
Copyright 2001 by the authors

Mobile-Agent versus Client/Server Performance:

Scalability in an Information-Retrieval Task

Robert S. Gray, David Kotz, and Ronald A. Peterson, Jr.
Dartmouth College

Peter Gerken, Martin Hofmann, and Daria Chacón
Lockheed-Martin Advanced Technology Laboratory

Greg Hill and Niranjan Suri
University of West Florida

Dartmouth College Computer Science
Technical Report TR2001-386

January 30, 2001

Abstract

Mobile agents are programs that can jump from host
to host in the network, at times and to places of
their own choosing. Many groups have developed
mobile-agent software platforms, and several mobile-
agent applications. Experiments show that mobile
agents can, among other things, lead to faster ap-
plications, reduced bandwidth demands, or less de-
pendence on a reliable network connection. There
are few if any studies of the scalability of mobile-
agent servers, particularly as the number of clients
grows. We present some recent performance and
scalability experiments that compare three mobile-
agent platforms with each other and with a tradi-
tional client/server approach. The experiments show
that mobile agents often outperform client/server so-
lutions, but also demonstrate the deep interaction
between environmental and application parameters.
The three mobile-agent platforms have similar behav-
ior but their absolute performance varies with under-
lying implementation choices.

Corresponding author: Bob Gray (rgray@dartmouth.edu).
This research was supported by the DARPA CoABS Program
(DARPA contracts F30602-98-2-0107 and F30602-98-C-0162
for Dartmouth and Lockheed Martin respectively) and by the
DoD MURI program (AFoSR contract F49620-97-1-03821 for
both Dartmouth and Lockheed Martin).

1 Introduction

One of the most attractive applications for mobile
agents is distributed information processing, particu-
larly in mobile-computing scenarios where users have
portable computing devices with only intermittent,
low-bandwidth connections to the main network. A
mobile agent can leave the portable device, move
to the network location of a needed information re-
source, and perform a custom retrieval task local to
the resource. Only the final results are transmitted
back to the portable device. Source data and inter-
mediate results are not transmitted, even though the
information resource had no prior knowledge of the
client or its specific task. Moreover, the mobile agent
can continue the retrieval task even if the network
link to the portable device goes down. Once the link
comes back up, the agent sends back its results.

By moving the code to the data, a mobile agent
can reduce the latency of individual steps, avoid
network transmission of intermediate data, continue
work even in the presence of network disconnections,
and thus complete the overall task much faster than
a traditional client/server solution. Of course, a mo-
bile agent will not always perform better than a
client/server solution. For example, if the agent code
is larger than the total intermediate data, the mo-
bile agent must perform worse, since it will transfer
more bytes across the network than the client/server
solution. Similarly, if the network is fast enough, the
agent might do worse even if the code is smaller, since

1



mobile agents are typically written in an interpreted
language for portability and security reasons. With
a fast and reliable network, interpreting the agent on
the server might be slower than transmitting the in-
termediate data to the client. As network speed and
reliability drops, however, or data sizes increase, the
picture changes considerably.

Another common concern about the performance
of mobile-agent systems is that they shift a lot of
the processing load from the clients to the server. In
many environments, this is a significant advantage.
For example, the clients may be hand-held computers
with limited memory and computational power, and
the “server” may be a large multiprocessor computer.
Still, this shift of computation to the server does lead
to questions about the scalability of the mobile-agent
platform. As the number of clients increases, how
well can the mobile-agent services scale? Where is the
trade-off between the savings in network transmission
time and the possible extra time waiting for a clogged
server CPU?

We set out to examine this question through a se-
ries of experiments. We were interested in compar-
ing a traditional client/server (RPC) approach with
a mobile-agent approach, and in comparing several
mobile-agent platforms. Our goal is to understand
the performance effects that are fundamental to the
mobile-agent idea, and separately the performance
effects due to implementation choices made by the
different mobile-agent platforms.

So, in this paper, we introduce three mobile-agent
platforms: D’Agents, EMAA, and NOMADS. Then
we describe the scenario chosen for our tests, and the
details of the tests themselves. Finally, we present the
experimental results and discuss our interpretation.

2 Mobile-agent systems

In our experiments we chose to evaluate three mobile-
agent platforms: D’Agents from Dartmouth College,
EMAA from Lockheed-Martin Advanced Technology
Laboratory, and NOMADS from the University of
West Florida Institute for Human & Machine Cog-
nition.

2.1 D’Agents

D’Agents1 is a mobile-agent system that was
developed at Dartmouth College to support
information-retrieval applications and first released
in 1994 [Gra97, GKCR98, GCKR00, GCK+00].
The architecture of D’Agents is shown in Figure 1.

1D’Agents was once known as Agent Tcl.

Stubs

State
capture

VM

Security

Core

Server

Tcl/TkScheme

Agents

Generic C/C++ core

Transport (TCP/IP)

Java

Figure 1: Architecture of the D’Agents mobile-agent
system.

Like all mobile-agent systems, D’Agents is based
on a server that runs on each machine. The server
receives incoming agents, authenticates the identity
of the agent’s owner, assigns access permissions to
the agent based on this identity, and executes the
agent inside the appropriate execution environment.
Unlike the other mobile-agent systems described in
this paper, however, D’Agents supports multiple
languages (Tcl, Java and Scheme) allowing the agent
programmer to select an appropriate language for
her particular application. In addition, for both Tcl
and Java, D’Agents supports strong mobility, where
the agent’s complete control state, rather than just
its code and date state, is moved from one machine
to another. If an agent decides to move to a new
machine inside a for loop, for example, the agent will
still be inside the for loop when it resumes execution
on the new machine.

