enforcement mechanism. This approach means that the seme resource managers
can provide the security policy for any agent, regardless of the agent’s imple-
mentation language. Only the enforcement mechanism needs to change from
one language to another.

The third level of the Agent Tcl architecture consists of one interpreter for
each available language. We say interpreter since it is expected that most of
the languages will be interpreted due to portability and security constraints (al-
though “just-in-time” compilation is feasible for languages such as Java). Each
interpreter has four components — the interpreter itself, a security module that
prevents the agent from taking malicious action, a state module that captures
and restores the internal state of an executing agent, and an API that interacts
with the server to handle migration, communication, and checkpointing. Adding
a new language consists of writing the security module, the state-capture mod-
ule, and a language-specific wrapper for the generic API. The security module
does not determine access restrictions but instead ensures that an agent does not
bypass the resource managers or violate the restrictions imposed by the resource
managers; the security module for Tcl agents 1s the existing Safe Tcl extension
that allows a Tcl interpreter to replace “dangerous” commands with safe equiv-
alents that perform access checks [BR]. The state-capture module must provide
two functions for use in the generic API. The first, captureState, takes an
interpreter instance and constructs a machine-independent byte sequence that
represents its internal state. The second, restoreState, takes the byte sequence
and restores the internal state. The top level of the Agent Tel architecture con-

sists of the agents themselves.

2.2 Current status

The architecture has not been completely implemented. The current implemen-
tation does not provide the nonvolatile store or multiple languages and transport
mechanisms (although the framework for incorporating additional languages and
transport mechanisms is in place). In addition, several components were under-
going final revision and testing at the time of publication and were not ready for
public release. Therefore, the CDROM contains the “stripped-down” version of
Agent Tcl that was described in the introduction. This version has the following

features:

e There is asingle language (Tcl) and a single transport mechanism (TCP/TP).
Agents can use all of the standard Tecl features, however, as well as the

Tk toolkit.

e Migration, message passing, and direct connections are supported, al-
though the syntax of direct connections is artificially tied to the TCP/IP

protocol.
e The namespace is flat rather than hierarchical.

e The docking and resource-manager agents and the authentication subsys-
tem are not included. This means that there is no direct support for mobile
computers and that the security mechanisms are rudimentary. The secu-
rity mechanisms are sufficient, however, for experimentation and for local
applications — i.e., an agent server will only accept an incoming agent or
message if it originated from an “approved” machine; a list of “approved”

machines is given to each server at startup.

e An agent server can only provide limited status information about the

agents that are running on its machine.

More complete versions are likely to be available by the time that this book
appears on shelves. Interested readers should refer to the downloading instruc-
tions in the “Availability” section at the end of this chapter. Although limited,
the current version has proven to be a useful tool both at Dartmouth and at
several external sites. Part of its usefulness comes from the selection of Tcl as
the main agent language. The rest of this section presents the rational behind
the use of Tcl and the details of how a Tcl script interacts with the agent system.
The subsequent sections present existing and potential applications for Agent

Tel and a specific programming example.

2.3 Tecl

Tecl is a high-level scripting language that was developed in 1987 and has enjoyed
enormous popularity [Wel95]. Tcl has several advantages as an itinerant-agent
language. Tcl is easy to learn and use due to its elegant simplicity and an imper-
ative style that is immediately familiar to any programmer. Tecl is interpreted,
so 1t 1s highly portable and easier to make secure. Tcl can be embedded in other
applications, which allows these applications to implement part of their func-
tionality with mobile Tcl agents. Finally, Tcl can be extended with user-defined
commands, which makes it easy to tightly integrate agent functionality with the
rest of the language and allows a resource to provide a package of Tcl commands
that an agent uses to access the resource. A package of Tcl commands is more
efficient than encapsulating the resource within an agent and is an attractive
alternative in certain applications.

Tcl has several disadvantages. Tcl is inefficient compared to other inter-
preted languages and is orders of magnitude slower than optimized C [SBD94].
In addition, Tcl provides no code modularization aside from procedures, which

makes 1t difficult to write and debug large scripts. These disadvantages have not

10

been a hindrance so far since itinerant agents tend to involve high-level resource
access wrapped with straightforward control logic, a situation for which Tcl is
uniquely suited. An itinerant Tcl agent is usually short even if it performs a com-
plex task, and is usually more than efficient enough when compared to resource
and network latencies. In addition, several groups are working on structured-
programming extensions to Tecl and on faster Tcl interpreters [Sah94]. Tel is
not suitable for every itinerant-agent application, however, such as an appli-
cation that performs search operations against large, distributed collections of
numerical data. For this reason Agent Tecl includes a framework for incorporat-
ing additional languages. We are using this framework to add support for the
new Java language [Sun94]. Java is much more structured than Tcl and has the
potential to run at near-native speed through “just-in-time” compilation. We
expect, however, that Tcl will continue to be the main agent language and that
Java will be used only for speed-critical agents (or portions of agents).

The main disadvantage of Tcl is that it provides no facilities for capturing
the internal state of an executing script. Such facilities are essential for provid-
ing transparent migration at arbitrary points. Adding these facilities to Tcl was
straightforward but required the modification of the standard Tcl interpreter.
The basic problem is that the Tcl interpreter evaluates a script by making re-
curstve calls to a function called Tcl_.Eval. The handler for the while command,
for example, recursively calls Tcl_Eval to evaluate the body of the loop. Thus
a portion of the script’s state is on the interpreter’s runtime stack and is not
easily accessible. OQur solution adds an explicit stack to the Tcl interpreter. We
split the command handlers into one or more subhandlers where there is one
subhandler for each code section before or after a call to Tcl_Eval. Each call to
Tcl_Eval is replaced with a push onto the stack. Tcl_Eval iterates until the stack

is empty and always calls the current subhandler for the command at the top

11

of the stack. The subhandlers are responsible for specifying when the command
has finished and should be popped off the stack.

The explicit stack 1s simpler and more flexible than the ARA solution in
which the C runtime stack must be captured in a portable way and the Tcl
interpreter on the destination machine must contain the same set of C functions
[Pei96]. On the other hand, the explicit stack is less efficient. Our modified
Tcl core runs Tecl scripts approximately 20 percent slower than the standard
Tecl interpreter, whereas ARA’s modified Tcl interpreter imposes no additional
overhead. Once the explicit stack was available, it became trivial to write pro-
cedures that save and restore the internal state of a Tcl script. These two pro-
cedures, captureState and restoreState, are the heart of the state-capture
module for the Tcl interpreter. They capture and restore the stack, the proce-
dure call frames, and all defined variables and procedures. Such things as open
files and linked variables are ignored.

The advantages of Tcl are strong and the disadvantages are either easily
overcome or do not affect most agents. Thus Tcl was chosen as the main lan-
guage for the Agent Tcl system. The same advantages have led to the use of Tcl

in other itinerant-agent systems such as Tacoma [JvRS95] and ARA [Pei96].

2.4 Tcl scripts as agents

An Agent Tcl agent is a Tcl script that runs on top of the modified Tcl inter-
preter and a Tcl extension. The modified interpreter provides the explicit stack
and the state-capture routines. The Tcl extension provides the set of commands
that the script uses to migrate, communicate, and create child agents. Due to
the nature of Tcl extensions, these commands are tightly integrated with the
normal Tcl commands, and, in fact, appear to be a part of the Tcl language

itself. Internally each command uses the generic server API to contact an agent

12

server, transfer an agent, message, or request, and wait for a response. The
main difference between the current and planned implementations is that when
migrating, creating a child agent, or sending a message, the current implementa-
tion bypasses the local server and interacts directly with the destination server
over TCP/IP. This approach was adopted to simplify the initial implementation
and will change as additional transport mechanisms are added.