Experience with undergraduate programmers sug-
gests that strong mobility is easier than weak mo-
bility for the agent programmer to understand and
use [Whi96]. Strong mobility does require significant
effort from the system programmer, however, since
the system must capture enough state information to
restore the agent in exactly the same control state on
its new machine. In fact, off-the-shelf Tcl and Java
interpreters do not provide the state-capture routines
that are needed for strong mobility, and D’Agents
uses modified Tcl and Java interpreters to execute
its agents. Since modified interpreters make it time
consuming to upgrade to new interpreter versions,
D’Agents still uses Java 1.0. In contrast, many other
mobile-agent systems (such as EMAA) run on top
of standard Java interpreters, can be upgraded eas-
ily as new versions of Java are released, and cur-
rently use Java 2.0. Java 2.0 supports just-in-time
compilation, allowing Java agents in those other sys-

2



tems to execute more closer to the speed of native
code than in D’Agents. At the same time, the mod-
ified Java interpreter in D’Agents does have an opti-
mized set of string routines, which improves perfor-
mance significantly for string-intensive, information-
retrieval tasks. For such tasks, which include the task
analyzed later in this paper, a Java agent in D’Agents
can equal or better the performance of a Java agent
in the other systems, despite the lack of just-in-time
compilation.

When an agent migrates in D’Agents, the entire
code base and state image is sent from the source
to target machine. D’Agents does not support code
caching or code servers, nor does it fetch code from
the agent’s previous machine on demand. In ad-
dition, D’Agents creates a new TCP/IP connection
for each message or migrating agent, rather than
holding open existing connections between pairs of
servers. D’Agents does send user-level acknowledg-
ments, however, to defeat the delayed acknowledg-
ment feature of TCP/IP [Ste94].

In early versions of D’Agents, the server was a
multi-process server that did not spawn an interpreter
process for an agent until the agent had actually ar-
rived. For example, once a Tcl agent arrived, the
server would spawn a Tcl interpreter. The overhead
of this interpreter startup was large, since it involved
calls to the Unix fork and exec functions, as well as
initialization of the interpreter’s internal data struc-
tures. To remove this startup overhead from the
critical migration path, the most recent version of
D’Agents has a multi-threaded server that maintains
a pool of “hot” interpreters. This multi-threaded
server starts up a set of interpreter processes at boot
time, and then hands off incoming agents to the first
free interpreter in that set. An interpreter process
does not die when an agent finishes, but instead stays
alive to execute the next incoming agent. Although
this approach still runs each agent in a separate pro-
cess,2 it eliminates nearly all of the startup overhead.3

In contrast to D’Agents, many other mobile-agent
systems (such as EMAA, but not NOMADS) run
each agent as a thread inside the server process it-

2More precisely, each Tcl and Scheme agent runs inside its
own process, but multiple Java agents run inside the same Java
process, since Java’s thread support makes it straightforward
to have multiple agents inside a single Java virtual machine.
In fact, due to the large memory footprint of the Java virtual
machine, multiple Java agents per virtual machine is essential
for system scalability.

3It does not eliminate all of the overhead since each in-
terpreter process is allowed to handle only a fixed number of
agents before it terminates and is replaced with a new process.
In addition, even though an interpreter process remains ac-
tive from one agent to another, the process still must do some
initialization and cleanup for each agent.

self. This approach reduces the migration overhead
even further. Unfortunately, this approach is diffi-
cult in D’Agents, since D’Agents supports multiple
languages. A multi-threaded server with pools of sep-
arate interpreter processes strikes a balance between
efficiency and complexity.

D’Agents has no centralized services involved for
basic agent communication or migration. By default,
for example, an agent is assigned a name that is
unique only in the context of its current machine.
An agent receives a globally unique name only if it
chooses to register with a directory service. In all
of the experiments in this paper, when a D’Agents
agent migrates to a new machine, there is only a sin-
gle communication step, i.e., the old machine sending
the agent to the new machine. There is no communi-
cation with any services on other machines. Finally,
although D’Agents includes extensive security mech-
anisms, such as digitally signing and encrypting mo-
bile agents, none of these security mechanisms were
turned on during the experiments in this paper. Se-
curity mechanisms also were turned off in the other
systems.

2.2 EMAA

The Extendable Mobile Agent Architecture (EMAA)
is a Java-based, object-oriented mobile-agent archi-
tecture [MCW00, CMMS00]. It provides a simple,
structured way for an agent to migrate from one com-
puting node to another and to use the resources at
that node. Figure 2 depicts the basic EMAA archi-
tectural components. At EMAA’s core lies an agent
Dock that resides on each execution host. The Dock
provides an execution environment for agents, han-
dles incoming and outgoing agent migration, and al-
lows agents to obtain references to services. EMAA
allows users to define agents, services, and events.
Agents are composed of small, easily reused tasks per-
formed to meet a goal for a user. An agent’s tasks
are encapsulated in an itinerary; itineraries are struc-
tured as process-oriented state graphs. Agents may
be mobile, and they typically make use of station-
ary services. Services may implement connections to
external systems (such as databases and other ap-
plications), may themselves provide some complex
functionality, or may carry out any number of other
functions, so long as they are not themselves primary
actors. Goal-orientation and directed activity is gen-
erally reserved to be the function of agents. Both
agents and services may send and receive events.

EMAA agents employ weak mobility; that is,
the agent’s full execution state (stack and program
counter) is not transferred to the receiving machine.

3



Local�ResourceLocal�Resource

Agent

Servers

Agents

Events

Servers

Agents

Local�Resource

Events

Agents

Figure 2: Architecture of the EMAA mobile-agent
system.

Instead, the agent’s data state is maintained, and
the agent starts execution at a predefined entry point
upon arrival. An EMAA agent may migrate in be-
tween execution of states in its itinerary. To mi-
grate, an agent uses the CommunicationServer, a core
Server that is a part of the Dock, to serialize and send
itself to another machine. The CommunicationServer
provides SSL-encrypted agent transfer over TCP/IP
sockets. The receiving CommunicationServer verifies
that the object received is an agent, that the class files
needed to run the agent are present (if not present,
they are obtained using a ClassLoader), then delivers
the agent to the local AgentManager. The Agent-
Manager gives the agent an execution thread and in-
vokes its entry method, and may provide additional
registration or authentication.