The most important agent commands are agent_begin, agent_submit,
agent_jump, agent_send, agent_receive, agent.meet, agent_accept, and
agent_end. An agent uses the agent_begin command to register with a server
and obtain an identifier in the flat namespace. An identifier currently con-
sists of the IP address of the server, a unique integer, and an optional sym-
bolic name that the agent specifies later with the agent.name command. The
agent_submit command is used to create a child agent on a particular ma-
chine. The agent_jump command migrates an agent to a particular machine.
The agent_jump command captures the internal state of the agent, packages the
state image for transport, and sends the state image to the destination server.
The server accepts the state image, selects a new identifier for the agent, and
starts a Tecl interpreter. The Tcl interpreter restores the state image and re-
sumes agent execution at the statement immediately after the agent_jump.

The agent_send and agent_receive commands are used to send and receive
messages. The agentmeet and agent_accept commands are used to establish a
direct connection between agents. For direct connections, the source agent uses
agentmeet to send a connection request to the destination agent. The destina-
tion agent uses agent_accept to receive the connection request and send either
an acceptance or rejection. An acceptance includes a TCP/IP port number to
which the source agent connects. The protocol works even if both agents use

agentmeet. The agent with the lower IP address and integer identifier selects

13

the port and the other agent connects to that port. The agent server will take
on more of the responsibility for establishing a direct connection as additional

transport mechanisms are added.

3 Examples

Itinerant agents are best viewed as a tool for developing distributed applica-
tions rather than as an enabling technology. Their advantage lies not so much
in making a particular distributed application possible but rather in unifying
a programming model and improving the performance for distributed appli-
cations. Performance can be a matter of network utilization, completion time,
programmer convenience, or just the ability to continue interacting with the user
during a period of network disconnection. Like most itinerant-agent systems,
therefore, Agent Tcl is intended for and is a useful tool in general distributed
applications.

Some potential applications for Agent Tcl come from existing applications
of other itinerant-agent systems. The Telescript system, for example, is cur-
rently used in active mail, network and platform management, and electronic
commerce [Whi94]. In active mail, a program to be embedded inside a mail
message. The program is executed when the mail message is received or viewed.
This embedded program can be a Telescript agent. In one platform-management
application, a Telescript agent is used to perform software updates. The agent
carries the necessary files onto the machine. It installs the files itself and then
disappears. Owners of a Sony MagicLink or a Motorola Envoy have received
several software updates this way (the MagicLink and Envoy are two personal
digital assistants that are based around Telescript and the MagicCap operating

system). In several electronic-commerce applications, a Telescript agent leaves

14

a personal digital assistant (PDA), searches multiple electronic catalogs for a
certain product, and returns to the PDA with the best purchase price and the
corresponding vendor.

The Tacoma system is used most visibly in StormCast, a distributed sys-
tem for weather simulation in which the data volumes are so immense as to
make data movement impractical [JvRS95]. The use of itinerant agents allows
new simulation operations to be rapidly constructed and deployed to the data
locations.

The Mobile Service Agent (MSA) system is used primarily for “follow-me”
computing in which an application moves to the location of the user for more
efficient interaction. The main MSA demo involves a conference proceedings.
When a user connects his laptop to the conference’s machines, an agent is sent
to the laptop. The user interacts with the conference proceedings via this agent
and can continue interacting even when the laptop is disconnected.

Java applets also suggest many potential applications. A Java applet is
(usually) an interactive, graphical application that is automatically brought to
and executed on a user’s machine when the user visits the applet’s enclosing
web page. Existing Java applets include stock tickers, games, and language
tutorials. Java applets would be intolerably slow if they controlled the screen
from a remote location; dynamic deployment allows them to control the screen
efficiently without the need for pre-installation. Itinerant agents can play the
same role as Java applets by carrying interface code to the user’s location.

Agent Tcl is well suited to most of these applications, although it would
have some trouble with the network and platform-management applications of
Telescript since Tcl has no direct capabilities for working with binary data.
Agent Tcl 1s being used in three information-retrieval applications. The first

involves searching distributed collections of technical reports; the second, med-

15

ical records [Wu95]; and the third, three-dimensional drawings of mechanical
parts [CBC96]. In each application, there is a collection of “documents” at
one or more network sites. Each collection provides a set of low-level search
primitives. Agents use these primitives to perform a multi-step search at each
site. Since the agents move to the location of the collection and do not transfer
intermediate results, the multi-step searches can be performed efficiently even
though only low-level primitives are available. In addition, since the agent does
not need to be in continuous contact with the user’s machine, it can continue
its task even if the user’s machine becomes temporarily unreachable.

Agent Tel is also being used in several workflow applications [CGN96], al-
though these applications are less mature than the information-retrieval appli-
cations. In one application, an agent carries an electronic form from machine to
machine so that the appropriate people can fill out their sections of the form; the
form is presented using Tk. In a second application, Agent Tcl handles purchase
orders. An independent traveling salesperson carries a laptop with software that
helps to select vendors and products and to place orders. Agents are sent to
search vendor catalogs for products that meet customer needs. When a prod-
uct and vendor is selected, an agent travels to the vendor’s computers where it
interacts with billing, inventory, and shipping agents to arrange the purchase.
In both cases, the agents can continue working even while the laptop is discon-
nected. This application is easier to implement with some “support” agents for
mobile computing that are not included on the enclosed CDROM, although a
simple implementation can be created without these support agents. Agent Tcl
is also being used outside Dartmouth, most notably to execute complex queries

against remote databases.

16

4 Language design

Agent Tecl agents are written in the Tool Command Language (Tcl). Tel has
two components. The first component is a shell, usually called tclsh, that is
used to execute stand-alone Tecl scripts and interactive commands. The second
component is a library of C functions. The library provides functions to “create”
a Tcl interpreter, define new Tcl commands in the interpreter, and submit Tecl
scripts to the interpreter for evaluation. This library allows Tcl to be embedded
inside a larger application; any application that needs a scripting language can
include the library and allow its users to write Tcl scripts.

A tutorial on Tcl is beyond the scope of this chapter. Tcl is easy to learn,
however, and is similar to other scripting languages such as Perl and the various
Unix shells. The following Tcl script, for example, asks the user for a number
and then displays the factorial of that number. The script keeps asking for
numbers until the user enters Q to stop. For now, we simply examine the key
features of the script; we describe how to actually run the script in the next

sectlon.

Procedure ‘‘factorial’’ recursively computes a factorial.

proc factorial x {

if {$x <= 1} {
return 1

}

return [expr $x * [factorial [expr $x - 1]11]

Repeat until the user enters "Q" to quit.
set number ""

while {$number != "q"} {

17

Get the integer for which we want the factorial
(or "Q" to quit).

puts -nonewline \
"Enter a nonnegative integer (or \"Q\" to quit): "
gets stdin number

Convert to lowercase in case it’s a "Q".
set number [string tolower $number]
Compute the factorial if we’re not quitting.

if {$number '= "g"} {
puts "$number! is equal to [factorial $number]"

}

There are several important things to note about Tel in general. First, Tecl
stores all data as strings. The number variable, for example, can be used to
hold both a number and the letter Q because Tcl stores numbers as strings.
Commands that expect numbers, such as expr (which evaluates general math-
ematical expressions), convert the given strings into an internal numeric repre-
sentation.