EMAA agents were designed to function robustly
under harsh conditions such as those found in many
tactical military networks; these frequently feature
unreliable, low-bandwidth wireless connectivity. To
this end, EMAA agents are typically small; for ex-
ample, the agent used in the scalability tests de-
scribed by this report measured approximately 750
bytes when not configured with an itinerary and
tasks, and fewer than 1400 bytes when fully config-
ured. Agents can be remotely controlled and moni-
tored using EMAA’s distributed event services, and
agents may checkpoint their data state to support
reinstantiation in the face of machine failure.

2.3 NOMADS

NOMADS is a system that provides strong mo-
bility and strong security for Java-based mobile
agents [SBB+00]. Strong mobility implies that the
NOMADS system captures and moves the complete
execution state of the agent from one platform to an-
other (similar to D’Agents). NOMADS also supports
the notion of forced mobility, where the system or
administrator may asynchronously move agents be-

tween platforms potentially even without the agents
realizing the movement.

One of the major limitations of the Java envi-
ronment is the lack of resource-control capabilities.
While the Java 2 security architecture and JAAS pro-
vide good access-control capabilities, they do not pro-
vide any resource control. For example, while it is
possible to limit an agent from writing to any direc-
tory except the /tmp directory, once access is granted
to write to the /tmp directory, no quantitative limits
may be placed on the agent. The agent could create
a dummy file and fill up all the disk space available
with garbage. Similarly, if an agent is granted write
access to some IP address, the agent could easily flood
the network by writing continuously to that IP ad-
dress. The lack of resource-control capabilities in the
standard Java environment (and in all agent systems
that rely on the standard Java environment) leave the
system wide open to denial-of-service attacks.

NOMADS provides strong security by controlling
the resources consumed by agents running within the
NOMADS environment. Two types of resource con-
trols are available: rate controls and quantity con-
trols. Rate controls apply to I/O rates (such as disk
read rate, network write rate) and to the CPU (byte-
codes executed per millisecond or percentage of CPU
used). Quantity controls apply to I/O operations
(such as the total number of bytes written, or disk
space used).

NOMADS relies on the Aroma VM, a Java-
compatible VM that provides the necessary state-
capture and resource control facilities. The Aroma
VM is a “clean-room” implementation of the Java
VM specification– it does not use any source code
from the standard Java implementations, which al-
lows the Aroma VM and consequently NOMADS
to be distributed freely. While Aroma is mostly
JDK 1.2.2 compatible, it does not provide support
for AWT and swing. Also, Aroma does not support
a Just-In-Time (JIT) compiler yet, which results in
poor performance when compared to the standard
Java environments. This lack is the primary reason
for the slow task times of the NOMADS system in
the scalability experiments described in this paper.

The Aroma VM is embedded inside Oasis, the
agent execution environment. The structure of Oa-
sis is shown in Figure 3. The oasis process is a
daemon that usually runs in the background as a
service. Users and administrators may interact with
oasis through the Administration and Console pro-
gram, which can be used to configure Oasis, specify
accounts and security policies, and perform I/O with
agents. The oasis service executes each agent in
a separate instance of the Aroma VM. This archi-

4



Oasis�
Administration�
and Console�

Window for�
Agent A�

Window for�
Agent B�

Oasis Process�

Policy�
Manager�

Protocol�
Redirector�

Console Input/Output�
Handler�

"RAW" Protocol�
Handler�

Messaging�
Protocol Handler�

Dispatcher�

Directory Service and�
Messaging�

Aroma Execution Env.�
AromaVM�

(Running Agent B)�

Serialization�
Protocol Handler�

Aroma Execution Env.�
AromaVM�

(Running Agent A)� AromaVM�
AromaVM�

AromaVM�

Cache of VMs�

Figure 3: Architecture of the Oasis agent-execution
environment for NOMADS.

tecture helps enforce the resource controls on a per-
agent basis. Note that all the instances are within
the same process and hence share all of the VM code
and loaded classes. Essentially, the only part that is
duplicated in each VM is the heap. The oasis ser-
vice also maintains a cache of VMs to use for agents.
New VMs are created on the fly if needed.

Currently, Oasis supports only the Aroma execu-
tion environment. The design of Oasis allows other
execution environments to be included if desired. We
plan to support the standard Java VM as an alter-
nate execution environment. Other languages could
also be incorporated via additional execution envi-
ronments.

Oasis supports multiple protocol handlers that im-
plement the agent transfer and agent messaging. Two
migration mechanisms are available: full VM state
(known as Raw) or individual thread serialization.
In addition, the agent state may be compressed and
decompressed on the fly. Oasis also includes a pol-
icy manager that maintains the security policies that
are in effect. Other components include a dispatcher
that is responsible for starting and stopping the ex-
ecution of agents, a directory service and messaging
component, and a console I/O redirection component
that allows the I/O of an agent to be redirected over
a network socket (similar to X windows).

3 Experiments

The goal of our experiment was to compare
the scalability of mobile-agent performance versus

client/server performance in an information-retrieval
(IR) task as the number of clients increases. To ex-
plore this issue we implemented a simple IR task us-
ing both an agent and a client/server architecture.
Our IR task represents a simple keyword query on
a collection of documents stored at the server. The
agents jump to the server, scan all documents for the
desired key words, and return with the matching sub-
set of documents. In the client/server case, the client
downloads all of the documents and scans them on
the client.

Thus the client/server application downloads all
documents on every query, and does its filtering on
the client machine. The agent-based application does
its filtering on the server and downloads only the
matching documents. The client/server application is
written in C++ (for speed), while the agent-based ap-
plication is written in Java (for mobility). The trade-
off is thus between network bandwidth consumption
and processing speed, between a fast language on dis-
tributed clients and a slower language on a shared
server.

In our experiments we used one server and one to
ten clients, measuring the average time for each query
to complete. In the remainder of this section we pro-
vide the details of the experimental conditions.

3.1 The experiments

The information-retrieval task was a three-word key-
word query on a set of 60 documents, each of which
was 4096 bytes in size. The characteristics of this
task are similar to those of searches on our technical-
report collection here at Dartmouth, although it is
not modeled on any specific real-world system. All
matching documents would be returned to the user,
in their entirety.

Both agent and client/server implementations
scanned the entire set of 60 documents for the three
keywords, so that the task’s computational complex-
ity is equivalent for both approaches. Introducing the
unpredictable scan times of real queries would have
required much longer testing times to get believable
averages. We chose a complete scan to reduce testing
time and to obtain proper experimental control. For
similar reasons, we chose to declare a certain fraction
of the documents to be “selected”, ignoring the ac-
tual results of the query, to increase our control over
the size of the task output.

We wrote the client/server applications in C++
using TCP/IP connections with a simple protocol for
handshaking between client and server. These are the
steps involved in a query, from any one of the clients
on any client machine:

5



1. Record the start time in milliseconds.

2. The client sends the keywords to the server via
a TCP/IP connection.

3. The server returns 60 documents on the same
connection.

4. The client executes the query (which always re-
turns the number of documents corresponding to
a selection ratio).

5. A stop time is recorded. Stop time minus start
time gives total query time. Times are summed
and then averaged at the end of the test by the
client.

Rather than write and debug a multi-threaded
server application, we ran a separate server on a dif-
ferent port for each client. The idea here is that hav-
ing n independent server tasks on a single machine
is similar to having n threads on a server spawned in
response to incoming client requests, especially since
Linux threads are separate tasks anyway. Thus the
server machine running multiple server applications
is a close equivalent of a machine running a multi-
threaded server application.

We wrote the agent applications in Java. The
speed of any application written in the Java language,
even with a JIT compiler, is slower than that of an
equivalent implementation in C++. This difference
works only in the favor of the client/server approach,
therefore, so any performance benefits seen with the
agent approach are not due to language differences.

We used three agent systems: D’Agents AgentJava,
EMAA, and NOMADS. Each system required some
porting of the agent application due to differences
in how each agent system works. We reviewed the
ported code to ensure that all implementations would
behave in a functionally identical way.

There are three different virtual machines used
by the three different mobile-agent platforms, how-
ever, and it is important to understand the perfor-
mance effects. D’Agents “AgentJava” uses a mod-
ified JDK 1.0.2, EMAA use the Linux Blackdown
JDK 1.2.2 port with JIT compiler, and NOMADS
uses its own clean-room JVM that has not yet been
optimized for speed. To understand the speed differ-
ences, we ran the IR task alone in each platform.

Comparison of Average IR Task Times
20% ratio 5% ratio

C++ 3.02ms 2.92ms
D’Agents 61.6ms 55.9ms
EMAA 96.1ms 88.9ms
NOMADS ?ms ?ms

The C++ times are markably faster due to the
extremely inefficient Java file I/O routines. All of

the times reflect little actual disk activity because the
underlying Linux file cache holds all of the documents
used for the test. Due to an optimized string handling
library in D’Agents it was significantly faster than
JDK 1.2.2 (EMAA), even though it did not have a
JIT compiler. This difference accounts for some of
the performance differences between the mobile-agent
systems as described below. We unfortunately do not
have NOMADS numbers in time for this printing.

The agent-based experiments are controlled by
a master agent that deploys the individual client
agents, then listens for times to be reported by client
agents.

Each client agent loops over many queries, follow-
ing this procedure for each query:

1. Record “start time.”

2. Jump to the server machine.

3. Record the “task start time.”

4. Run the query against the 60 documents to get
the matching documents based on the selection
ratio.

5. Record the “task stop time.”

6. Jump back to the client machine with the match-
ing documents.

7. Record the “stop time.” Stop time minus start
time gives total query time. Task-stop time mi-
nus task-start time gives total task time. To-
tal query time minus total task time gives jump
time. In this way clock differences between ma-
chines become irrelevant.

8. Report these times to the master agent.

In our experiment we examined client/server and
three mobile-agent implementations. We also varied

• the number of clients (1 to 10, each on a separate
machine),

• the network bandwidth to the server (1, 10,
100 mbps),4 shared by all clients, and

• the percentage of documents selected (5%, 20%).

Other parameters, fixed for these experiments,
were

• the number of documents in the collection (60),

• the document size (4096 bytes),
4In this paper we use the prefixes m and k to refer to powers

of 10, and the prefixes M and K to refer to powers of 2. Thus
10 mbps refers to 10,000,000 bits per second.

6



C
lie
nt
s

M
ob

ile
A
ge
nt

F
ig

ur
e

4:
T

he
cl

us
te

r
us

ed
fo

r
th

e
ex

pe
ri

m
en

ts
.

•
th

e
nu

m
be

r
of

qu
er

ie
s
(2

00
-1

00
0

qu
er

ie
s,

de
pe

nd
-

in
g

on
th

e
ag

en
t

sy
st

em
),

an
d

•
th

e
qu

er
y

ra
te

(1
qu

er
y

ev
er

y
2

se
co

nd
s,

se
e

be
-

lo
w

).

T
he

re
su

lt
s

w
er

e
av

er
ag

ed
ov

er
20

0
to

10
00

qu
er

ie
s

de
pe

nd
in

g
on

th
e

ag
en

t
sy

st
em

,u
si

ng
w

ha
te

ve
r

nu
m

-
be

r
of

qu
er

ie
s

w
as

re
qu

ir
ed

to
ge

t
re

pe
at

ab
le

re
su

lt
s.