Second, Tel has no fixed grammar that “defines” the language [Ous94]. The
Tecl interpreter does not treat the while construct above, for example, as a
reserved word, followed by an expression, followed by a repeatedly-executed
subprogram. Instead the Tecl interpreter treats the construct as a command
name, while, followed by two argument strings; the curely bracket characters,
{ and }, represent nothing more than a kind of string quotation. The two argu-
ments are passed to the handler for the while command which interprets them
as 1t sees fit. The standard while handler does, in fact, treat the first argument

as an expression, and if the expression is true, passes the second argument back

18

to the Tcl interpreter for evaluation as a Tcl script. If the while handler is re-
placed, however, the behavior of the while command changes. Thus, although
many Tcl commands look and act like traditional programming constructs, it
is important to remember that Tcl parses everything as a command name and
arguments.

Finally, there are two types of special syntactic constructs that can ap-
pear inside the argument strings. These constructs are called substitutions. In
the command expr $x * [factorial [expr $x - 1]1], for example, $x is a
variable substitution, and [expr $x - 1] is a command substitution. When
the command is parsed, $x will be replaced with the contents of variable x,
and [expr $x - 1] will be replaced with the result of executing the command
expr $x - 1, namely the value of $x - 1. The quotation characters around
the string determine whether these substitutions are actually performed. Curly
brackets, for example, mean that substitutions are not performed and that the
string is passed unchanged to the command handler. Double quotes (") or no
quotes means that substitutions are performed. In the while command, above,
we use curly brackets around the first argument, $number != '"q", so that the
string is passed unchanged to the while handler. The variable substitution
$number is then performed once per iteration, each time that the while han-
dler checks the value of the expression. If we had used double quotes instead,
the variable substitution would have been performed when the while command
was first parsed, and the string passed to the while handler would have been
" 1= "q" This expression is always true so the loop would have run forever.
Proper quoting is the most difficult aspect of Tcl; it will be easier if you remem-
ber that the Tcl interpreter parses everything as a string, and that the different

quotation characters affect the parsing process.

19

Keeping these three points in mind, it becomes straightforward to under-
stand the script. First, the proc command is used to create a new command
called factorial that takes a single argument x and computes x! by making
recursive calls to itself. Then, the puts and gets commands are used to in-
teract with the user and obtain a number; the factorial command is called
with this number as its argument; and puts is used to display the factorial
result. The while command repeats this process until the user enters Q rather
than a number. This script highlights the main features of Tcl but uses only a
small fraction of the Tecl commands. More information on Tel can be found in
the books by Ousterhout [Ous94] and Welch [Wel95], in the man pages that are
included on the CDROM, and in the comp.lang.tcl usenet group.

In addition to the standard Tecl commands, Agent Tcl agents use a special
set of commands to migrate from machine to machine and to communicate with
other agents. These commands are provided as a Tcl extension, but can be
treated as a native part of the Tcl language when writing an agent. In the
remainder of this section, we briefly define each command. In the next section,
we use the commands to develop two agents. The commands can be divided into
three main categories. The first category of commands allow an agent to register

itself with an agent server and to obtain an identifier in the agent namespace.

e agent_begin [machine]. The agent begin command registers the agent
with the agent server on the specified machine (or on the local machine
if no machine is specified) and returns the agent’s new identifier within
the agent namespace. In the current system, this identifier consists of
the symbolic name of the server, the IP address of the server, a sym-
bolic name that the agent chooses for itself, and a unique integer that

the server assigns to the agent. So if an agent issues the command

20

agent begin bald, for example, the command might return the four-
element Tecl list bald.cs.dartmouth.edu 129.170.192.98 {} 15. The
129.170.192.98 1s the IP address of bald. The empty curly brackets
indicate that the agent initially has no symbolic name; a symbolic name
can be chosen at a later time with the agentname command. The 15
is the integer id that the server on bald has assigned to the new agent;
this integer is unique among all agents executing on bald but not among
all agents everywhere. The agent’s current identifier is stored in element
local of the global Tcl array agent. This array is always available inside
an Agent Tecl script and is read-only; it contains other useful information
as we will see in the programming examples below. Once the agent has

issued the agent_begin command, it can use the other agent commands.

e agentmname name. The agentmame command selects a symbolic name
for the agent. If the agent in the example above issues the command
agentname FtpAgent, its complete name will become

bald.cs.dartmouth.edu 129.170.192.98 FtpAgent 15.

e agent_end. An agent calls the ageni_end command when it is finished with

its task and no longer requires agent services.

The second category of commands allow an agent to migrate from machine

to machine and to create child agents.

e agent_jump machine. An agent calls the agent_jump command when it
wants to migrate to a new machine. This command captures the internal
state of the agent and sends the state to the agent server on the specified
machine. The server restores the state and the agent continues execution

immediately after the agent_jump. Certain components of the state, such

21

as open files and child processes, are intrinsically tied to a specific machine
and are not transferred to the new machine. The agent receives a new 4-
element identification when it jumps, which again is stored in element
local of the global Tcl array agent. The agent also loses its symbolic

name when it jumps and must request it again if needed.

e agent_fork machine. The agent_fork command is roughly analogous to
Unix fork. It creates a copy of the agent on the specified machine. Both
the original agent and the copy continue execution from the point of the
agent_fork. The agent_fork command returns the 4-element identifica-

tion of the copy to the original agent and the string CHILD to the copy.

e agent_submit machine -procs names -vars names —-script script.
The agent_submit command creates a completely new agent. The pa-
rameters to agent_submit are a machine, a list of Tcl variables, a list of
Tecl procedures, and a startup script. A new agent is created on the spec-
ified machine. This agent contains copies of the specified variables and
procedures and begins execution by evaluating the startup script. The
agent_submit command returns the 4-element identification of the new

agent.

The final category of commands allow agents to communicate with each

other.

e agent_send id code siring. The agent_send command sends a message
to another agent. A message consists of an integer code and an arbitrary
string. The recipient agent is specified by its 4-element ¢d or by any
subset of the 4-element id that uniquely 1dentifies the agent, such as the

server name and the unique integer. The recipient receives the message

22

using the agent_receive command, or if it is using Tk, by establishing

an event handler for incoming messages using the mask command.

agent_event id tag string. The agent_event command is a variant of
agent_send that sends a tag and a string rather than an integer code
and a string. A tag is just an arbitrary string itself. The advantage of
agent_event is that the recipient can associate event handlers with specific
tags using the mask command. The event handler is called automatically
whenever a message arrives with the corresponding tag. If the recipient is
not using Tk or chooses not to use event handlers, it must receive these

tagged messages with the agent_getevent command.

agentmeet id. The agentmeet command is used to request a direct
connection with the specified recipient. The recipient accepts the connec-
tion request either by issuing its own agentmeet command or with the
agent_accept command. Once the connection request has been accepted,
and the direct connection has been established, arbitrary data can be sent
along the connection using the tcpipread and tcpipwrite commands.
The names of these commands reflect the current link between direct con-
nections and TCP/IP; they should be changed but have been left alone
for backward compatibility. Direct connections are more efficient than the

two message-passing variants since they bypass the agent servers.

There are several miscellaneous commands that do not fall into the three

main categories. The agent_info command, for example, is used to obtain in-

formation from a server about the agents executing on its machine; the retry

command retries a block of Tcl code until no error occurs or the maximum num-

ber of tries has been reached; and the restrict command imposes a timeout

23

on an arbitrary block of Tcl code. The documentation on the enclosed CDROM
describes these commands, along with all of the commands listed above, in more

detail.