T
he

qu
er

y
ra

te
w

as
se

t
to

av
er

ag
e

on
e

qu
er

y
pe

r
tw

o
se

co
nd

s,
bu

t
un

ifo
rm

ly
di

st
ri

bu
te

d
ov

er
th

e
ra

ng
e

0.
25

–0
.7

5
qu

er
ie

s
pe

r
se

co
nd

.
T

hi
s

ra
nd

om
ne

ss
pr

e-
ve

nt
s

ag
en

ts
fr

om
ex

hi
bi

ti
ng

sy
nc

hr
on

ou
s

be
ha

vi
or

.
T

hi
s
qu

er
y

ra
te

is
a

m
ax

im
um

:
if

a
qu

er
y

ta
ke

s
lo

ng
er

th
an

tw
o

se
co

nd
s

to
co

m
pl

et
e

it
s
ta

sk
,t

he
ne

xt
qu

er
y

w
ill

no
t
be

st
ar

te
d

un
ti

lt
he

ag
en

t
re

tu
rn

s
to

it
s
cl

ie
nt

m
ac

hi
ne

.
W

e
ra

n
th

e
ex

pe
ri

m
en

ts
on

a
se

t
of

el
ev

en
id

en
ti

-
ca

l
L
in

ux
w

or
ks

ta
ti

on
s,

as
in

F
ig

ur
e

4.
5

T
en

of
th

e
m

ac
hi

ne
s

ac
t

as
cl

ie
nt

s
an

d
on

e
ac

ts
as

th
e

do
cu

m
en

t
se

rv
er

.
A

lt
ho

ug
h

w
e

in
te

rc
on

ne
ct

ed
th

e
co

m
pu

te
rs

w
it

h
a

ph
ys

ic
al

10
0

m
bp

s
“F

as
t

E
th

er
ne

t”
ne

tw
or

k,
w

e
re

du
ce

d
th

e
ba

nd
w

id
th

av
ai

la
bl

e
by

ei
th

er
in

se
rt

-
in

g
a

10
m

bp
s

hu
b,

or
by

in
se

rt
in

g
a

P
en

ti
um

-1
00

co
m

pu
te

r
ru

nn
in

g
th

e
D

um
m

yN
et

ba
nd

w
id

th
m

an
-

ag
er

.
D

um
m

yN
et

al
lo

w
ed

us
to

se
t

th
e

ba
nd

w
id

th
an

yw
he

re
fr

om
2.

4
kb

ps
to

3
m

bp
s.

6

W
e

us
ed

a
tw

el
ft

h
m

ac
hi

ne
to

la
un

ch
th

e
cl

ie
nt

s
an

d
m

on
it

or
th

e
ex

pe
ri

m
en

ts
.

E
ac

h
of

th
e

el
ev

en
te

st
m

ac
hi

ne
s

co
nt

ai
ne

d
al

lt
he

ne
ce

ss
ar

y
co

de
an

d
do

cu
-

m
en

ts
on

th
ei

r
lo

ca
ld

is
ks

,s
o

th
at

th
e

te
st

s
w

ou
ld

no
t

5
V
A

L
in

u
x

V
a
rS

ta
ti

o
n

2
8
,

M
o
d
el

2
8
7
1
E

,
4
5
0

m
H

z
P
en

-
ti

u
m

II
,
2
5
6

M
B

R
A

M
,
5
4
0
0

rp
m

E
ID

E
d
is

k
,
ru

n
n
in

g
th

e
L
in

u
x

2
.2

.1
4

(R
ed

H
a
t

6
.1

)
o
p
er

a
ti

n
g

sy
st

em
.

6
D

u
m

m
y
N

et
is

a
m

o
d
ifi

ed
F
re

eB
S
D

fi
re

w
a
ll

th
a
t

ca
n

b
e

u
se

d
to

co
n
tr

o
l

b
a
n
d
w

id
th

a
ll
o
ca

ti
o
n
.

S
ee

h
t
t
p
:
/
/
i
n
f
o
.
i
e
t
.
u
n
i
p
i
.
i
t
/
~
l
u
i
g
i
/
i
p
d
u
m
m
y
n
e
t
/

fo
r

m
o
re

in
fo

rm
a
ti

o
n
.

be
aff

ec
te

d
by

un
ne

ce
ss

ar
y

N
F
S

tr
affi

c.
Si

m
ila

rl
y,

w
e

is
ol

at
ed

th
e

te
st

co
m

pu
te

rs
an

d
ne

tw
or

k
fr

om
ou

ts
id

e
tr

affi
c

so
th

at
ou

r
re

su
lt

s
ar

e
no

t
sk

ew
ed

by
un

re
la

te
d

ac
ti

vi
ty

.

4
R

e
su

lt
s

a
n
d

d
is

c
u
ss

io
n

W
e

pl
ot

se
ve

ra
l

as
pe

ct
s

of
th

e
re

su
lt

s
in

a
se

ri
es

of
fig

ur
es

at
ta

ch
ed

to
th

e
en

d
of

th
is

re
po

rt
.

W
e

fir
st

co
ns

id
er

th
e

to
ta

l
qu

er
y

ti
m

e,
an

d
th

en
it

s
co

m
po

-
ne

nt
s

“t
as

k
ti

m
e”

an
d

“j
um

p
ti

m
e.

”
T

he
n

w
e

m
ak

e
a

di
re

ct
co

m
pa

ri
so

n
be

tw
ee

n
th

e
cl

ie
nt

/s
er

ve
r

ti
m

es
an

d
th

e
ag

en
t

ti
m

es
,b

y
pr

es
en

ti
ng

th
e

ra
ti

o
be

tw
ee

n
cl

ie
nt

/s
er

ve
r

an
d

ag
en

t
ti

m
es

.

4
.1

T
o
ta

l
q
u
e
ry

ti
m

e

E
ac

h
pl

ot
in

F
ig

ur
e

5
sh

ow
s

th
e

to
ta

lq
ue

ry
ti

m
e

fo
r

al
ls

ys
te

m
s.

T
he

x
ax

is
is

th
e

nu
m

be
r
of

cl
ie

nt
s,

w
hi

ch
al

so
co

rr
es

po
nd

s
to

th
e

nu
m

be
r

of
cl

ie
nt

m
ac

hi
ne

s.
T

he
y

ax
is

is
th

e
av

er
ag

ed
pe

r-
qu

er
y

ti
m

e
in

m
ill

is
ec

-
on

ds
(n

ot
e

th
er

e
is

a
se

pa
ra

te
sc

al
e

fo
r
th

e
N

O
M

A
D

S
da

ta
).

Fo
r

th
e

ag
en

t
ap

pr
oa

ch
,

th
is

is
th

e
el

ap
se

d
ti

m
e

fo
r

th
e

ag
en

t
to

ju
m

p
fr

om
cl

ie
nt

m
ac

hi
ne

to
se

rv
er

m
ac

hi
ne

,
re

tr
ie

ve
th

e
do

cu
m

en
ts

,
de

te
rm

in
e

w
hi

ch
do

cu
m

en
ts

m
at

ch
th

e
qu

er
y,

an
d

ju
m

p
ba

ck
to

th
e

cl
ie

nt
m

ac
hi

ne
.

(T
he

ne
xt

tw
o

se
ct

io
ns

an
d

tw
o

fig
ur

es
se

pa
ra

te
th

e
co

m
pu

ta
ti

on
an

d
ju

m
p

co
m

-
po

ne
nt

s
of

th
is

to
ta

l.)
T

he
fig

ur
e

sh
ow

s
si

x
pl

ot
s,

fo
r

th
re

e
ba

nd
w

id
th

s
(1

,
10

,
an

d
10

0
m

bp
s)

an
d

tw
o

se
le

ct
io

n
ra

ti
os

(5
%

or
20

%
,r

es
pe

ct
iv

el
y)

.
G

en
er

al
ly

sp
ea

ki
ng

,a
ny

gi
ve

n
im

pl
em

en
ta

ti
on

w
ill

sl
ow

do
w

n
lin

ea
rl

y
w

it
h

th
e

nu
m

-
be

r
of

cl
ie

nt
s,

du
e

to
in

cr
ea

si
ng

co
nt

en
ti

on
fo

r
th

e
ne

tw
or

k
an

d
th

e
se

rv
er

’s
C

P
U

.T
he

sl
op

e
of

th
at

lin
e

de
pe

nd
s

on
th

e
ov

er
he

ad
of

th
at

im
pl

em
en

ta
ti

on
,t

he
pa

ra
m

et
er

s
of

th
e

qu
er

y,
an

d
th

e
sp

ee
d

of
th

e
ne

t-
w

or
k

an
d

C
P

U
.I

n
m

os
t

ca
se

s
th

er
e

w
ill

be
an

in
fle

c-
ti

on
po

in
t

w
he

re
th

e
sl

op
e

su
dd

en
ly

in
cr

ea
se

s,
on

ce
th

e
nu

m
be

r
cl

ie
nt

s
po

se
su

ffi
ci

en
t

lo
ad

to
re

ac
h

th
e

lim
it

at
io

ns
of

th
e

ne
tw

or
k

or
C

P
U

.T
ha

t
eff

ec
t

ca
n

be
se

en
m

os
t

re
ad

ily
in

ou
r

10
m

bp
s

cl
ie

nt
/s

er
ve

r
ex

pe
r-

im
en

ts
,w

he
re

th
e

de
m

an
ds

of
9

an
d

10
cl

ie
nt

s
be

gi
n

to
ex

ce
ed

th
e

lim
it

s
of

th
e

ne
tw

or
k.

7
T

he
eff

ec
t

pr
ob

-
ab

ly
oc

cu
rs

in
th

e
ag

en
t

im
pl

em
en

ta
ti

on
s,

on
ly

w
it

h
m

or
e

cl
ie

nt
s

th
an

w
e

w
er

e
ab

le
to

te
st

.
In

th
e

1
m

bp
s

ne
tw

or
k,

th
e

fa
ct

th
at

ag
en

ts
br

in
g

ba
ck

on
ly

5
or

20
%

of
th

e
do

cu
m

en
ts

al
lo

w
s

th
em

to
be

le
ss

se
ns

it
iv

e
to

th
e

co
ns

tr
ai

nt
s

of
th

e
sl

ow
ne

t-
w

or
k,

w
hi

le
th

e
cl

ie
nt

/s
er

ve
r

ap
pr

oa
ch

is
ba

nd
w

id
th

-
lim

it
ed

.
H

er
e,

as
in

th
e

10
m

bp
s

ne
tw

or
k,

E
M

A
A

7
N

in
e

cl
ie

n
ts

p
u
ll

4
0
9
6

b
y
te

s/
d
o
cu

m
en

t
ti

m
es

6
0

d
o
cu

m
en

ts
ev

er
y

2
se

co
n
d
s,

o
r

8
,8

4
7
,3

6
0

b
p
s.

T
h
a
t

ra
te

ex
ce

ed
s
th

e
p
ra

c-
ti

ca
l
li
m

it
s

o
f
1
0

m
b
p
s

E
th

er
n
et

.

7



and D’Agents clearly perform much better than
client/server. NOMADS is much slower, due to its
slower JVM (as we discuss in the next section).

In the 100 mbps network, however, client/server is
the clear winner. In this environment, the network
has more than enough bandwidth to allow the clients
to retrieve all of the documents. With the network
essentially free, the slower computation of the agents
(using Java rather than C++, and sharing the server
rather than dispersing among the clients) makes the
mobile-agent approach a less attractive option.

The variability of EMAA, and the differences be-
tween EMAA and D’Agents, are better examined in
terms of the task times and jump times, below.

4.2 Task times

Each plot in Figure 6 shows the task time for all agent
systems. Recall that the task time is the time for
computation of the filtering task only. The x axis is
the number of client agents, which also corresponds
to the number of client machines. The y axis is the
average task time in milliseconds.

The most notable feature in these graphs is the dra-
matic difference between the NOMADS times (which
have a separate y-axis scale) and the other agent
systems. This difference is due to the home-grown
JVM implementation in the NOMADS project, which
has not been tuned. The NOMADS data grows lin-
early with the number of clients, indicating that the
server’s CPU is always the limiting factor for NO-
MADS.

The D’Agents task time is the fastest, in large part
because it uses an older version of the JVM than
EMAA, a version with native (rather than Java) im-
plementations of the critical string-manipulation rou-
tines. Our document-scanning application stresses
those routines, leading to better performance for
D’Agents in this case.

The D’Agents time is largely constant, because the
query rate (average 1 query per client per 2 seconds,
or less) is low enough to not stress the server CPU.
EMAA’s task times, in contrast, are high enough to
stress the server CPU. We believe that the cause is
the time needed to serialize and transmit the return-
ing agent; note that the task times increase for larger
agents (20% graphs) at the higher bandwidths (10
and 100 mbps).