5 Programming examples

The Unix who command lists all the users who are logged into a machine. In this
section, we develop two versions of an agent that will travel from machine to
machine, execute the Unix who command on each machine, and then return to
the home site and show the complete list of users to its owner. These examples
are a simplistic use of an agent, but they illustrate the general structure of
itinerant agents, they do not require support agents at each network site, and
they fit conveniently on a few pages while demonstrating most of the agent
commands. As you work through these examples, you should keep in mind that
the application-specific section of each agent — i.e., the invocation of the Unix
who command — can be replaced with any desired processing.

The first step in developing the examples is to install the Agent Tecl system
on two or more machines (the examples work with only one machine but are
somewhat boring). Detailed compilation and installation instructions are in-
cluded on the CDROM. Once the Agent Tecl system is installed, you will have
three executable files, agentd, agent and agent—tk. agentd is the agent server,
agent 1s the agent interpreter, and agent-tk is the agent interpreter that in-
cludes the Tk toolkit. You should start the server agentd on each machine on
which you installed the Agent Tecl system. Detailed server instructions are also
included on the CDROM.

Once the server is running on each machine, you can execute Agent Tcl

24

agents or any Tel script that is fully compatible with Tcl 7.4 and Tk 4.0. Tecl
scripts that require Tcl 7.5 and Tk 4.1 will not work with this version of Agent
Tcl. There are three ways to execute a Tcl script using the agent interpreters.
Suppose that the factorial script above is in a file called factorial.tcl. The
first execution method is to start the agent interpreter by typing agent at the
Unix prompt. Then you type source factorial.tcl at the Tcl prompt. You
will return to the Tcl prompt after the factorial script finishes executing; you
can type in additional Tcl commands or type exit to leave the agent interpreter
and return to the Unix prompt. The second execution method is to type agent
factorial.tcl at the Unix prompt; you will return to the Unix prompt when
the factorial script has finished executing. The third execution method is to

turn on the Unix execution permissions for file factorial.tcl and add the line
#!/usr/local/bin/agent

at the beginning of factorial.tcl. This assumes that the agent interpreter is
in directory /usr/local/bin; you will need to change this line if you installed
agent is in a different directory. Then you simply type factorial.tcl at the
Unix prompt; you will return to the Unix prompt once the factorial script fin-
ishes executing. If the agent uses Tk, you use the same three execution methods,
only with agent-tk rather than agent. Since the Agent Tel system uses a mod-
ified Tecl interpreter, you must execute agents with either agent or agent-tk.
It 1s impossible to execute an agent with the standard Tcl interpreters, tclsh
and wish, even if you recompile them so that they include the agent extension.

Now we develop the two versions of the “who” agent. The first version is
text-based. It asks the user for a list of machines. Then it submits a single child
agent using the agent_submit command. This child agent migrates through

the specified machines using the agent_jump command, executes the Unix who

25

Tuolomne Temple-doom

Figure 2: The first version of the “who” agent. The parent agent (P) submits a
child agent (C) that migrates through a sequence of machines and executes the
Unix who command on each. Then the child (C) sends the complete list of users
to the parent (P) for display to the user. In the specific case shown, the child
agent (C) migrates through four machines at Dartmouth, cosmo, lost-ark,

temple—doom, and tuolomne.

command on each machine, and records the users of each machine. Once the
child agent finishes, it sends the complete list of users to its parent using the
agent_send command. The parent displays the list of users and exits. Figure 2
illustrates the behavior of this agent.

The Tel code for this agent is actually quite simple. You can enter the code
using any standard Unix text editor. Once you have entered the code, you should
save 1t 1n a file with extension .tcl. The discussion below assumes that you use
the filename who.tcl. If you do not want to enter the code yourself, it is included
on the CDROM in file systems/agent-tcl/book-examples/who.tcl. The Tcl

code for the agent appears below. The code is interspersed with discussion. The

26

code is indented and appears in a fixed-width font; the discussion is flush with
the left margin and appears in the normal font. Make sure that you do not
type in the discussion as part of the agent. In addition, certain lines end with
a backslash (\) which is the Tcl line-continuation character. There should not
be any spaces or tabs after these backslashes. The first piece of code 1s simply
a comment header.

#!/usr/local/bin/agent
who.tcl

This agent executes the "who" command on multiple machines.
It submits a SINGLE child agent. The child jumps from
machine to machine and executes the WHO command on each
machine. Then the child returns the complete list of users
to the parent for display.

H O HH R H R

The first line specifies the location of the agent interpreter. This line allows
you to execute the agent simply by typing who.tcl at the Unix prompt. You
will have to change this line if you installed agent in a different directory. The
other lines are comments which are indicated by a pound sign (#).

The second piece of code is the procedure that implements the child agent.

Procedure ‘who’ is the child agent that does the jumping.
proc who machines {
global agent
start with an empty list
set list ""
loop through the machines and jump to each
foreach m $machines {

if we do not jump successfully, append an error message

27

otherwise append the list of users

if {[catch {agent_jump $m} resultll} {
append list "$m:\nunable to JUMP here ($result)\n\n"
} else {
set users [exec who]
append list "$agent(local-server):\n$users\n\n"
}
}

send back the list of users and finish

agent_send $agent(root) 0 $list
exit

There are several important things to note about this procedure. First, the
procedure takes a single argument machines which contains the list of machines
that the child agent should visit. For the purposes of the examples, a Tcl list
is just a string that contains one or more whitespace-separated substrings —
e.g., the string bald cosmo lost-ark is a Tcl list that contains three elements,
bald, cosmo and lost-ark. Second, the command global agent tells the Tel
interpreter that we want to access the global array agent from inside the pro-
cedure; this array contains information about the location of the agent. Third,
the foreach command loops through each element in the list of machines; the
variable m is set to the next machine on each iteration. Fourth, the agent_jump
command is used to jump onto each machine m. The agent_jump command is
enclosed within a catch command. Tcl commands raise exceptions if an error
occurs; these exceptions are caught with the catch command. If the agent_jump
command fails, the catch command catches the exception, puts the associated
error message in the variable result, and returns 1. The if clause of the if

statement is executed and the agent records an error message. If agent_jump

28

succeeds, the catch command returns 0. The else clause is executed so the agent
invokes the Unix who command and records the list of users. Finally, once the
child agent has migrated through each machine, it sends the list of users (and
error messages) back to its parent using the agent_send command.

When agents create other agents, a parent-child hierarchy arises with a single
agent at the top. The agent at the top is called the root agent and, in both itself
and all of 1ts descendents, its 4-element identification 1s found in element root
of the agent array. Thus, since the parent of the child agent is also the root
agent in this case, we can just send the list of users to agent (root). A current
limitation of the Agent Tecl system is that it does not record the complete
parent-child hierarchy. If we wanted to send the message to the parent and the
parent was not a root agent, we would have to explicitly record the 4-element
identification of the parent in an auxiliary variable before creating the child
agent.

The next piece of code is the start of the parent agent. It asks for the list of
machines and registers the agent with the agent server.

get the machines

puts -nonewline "Please enter the list of machines: "
gets stdin machines

register the agent
if {[catch {agent_begin} resultl} {

return -code error "ERROR: unable to register on \
$agent(actual-server) ($result)"

The gets and puts commands let the user enter the list of machines. The
agent begin command registers the agent with the server on the local ma-

chine. The agent_begin command is enclosed within a catch command in

29

case the server is not available on the local machine for some reason (element
actual-sever of the agent array always contains the name of the local ma-
chine). The agent can not use any of the other agent commands until it suc-
cessfully registers using the agent_begin command.

The final piece of code is the rest of the parent agent. It creates the child
agent, waits for the child agent to send the message containing the list of users,

and finally displays the list of users.

catch any error
if {[catch {
submit the child agent that does the jumping

agent_submit $agent(local-ip) -vars machines -procs who \
-script {who $machines}

wait for the list of users

agent_receive code message -blocking
output the list of users

puts "\nWHO’S WHO on our computers\n\n$message"
cleanup

agent_end

} error_messagel} then {

cleanup on error

agent_end
throw the error message up to the next level

return -code error -errorcode $errorCode \
-errorinfo $errorInfo error_message

30

First, the parent creates the child agent using agent_submit. The child
agent is specified with the —script parameter and consists only of a call to
procedure who with parameter machines. Since the child makes this call, it
must have copies of procedure who and variable machines, so this procedure
and variable are specified after the -procs and -vars parameters respectively.
Once the child agent is created, the parent waits for the child’s message using the
agent_receive command. The -blocking parameter indicates that the agent
will wait until the message arrives rather than timeout. Once the message
arrives, the integer code is placed in variable code and the string is placed in
variable string. Finally, the puts command displays the list of users and the
agent_end command ends the agent. This whole sequence is enclosed in a catch
command in case an error occurs. The agent is now complete and can be run
with any of the three methods described above. So if you type agent who.tcl

at the Unix prompt, you will see the request
Please enter the list of machines:

You should type in the desired machine names with one or more spaces
between names. The agent server must be running on the specified machines.
As an example, if the agent were executed at Dartmouth and you entered the
same machine names shown in Figure 2 (as well as one machine that does not

exist), you might see the output

Please enter the list of machines:
cosmo lost-ark xxx temple-doom tioga

WHO’S WHO on our computers

cosmo.dartmouth.edu:

31

lost—-ark.dartmouth.edu:

lwilson ttyqo0 Apr 29 08:16
pascalb ttyq2 Apr 29 09:11
pascalb ttyq3 Apr 29 09:11
XXX:

unable to JUMP here (unable to get IP address of "xxx"

temple-doom.dartmouth.edu:
rgray ttyqo Apr 29 08:55
rgray ttyq2 Apr 29 09:08

tioga.cs.dartmouth.edu:

rgray ttyp2 Apr 29 09:07

There will be a short delay before the child agent finishes its travels and
the list of users is displayed. Note that the nonexistent machine xxx causes no
difficulties due to the catch command surrounding the agent_jump command.
Detecting and handling errors when the agent is moving is no more difficult than
when the agent is stationary. Uncaught errors cause the agent to terminate,
although an error message will be automatically sent to the root agent

The second version of the “who” agent expands on the first. First, it uses
the Tk toolkit to display a window in which the user enters the names of the
machines. Then, the agent itself jumps from machine to machine and executes
the Unix who command on each machine. Once the agent has migrated through
each machine, it jumps again to return to its home machine where it displays
a second window that contains the results. As an additional feature, the agent
leaves behind a tracker agent on the home machine; the agent communicates
with the tracker agent to provide a continuous update of its current status and
network location. This behavior is shown in Figure 3. A sample screen dump
is shown in Figure 4. This agent is much longer so you will probably want to

use the copy in systems/agent-tcl/book-examples/winwho.tcl rather than

32

Jump

Tuolomne Temple-doom

Figure 3: The second version of the “who” agent. The agent (A) migrates
through the machines itself, returns to the home machine, and displays the list
of users in a Tk window. Before it begins migrating, the agent (A) creates a
child agent that will serve as a tracker (T). The agent (A) communications with

the tracker (T) as it migrates to provide a continuous update of its location.

typing it in yourself. All of the code should be placed in one file although
logically there are two agents (the “who” agent creates the “tracker” agent
just before it starts to migrate). The first piece of the “who” agent is again
a comment header. The only difference is that the first line must specify the

location of the agent—tk interpreter rather than the agent interpreter.

#!/usr/contrib/bin/agent-tk
who.tk

This agent executes the "who" command on multiple machines.
It displays a Tk window in which the user enters a list of
machines. Then it jumps from machine to machine and executes
the Unix "who'" command on each machine. Finally it returns
to the home machine and displays a Tk window that contains

H O HH R H

33

the complete list of users. While traveling, it leaves
behind a tracker agent; it communicates with the tracker
agent to display continuous information about its progress.

The second piece of the “who” agent are procedures GetMachines and
DisplayList. Procedure GetMachines creates the window in which the user
enters the machine names; this window is the top window in Figure 4. Procedure
DisplayList creates the output window in which the list of users is displayed;
the output window is the bottom window in Figure 4. Procedure GetMachines
is called before the agent starts migrating; procedure DisplayList is called
when the agent returns to the home machine with the list of users. These
procedures use standard Tk commands and do not use any agent commands, so
we do not describe them in detail. The only nonstandard commands are main
create and main destroy, which create and destroy a main window for the
application. The standard Tk interpreter, wish, automatically creates a main
window. Agents, however, do not always need a main window so we introduce
the command main create to explicitly create the main window when desired.
In addition, an agent can not migrate if it is currently displaying a window. For
this reason main destroy is used to destroy the main window before migration.
Unlike wish, destroying the main window does not terminate the agent. Because
of the need to destroy windows before migrating — and because agents can not
jump from inside a Tk event handler — Tk agents make heavy use of the tkwait
command. The agent displays the desired interface, uses tkwait to stay in the
event loop until the agent needs to migrate, and then destroys the interface and
jumps to the next machine. This approach imposes a useful structure on the

agent and is more convenient than it might seem.

Procedure GetMachines creates the Tk window in which the
user enters the list of machines. It returns "OK" if the

34

user enters a list of machines and selects the "GO" button
It returns "FORGET" if the user selects the "FORGET'" button.

proc GetMachines {} {

The global variable "machines" holds the list of machines
and the global variable '"status'" is either "GO'" or
"FORGET" depending on which button the user hits. The
global variable 'display' holds the name of the display
--—— e.g., # "cosmo.dartmouth.edu:0".

H O H

global display
global machines
global status

create the main window
main create —name "List of machines" -display $display
fill in the main window with an entry box and two buttons
entry .entry -width 40 -relief sunken -bd 2 \
-textvariable machines
button .go -text "Go!" -command {set status GO}
button .forget -text "Forget it!'" -command {set status FORGET}
pack .entry —side top -fill x -expand 1
pack .go -side left -padx 3m -pady 3m -expand 1
pack .forget -side left -padx 3m -pady 3m -expand 1
bind .entry <Return> {set status GO}
focus .entry
wait for the user to fill in the entry box correctly,
first making sure that the '"status' variable does not yet
exist
catch {unset status}
while {![info exists status]} {
wait for the user to hit a button

tkwait variable status

if the user hit button "GO", see if the entry box is

35

filled in
if {($status == "GO") && ([string trim $machines] == "")} {
tk_dialog .t "No machine!" \

"You must enter at least one machine name!" error 0 OK
unset status

return the status --- e.g., "GO" or "FORGET" -- but first
destroy the window

main destroy

return $status

}

Procedure DisplaylList creates the window in which the list
of users is displayed. The '"users'" argument contains the
list of users.
proc DisplayList users {
The global variable '"display" contains the name of the
display and the global variable "status' will be set to
DONE when the user finishes looking at the results.