The EMAA task times show two surprising dips in
each of the 5% cases. These dips are repeatable. We
are investigating the causes of these dips.

4.3 Jump times

Each plot in Figure 7 shows the per-query jump time
for each system. Recall that the jump time is the
total query time minus the task time, so it includes
all of the computational overhead of a jump (serial-
ization, network protocol, deserialization, and rein-
stating an agent) as well as the network time. The x
axis is the number of client agents, which also corre-
sponds to the number of client machines. The y axis
is the average jump time in milliseconds (note there
is a separate scale for the NOMADS data on some of
the plots).

The jump times are most difficult to interpret, be-
cause they depend on the load of both the network
and the server’s CPU. The higher NOMADS times,
for example, are likely due to the heavy load on
the CPU impacting the time needed for serialization,
transmission, and deserialization of jumping agents.
We believe that the unsteady curves in the NOMADS
results are due to the limited number (20) queries we
ran in NOMADS experiments. We plan further ex-
periments so that the numbers better represent the
steady-state performance.

EMAA’s time is largely steady, although there is
a significant jump in the 10 mbps 20% environment,
possibly due to significant server load. The D’Agents
curve is most dramatic in the 1 mbps 5% environ-
ment. We are still investigating the cause for this
behavior.

Interestingly, D’Agents is slower than EMAA in
two of the graphs, about the same in one, and faster
in three. The reason is that D’Agents is more affected
than EMAA by the network load and bandwidth:
note that the difference between the D’Agents jump
time and the EMAA jump time decreases steadily
(from positive to increasingly negative) as the net-
work bandwidth increases or as the network load in-
creases (from 5% to 20% selection). D’Agents is more
affected because its agents tend to be bigger.

4.4 Ratio of client/server time to
agent time

Each plot in Figure 8 shows the “performance ratio,”
which is the client/server query time divided by the
mobile-agent query time. A ratio of 1 indicates that
the agent approach and the client/server approach
are equivalent in performance; higher than 1 indicates
that agents were faster. The x axis is the number
of clients, which also corresponds to the number of
client machines. The y axis is the performance ratio.
The NOMADS ratio is indistinguishable from zero
because the NOMADS times were so large.

8



For EMAA and D’Agents, there are three different
effects, dependent on bandwidth.

In the 1 mbps curves, we see that the performance
ratio for both EMAA and D’Agents climb, and then
fall or level off. For small numbers of D’Agents
agents, the performance ratio improves quickly be-
cause the client/server approach is bandwidth lim-
ited, while the agent approach is not. With a few
more agents, D’Agents reaches the network band-
width limit and becomes slower, reducing the per-
formance ratio. Once both client/server and agent
performance have reached the same slope, the per-
formance ratio levels off. We believe EMAA sees the
same effect.

In the 10 mbps curves, we see a different effect.
Here, the agents never hit the network limit, but
the client/server implementation hits the limit at 9
clients. The performance ratio suddenly improves.
We believe that, with more than 10 clients, the per-
formance ratio would level off once the client/server
implementation reaches a new slope.

In the 100 mbps curves, the performance ratio for
both D’Agents and EMAA declines steadily as more
clients are added. We believe that the agent ap-
proaches are more sensitive to the CPU overhead of
CPU contention (as the CPU becomes loaded, its
efficiency drops as more time is spent in context-
switching).

Now, think of each of the plots in Figure 8 a slice in
a larger three-dimensional plot. Each agent system’s
curve becomes a surface over the variation in band-
width and the number of clients. Figures 9 and 10
show those three-dimensional curves, in both contour
and 3-D format, for D’Agents and EMAA.

Each plot in Figure 9 shows the performance ratios
for D’Agents. The x axis is bandwidth in megabits
per second; note that this axis is neither logarithmic
nor linear. The y axis is the number of clients, which
also corresponds to the number of client machines. In
all plots, the color represents the performance ratio.
In the 3-D plots on the right, the z axis is the perfor-
mance ratio. The bottom four plots show the same
data; the two contour plots are identical and the two
3-D plots show two different viewing angles.

In the 5% graphs, we can see that the performance
ratio peaks and then (for 1 mbps) falls as the number
of clients increases. As we mention above, at this
point the D’Agents implementation hits the network
limitation and the performance ratio weakens.

In the 20% graphs (all four bottom graphs of Fig-
ure 9) there appear to be two peaks, but the lower-
right graph helps to show that this may be a visual
effect arising from a lack of data points in the 3-
10 mbps range. The actual surface likely reflects a

“ridge,” such that the peak performance moves up in
the number of clients as the bandwidth increases.

Similarly, each plot in Figure 10 shows the perfor-
mance ratios for EMAA. These results are easier to
interpret, showing higher performance ratio for lower
bandwidths or larger numbers of clients.

5 Conclusion

In our experiments we have found that the scalabil-
ity of mobile-agent systems, in comparison to an al-
ternative client/server implementation of the same
application, depends on many different environmen-
tal parameters. Overall, the three mobile-agent sys-
tems we examined scale reasonably well from 1 to 10
clients, but when we compare them to each other and
to a client/server implementation they differ some-
times dramatically. The client/server implementa-
tion was highly dependent on sufficient network band-
width. The agent implementations saved network
bandwidth at the expense of increased server com-
putation. Thus, the agent approaches fared best, rel-
atively, in low-bandwidth situations.

The performance of NOMADS clearly suffered
from the untuned virtual machine. The relative per-
formance of EMAA and D’Agents varied depending
on the mix of computation and network in the appli-
cation, reflecting their different mix of overheads.

Our experiments need to be extended, to larger
numbers of clients and to a wider range of computa-
tional tasks. They also need to be filled in, with more
data points in critical regions of interest. Finally, we
would like to obtain more detailed measurements of
some of the computational overheads so that we can
better understand the nature of the performance we
see.

References

[CMMS00] Daria Chacón, John McCormick, Su-
san McGrath, and Craig Stoneking.
Rapid application development using
agent itinerary patterns. Technical Re-
port Technical Report #01-01, Lockheed
Martin Advanced Technology Laborato-
ries, March 2000.