global display
global status

create the main window

main create —name "WHO’S WHERE?" -display $display
make the placeholder frames

frame .top -relief raised -bd 1

frame .bot -relief raised -bd 1

pack .bot —-side bottom —-fill both

pack .top —side bottom —-fill both —expand 1

make a text box that will hold the list of users

text .text -relief raised -bd 2 -width 60 \

36

-yscrollcommand ".scroll set"
scrollbar .scroll -command ".text yview"
pack .scroll -in .top -side right -fill y
pack .text -in .top -side left -fill both -expand 1

make the "DONE" button

button .done -text "Done!" -command {set status DONE}
pack .done -in .bot -side left -expand 1 -padx 3m —-pady 2m

fill in the text area

.text delete 1.0 end
.text insert end $users

wait for the user to finish looking at the results, first
making sure that the "status" variable does not yet exist

report "Done! You should see the results window.'"
catch {unset status}

tkwait variable status

main destroy

The next piece of the “who” agent is actually the tracker agent that displays
the progress of the “who” agent through the network. The “who” agent uses
the agent_event command to send tagged messages back to the tracker. Rather
than explicitly receiving these messages with the agent_getevent command,
the tracker uses the mask command to establish two message handlers. These
handlers are automatically called when a tagged message arrives. Procedure
messageHandler is automatically called if the message tag is MESSAGE. The
source parameter is filled in with the 4-element identification of the sender; the
tag parameter is filled in with the message tag; and the string parameter is
filled in with the message string. Similarly procedure errorHandler is called if
the message tag is ERROR. Procedure Tracker is the main body of the tracker

agent. It creates a simple text window, establishes the two message handlers

37

using the mask command, and calls tkwait to sit in the event loop. The two
handlers are automatically called whenever a message arrives and simply insert
the status information into the text window. This text window is the middle
window in Figure 4. The tracker agent illustrates that agents can use the Tk
event model effectively. In fact Tk agents should almost always establish event
handlers for incoming messages; otherwise the agent will not respond to user
events while it sits at an agent.receive or agent_getevent command (or it
will have to continuously poll). Procedure LeaveTracker actually starts up
the tracker agent using agent_submit; it is called by the “who” agent just
before the “who” agent starts migrating. The procedure returns the 4-element
identification of the tracker so that the “who” agent knows where to send its

status messages.

Procedure errorHandler, messageHandler and Tracker make up
the tracker agent. Procedure LeaveTracker starts the

tracker agent and returns either the 4-element id of the

tracker or the string "FAILED".

proc messageHandler {source tag string} {
.text insert end "$string\n"

}

proc errorHandler {source tag string} {
.text insert end "\nERROR: $string\n\n"
bell

}

proc Tracker {} {

The global variable '"display" holds the name of the
display. The global variable "status" will be set to
DONE when the user decides to exit. The global array
"mask'" --- which is available inside every agent ---
specifies event handlers.

H B HH

global display

38

global status
global mask

create the tracker window
main create -name "Tracker agent'" -display $display
make the placeholder frames
frame .top -relief raised -bd 1
frame .bot -relief raised -bd 1
pack .bot —-side bottom —-fill both
pack .top —side bottom —-fill both —expand 1
make a text box that will hold the list of users
text .text -relief raised -bd 2 -width 60 \
-yscrollcommand ".scroll set"
scrollbar .scroll -command ".text yview"
pack .scroll -in .top -side right -fill y
pack .text -in .top -side left -fill both -expand 1

make the "DONE" button

button .done -text "Done!" -command {set status DONE}
pack .done -in .bot -side left -expand 1 -padx 3m —-pady 2m

turn on the event handlers
mask add $mask(event) "ANY -tag MESSAGE \
-handler messageHandler"

mask add $mask(event) "ANY -tag ERROR -handler errorHandler"

wait for the user to finish looking at the results, first
making sure that the variable '"status' does not yet exist

catch {unset status}
tkwait variable status
main destroy

¥

proc LeaveTracker {} {

global agent

39

global display
try to submit the tracker agent
if {[catch {

set tracker [
agent_submit $agent(local-ip) -vars display \
-procs errorHandler messageHandler Tracker \
-script {Tracker; exit}

} resultl} {
set tracker FAILED

}

return $tracker

The next piece of the “who” agent is procedure who, which routes the agent
through the specified machines using agent_jump and executes the Unix who
command on each. This procedure is almost the same as the who procedure
from the first version. The only difference is that it reports its current loca-
tion and status to the tracker agent by calling the report and reportError
procedures. These two procedures use agent_event to send a tagged message
back to the tracker. When the tracker receives the tagged message, either proce-
dure messageHandler or procedure errorHandler is automatically called, and

the status information is inserted into the tracker window.

Procedure who executes the Unix "who' command on each

machine. Procedure report sends normal information back to
the tracker agent whereas Procedure reportError sends error
information back to the tracker agent.

proc report message {

40

The global variable "tracker" holds the 4-element id of
the tracker agent.

global tracker
send the message, ignoring errors
catch {
agent_event $tracker MESSAGE $message
b
b

proc reportError error {

The global variable "tracker" holds the 4-element id of
the tracker agent.

global tracker
send the message, ignoring errors
catch {
agent_event $tracker ERROR $error
b
b

proc who machines {

global agent
global tracker

start with an empty list
set list "

jump from machine to machine
foreach m $machines {

if we do not jump successfully, append an error message
otherwise append the list of users

if {[catch "agent_jump $m" resultll} {
reportError "Failed to jump to machine $m ($result)"

41

append list \
"$m:\nunable to JUMP to this machine ($result)\n\n"
} else {
report "Jumped to machine $agent(actual-server)"
set users [exec who]
append list "$agent(local-server):\n$users\n\n"
}
}

return $list
}

The last piece of the “who” agent simply calls the procedures above. First,
the “who” agent calls procedure GetMachines to get the machine names from
the user; the machine names are stored in the global variable machines. Once
the machine names have been obtained, the agent calls agent_begin to register
the agent with the local agent server, and then calls procedure LeaveTracker to
start up the tracker agent. Then the “who” agent jumps through the specified
machines by calling procedure who; procedure who returns the list of users. Once
procedure who is finished, the agent calls agent_jump one more time to return
home. Once the agent is home, it calls procedure DisplayList to show the list

of users in an output window. Finally the agent calls agent_end and exits.

remember the display

if {![info exists env(DISPLAY)]} {
set display ":0"

} else {
set display $env(DISPLAY)

b
get the list of machines

if {[GetMachines] == "FORGET"} {
exit

b

42

register the agent with an agent server and remember the
home machine

if {[catch {agent_begin} resultl} {
puts "Unable to register on $agent(actual-server) ($result)"
exit

}

set home $agent(local-ip)

try to leave behind the tracker agent

set tracker [LeaveTracker]

if {$tracker == "FAILED"} {
puts "Unable to leave behind the tracker agent!"
exit

b

jump from machine to machine, executing the '"who" command on
each machine, and then jump back home

set users [who $machines]
agent_jump $home

display the results
DisplayList $users

done
exit

The agent is now complete. It can be run with any of the three methods
discussed above except that you must use agent-tk rather than agent. One
important note is that, if you followed the installation instructions carefully
(which is highly recommended), an agent will start running under a special

userid as soon as it jumps for the first time. On most Unix machines, you will

need to use the xhost command (or equivalent) to allow this special userid to

43

create windows on your screen; otherwise the agent will not be able to create
the output and tracker windows. The reference documentation for your Unix
machine will have more details about screen access. Once the agent starts
executing, you will first see the entry form where you enter the names of the
machines. Once you hit “GO!” to send the agent on its way, the entry form will
disappear, and the tracker window will appear. Lines will appear in the tracker
window one at a time as the “who” agent makes its ways through the network
and reports back its current location. Finally the “who” agent will return and
the output window will appear showing the list of users. A sample run is shown
in Figure 4; the machine names are the same as were used before.

Although these two versions of the “who” agent perform a simple task, they
use most of the agent commands and can serve as building blocks for more com-
plex agents. There is no reason for the agent to be self-contained, for example.
There might be service agents on each machine with which the agent commu-
nicates as it migrates. These service agents should be given well-known names
with the agent name command so that client agents can communicate with them
easily. In one of our information-retrieval applications, for example, there is an
agent named TechReports on each machine which provides a low-level search
interface to a collection of technical reports. Agents, migrating from collection
to collection, combine the low-level search primitives into complex queries.

One area of difficulty for new agent programmers is debugging a moving
agent. Agent Tcl does not include a visual debugger, but several debugging
strategies are discussed in the documentation, and each is reasonably effective.
One of the best is illustrated by the second “who” agent — i.e., a moving
agent continually reports its status to some specified tracker agent. To report

Tcl exceptions, the main body of the agent can be surrounded with a catch

44

cosmo lost-ark 4 temple- doom tiogd

’ Forget it! |

\ Submit

= 000 Trackeragen =~ 00 [
X

Jumped to machine commo.dartmouth.edu
Jumped to machine lost—ark.dartmouth.edu

/@

Jump

ERRCR: Failed to jump to machine xxx {unable to get IF addr
errs of "mxx')

\

Jumped to machine temple—doom.dartmouth.edu
Jumped to machine tioga.cs.dartmouth.edu
Done! ¥You should see the results window.

cosmo .dartmouth . edu:
abharin hEtf0 Epr 2% 15:.

abharin pkefl Bpr 29 16:0

Done! |
abharin pte/f2 hpr 2% 16:]

lost—ark.dartmouth .edu:

lwilmen il Lpr 20 08:16
abhakin tiugh Bpr 2% 15:26
abhasin tiyng8 hpr 2% 16:18
abharin L2285] pr 29 16:19

XXX1
unable to JUMF to this machine {unable to get IP address of
Txxxl) £

Done! |

Figure 4: A sample run of the second “who” agent. The first window that the
user sees 1s the entry box at top where the machine names are entered. Once the
machine names are entered, the agent uses agent_submit to create the tracker
agent in the middle. Then the agent jumps from machine to machine, eventually
returning to the starting machine and displaying the list of users at bottom. As
the agent migrates, it communicates its position to the tracker agent; the text

in the tracker window appears one line at a time.

45

command; if this catch command catches an error, the complete error message
can be sent to the tracker (as well as the error location since Tecl maintains a
stack trace in the global variable errorInfo). Once the agent is debugged, the

tracking code can be removed.

6 Pros/cons/advantages

Agent Tcl involves several tradeoffs. Like Tacoma [JvRS95] and ARA [Pei96],
Agent Tecl uses the simple scripting language, Tcl, as the main agent language.
Other itinerant-agent systems such as Telescript [Whi95] and Java [Sun94] re-
quire the programmer to use a complex, object-oriented language even for simple
agents. In addition, few systems other than Tacoma [JvRS95] and Visual Obliq
[BCY6] provide a graphical toolkit that is as high-level and flexible as the Tk
toolkit. Agent Tcl, therefore, allows much more rapid development of small- to
medium-sized applications. Tcl, however, is slow compared to other scripting
languages and is much slower than interpreted bytecodes and native machine
code. In addition, Tcl provides no code modularization aside from procedures.
Agent Tcl, therefore, can not be used in speed-critical or large applications.
Searching a large, distributed collection of numerical data or performing inten-
sive mathematical calculations, for example, would be intolerably slow without
at least some low-level support at each site. Developing a mobile, full-featured
word processor would involve too much Tel code to be practical (although the
application would potentially be fast enough with careful Tk programming).
Java, Telescript, and ARA, which compile their agents into interpreted byte-
codes, are the only reasonable choice for such applications, although even these

systems would be too slow for such things as distributed scientific computing.

46

Agent Tecl provides simple, flexible migration and communication primitives.
Like Telescript, Agent Tecl provides the jump primitive, which captures the
complete state of the agent and transparently sends the state to the destination
machine. Tacoma, on the other hand, requires the programmer to explicitly
collect state information in a “briefcase” and then submit this briefcase along
with the migrating agent; the agent starts execution from the beginning and
must use the information in the briefcase to determine which task to perform
next. Both approaches are equally powerful, but the jump primitive is more
convenient. There is the potential to overuse jump and write hard-to-understand
code — e.g., calling a procedure might unexpectedly move the agent to a new
location because there is a jump buried in the code. This problem is much less
severe than the historic goto problem, however, since there are no unexpected
changes in control flow, and it appears that the problem is not severe enough
to outweigh the convenience.

Agent Tcl’s communication primitives hide all the transmission details but
are low-level enough to efficiently support a range of higher-level communi-
cation services. Some systems, such as SodaBot [Coe94], provide a specific
high-level communication paradigm (e.g., actor-based, declarative logic, etc.)
that is inappropriate for many applications. The programmer is either locked
into this paradigm or forced to communicate outside of the agent framework.
Agent Tcl’s communication primitives have two drawbacks, however. First, if
a higher-level communication protocol is desired, it must be implemented on
top of the low-level primitives. Second, there is no common “language” that
every agent understands. The flexibility of low-level primitives outweighs these
drawbacks. We expect that several standard, high-level communication pro-

tocols will eventually be provided as part of the Agent Tecl system; RPC and

47

dialog-based mechanisms have already been implemented but are not included
on the CDROM. In addition, we might require agents to understand one simple,
common protocol for exchanging status information, but allow them to use any
other protocol that they saw fit.

Agent Tcl’s main weakness is that it does not provide the features of more
mature systems. Agent Tcl lacks the visual debugging tools of Java and Tele-
script. A simple visual debugger for Agent Tcl exists, however, and is being
tested. Similarly, the version of Agent Tcl on the CDROM does not provide
the security features of Telescript. Telescript authenticates all incoming agents
and assigns access restrictions based on this authentication. The development
version of Agent Tcl, however, does exactly this using PGP and Safe Tel (the
development version will be released in mid to late 1996). Agent Tcl’s secu-
rity model, in which resource managers assign access restrictions based on the
agent’s identification, is simpler than the Telescript model. Telescript agents
communicate by exchanging references to each other’s objects. Handling the
security problems that arise when agents call into each other’s objects requires
awkward class syntax and “paranoia” programming on the part of the agent
programmer [TV96]. Exchanging object references has the additional drawback
of making it difficult to include new languages in a Telescript system. One of
our main research areas is to expand on existing security mechanisms so that
the system protects agents and groups of machines in addition to individual
machines.

The version of Agent Tcl on the CDROM also does not include direct sup-
port for mobile computing; both Telescript and MSA [TLKC95] provide such
support. We have implemented a flexible system of support agents for mobile

computing, however, and are successfully using these agents in several appli-

48

cations [GKNT96]. Agent Tcl does not provide the fault tolerance of Tacoma
which uses “rear-guard” agents and the Horus toolkit [JvVRS95]. Although these
fault-tolerance mechanisms are not incompatible with Agent Tcl, we do not
plan to add them as part of our research work. Agent Tcl does not yet sup-
port multiple languages. Work on incorporating Java, however, is progressing
well. Finally, from an architectural standpoint, Agent Tecl is inefficient since the
server and each agent run as separate processes, rather than in an integrated
execution environment such as ARA or Telescript. We do not plan to change
this in the near future.

Agent Tcl, therefore, i1s best-suited for experimentation with itinerant-agent
ideas and for the development of small- to medium-sized applications in which at
least some low-level support is available at each site. Agent Tcl agents combine
the low-level services at each site into complex operations, coordinate their
efforts with other agents, and handle unexpected error conditions. The flexibility

of Agent Tcl allows such agents to be developed rapidly.

Availability

Directory systems/agent-tcl on the enclosed CDROM contains the version of
Agent Tecl described here (along with complete documentation and installation
instructions in subdirectory doc). By the time that you read this, however, it
is likely that a new version of Agent Tcl will be available. The new version will
provide security mechanisms to protect a machine against malicious agents, full
compatibility with Tcl 7.5 and Tk 4.1 (as opposed to 7.4 and 4.0), and one or
more of the higher-level communication mechanisms such as the RPC analog.

All of these are present in the internal Dartmouth version and are undergoing

49

final testing. The version may also include a visual debugger and support for
Java agents; work on both is in progress. Readers who are interested in the new
version should consult the WWW site http://www.cs.dartmouth.edu/~agent

for release dates and downloading instructions.

Acknowledgements

Agent Tcl represents the work of many people. Many thanks to Saurab Nog
and Sumit Chawla for developing the RPC system; to Joe Edelman for creating
the dialog-based communication mechanism; to Fred Henle and Scott Silver for
providing an agent tracker and the basic encryption services; to Melissa Hirschl
for implementing an agent debugger; to Keith Kotay and Ken Harker for their
work on the Dartmouth ancestors of Agent Tcl; to Brian Brewington, Aditya
Bhasin, Kurt Cohen, Yunxin Wu, and Katsuhiro Moizumi for writing the first
Agent Tecl applications; and to all the members of the agents research group and
the CS 188 topics course who have developed several applications as well as the
“service” agents that support resource discovery and mobile computing. Much
of their work was undergoing final revision at the time of publication and is not
included on the CDROM; interested readers are urged to visit the WWW site
listed above. Many thanks also to Bob Sproull of Sun Microsystems and Gish
Hjalmtysson of AT&T Bell Labs for extensive discussion; to the Navy and Air
Force for their gracious financial support (AFOSR contract F49620-93-1-0266
and ONR contract N00014-95-1-1204); and to the external users of Agent Tcl,
especially Gregory Jorstad of Lockheed Martin’s Artificial Intelligence Lab, who

have provided invaluable feedback.

50

References

[BCY6]

[BR]

[CBCY6]

[CGNY6]

[Coed4]

[Gai%4]

[GKN+96]

[Gra95]

[Gra96]

Krishna A. Bharat and Luca Cardelli. Migratory applications. SRC
Research Report, Systems Research Center, Digital Equipment Cor-
poration, February 1996.

N. S. Borenstein and M. Rose. Safe Tel. Available at
ftp://ftp.fv.com/pub/code/other/safe-tcl.tar.Z.

Kurt Cohen, Aditya Bhasin, and George Cybenko. Pattern recog-
nition of 3D CAD objects: Towards an electronic yellow pages of
mechanical parts. International Journal of Intelligent Engineering
Systems, 1996. To appear.

Ting Cai, Peter A. Gloor, and Saurab Nog. DartFlow: A workflow
management system on the web using transportable agents. Techni-
cal Report PCS-TR96-283, Deptartment of Computer Science, Dart-
mouth College, May 1996.

Michael D. Coen. SodaBot: A software agent environment and
construction system. In Yannis Labrou and Tim Finin, editors,
Proceedings of the CIKM Workshop on Intelligent Information
Agents, Third International Conference on Information and Knowl-
edge Management (CIKM 94), Gaithersburg, Maryland, December
1994.

R. Stockton Gaines. Dixie language design and intepreter issues.
In Proceedings of the USENIX Symposium on Very High Level Lan-
guages (VHLL), Sante Fe, New Mexico, October 1994.

Robert Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cy-
benko. Mobile agents for mobile computing. Technical Report PCS-
TRY96-285, Dept. of Computer Science, Dartmouth College, May
1996. Submitted to ACM MobiCom ’96.

Robert S. Gray. Agent Tcl: A transportable agent system. In James
Mayfield and Tim Finin, editors, Proceedings of the CIKM Workshop
on Intelligent Information Agents, Fourth International Conference
on Information and Knowledge Management (CIKM 95), Baltimore,
Maryland, December 1995.

Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent sys-
tem. In Mark Diekhans and Mark Roseman, editors, Proceedings of
the Fourth Annual Tel/Tk Workshop (TCL "96), Monterey, Califor-
nia, July 1996.

51

[Har95]

[TvRS95)]

[KK94]

[KPS95]

[NCKI6]

[Ous94]

[Pei96]

[Sah94]

[SBD94]

[SS94]

[Sun94]

Kenneth E. Harker. TTIAS: A Transportable Intelligent Agent Sys-
tem. Technical Report PCS-TR95-258, Department of Computer
Science, Dartmouth College, 1995.

Dag Johansen, Robbert van Renesse, and Fred B. Scheidner. Op-
erating system support for mobile agents. In Proceedings of the 5th
IEEE Workshop on Hot Topics in Operating Systems (HTOS), pages
42-45, 1995.

Keith Kotay and David Kotz. Transportable agents. In Yannis
Labrou and Tim Finin, editors, Proceedings of the CIKM Workshop
on Intelligent Information Agents, Third International Conference
on Information and Knowledge Management (CIKM 94), Gaithers-
burg, Maryland, December 1994.

Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Se-
curity: Private Communication in a Public World. Prentice-+all,
New Jersey, 1995.

Saurab Nog, Sumit Chawla, and David Kotz. An RPC mechanism
for transportable agents. Technical Report PCS-TR96-280, Depart-
ment of Computer Science, Dartmouth College, March 1996.

John K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley, Reading, Massachusetts,
1994.

Holger Peine. The ARA project. WWW page http://
www.uni-k1l.edu/AG-Nehmer/Ara, Distributed Systems Group, De-
partment of Computer Science, University of Kaiserlautern, 1996.

Adam Sah. TC: An efficient implementation of the Tcl language.
Master’s thesis, University of California at Berkeley, May 1994.
Available as Technical Report UCB-CSD-94-812.

Adam Sah, Jon Blow, and Brian Dennis. An introduction to the
Rush language. In Proceedings of the 1994 Tel Workshop, June
1994.

Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in
Operating Systems: Distributed, Database and Multiprocessor Oper-
ating Systems. McGraw-Hill Series in Computer Science. McGraw-

Hill, New York, 1994.

The Java language: A white paper. Sun Microsystems White Paper,
Sun Microsystems, 1994.

52

[TLKC95] Bent Thomsen, Lone Leth, Frederick Knabe, and Pierre-Yves Cheva-

[TV96]

[Wel95]

[Whi94]

[Whi95]

[Wu95]

lier. Mobile agents. ECRC External Report, European Computer-
Industry Research Centre, 1995.

Joseph Tardo and Luis Valente. Mobile agent security and Tele-
script. In Proceedings of the 4Ith International Conference of the
IEEE Computer Society (CompCon ’96), February 1996.

Brent B. Welch. Practical Programmang in Tel and Tk. Prentice-
Hall, New Jersey, 1995.

James E. White. Telescript technology: The foundation for the
electronic marketplace. General Magic White Paper, General Magic,
Inc., 1994.

James E. White. Telescript technology: Scenes from the electronic
marketplace. General Magic White Paper, General Magic, 1995.

Yunxin Wu. Advanced algorithms of information organization and
retrieval. Master’s thesis, Thayer School of Engineering, Dartmouth

College, 1995.

53