[GCK+00] Robert S. Gray, George Cybenko, David
Kotz, Ronald A. Peterson, and Daniela
Rus. D’Agents: Applications and perfor-
mance of a mobile-agent system. Submit-
ted to Software Practice and Experience,
November 2000.

9



[GCKR00] Robert S. Gray, George Cybenko, David
Kotz, and Daniela Rus. Mobile agents:
Motivations and state of the art. In Jef-
frey Bradshaw, editor, Handbook of Agent
Technology. AAAI/MIT Press, 2000. To
appear. Draft available as Technical Re-
port TR2000-365, Department of Com-
puter Science, Dartmouth College.

[GKCR98] Robert S. Gray, David Kotz, George Cy-
benko, and Daniela Rus. D’Agents: Secu-
rity in a multiple-language, mobile-agent
system. In Giovanni Vigna, editor, Mo-
bile Agents and Security, volume 1419
of Lecture Notes in Computer Science,
pages 154–187. Springer-Verlag, 1998.

[Gra97] Robert Gray. Agent Tcl: A flexible and
secure mobile-agent system. PhD thesis,
Dept. of Computer Science, Dartmouth
College, June 1997. Available as Dart-
mouth Computer Science Technical Re-
port TR98-327.

[MCW00] Susan McGrath, Daria Chacón, and Ken
Whitebread. Intelligent mobile agents in
the military domain. In Proceedings of
the Autonomous Agents 2000 Workshop
on Agents in Industry, Barcelona, Spain,
2000.

[SBB+00] Niranjan Suri, Jeffrey M. Bradshaw,
Maggie R. Breedy, Paul T. Groth,
Gregory A. Hill, and Renia Jeffers.
Strong mobility and fine-grained re-
source control in NOMADS. In Proceed-
ings of the Second International Sympo-
sium on Agent Systems and Applications
and Fourth International Symposium on
Mobile Agents (ASA/MA2000), volume
1882 of Lecture Notes in Computer Sci-
ence, pages 2–15, Zurich, Switzerland,
September 2000. Springer-Verlag.

[Ste94] W. Richard Stevens. TCP/IP Illustrated,
Volume 1: The Protocols. Addison Wes-
ley, 1994.

[Whi96] James E. White. Telescript technology:
Mobile agents. General Magic White Pa-
per, 1996.

10



To
ta

l Tim
e

s 1M
b

p
s 5%

0

5000

10000

15000

20000

25000

1
2

3
4

5
6

7
8

9
10

N
um

b
e

r o
f C

lie
nts

Times (ms)

-50000

50000

150000

250000

350000

450000

550000

650000

750000

N
O

M
A

D
S x 30

C
lie

nt-Se
rve

r

N
O

M
A

D
S

EM
A

A

D
'A

g
e

nts

T
o

tal T
im

es 1M
b

p
s 20%

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er o
f C

lien
ts

Time (ms)

0 1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0

N
O

M
A

D
S

 x 40

N
O

M
A

D
S

D
'A

g
en

ts

E
M

A
A

C
lien

t-S
erver

To
ta

l Tim
e

s 10M
b

p
s 5%

0

500

1000

1500

2000

2500

1
2

3
4

5
6

7
8

9
10

N
um

b
e

r o
f C

lie
nts

Time (ms)

0 100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

N
O

M
A

D
S x 400

N
O

M
A

D
S

C
lie

nt-Se
rve

r

EM
A

A

D
'A

g
e

nts

T
o

tal T
im

es 10M
b

p
s 20%

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er o
f C

lien
ts

Time (ms)

0 1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0

N
O

M
A

D
S

 x 400

N
O

M
A

D
S

C
lien

t-S
erver

E
M

A
A

D
'A

g
en

ts

To
ta

l Tim
e

s 100M
b

p
s 5%

0 50

100

150

200

250

300

1
2

3
4

5
6

7
8

9
10

N
um

b
e

r o
f C

lie
nts

Time (ms)

0 100000

200000

300000

400000

500000

600000

N
O

M
A

D
S x 2000

N
O

M
A

D
S

C
lie

nt-Se
rve

r

D
'A

g
e

nts

EM
A

A

T
o

tal T
im

es 100M
b

p
s 20%

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er o
f C

lien
ts

Time (ms)

0 1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

N
O

M
A

D
S

 x 1000

D
'A

g
en

ts

C
lien

t-S
erver

N
O

M
A

D
S

E
M

A
A

F
igure

5:
T
otalquery

tim
es,for

allsystem
s,

allthree
bandw

idths,
and

both
selection

ratios.
N

ote
that

the
vertical

scale
varies.

T
he

N
O

M
A

D
S

data
should

all
be

read
using

the
scale

on
the

right-hand
side

of
the

graph.



T
as

k 
T

im
e 

1M
b

p
s 

5%

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

05
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

4
5

0
0

0
0

5
0

0
0

0
0

N
O

M
A

D
S

 x
 2

50
0

N
O

M
A

D
S E

M
A

A

D
'A

g
en

ts

T
as

k 
T

im
es

 1
M

b
p

s 
20

%

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

05
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

4
5

0
0

0
0

5
0

0
0

0
0

N
O

M
A

D
S

 x
 2

50
0

N
O

M
A

D
S E

M
A

A

D
'A

g
en

ts

T
as

k 
T

im
es

 1
0M

b
p

s 
5%

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

0
.0

5
0

0
0

0
.0

1
0

0
0

0
0

.0

1
5

0
0

0
0

.0

2
0

0
0

0
0

.0

2
5

0
0

0
0

.0

3
0

0
0

0
0

.0

3
5

0
0

0
0

.0

4
0

0
0

0
0

.0

4
5

0
0

0
0

.0

5
0

0
0

0
0

.0

N
O

M
A

D
S

 x
 2

50
0

N
O

M
A

D
S

E
M

A
A

D
'A

g
en

ts

T
as

k 
T

im
es

 1
0M

b
p

s 
20

%

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

05
0

0
0

0

1
0

0
0

0
0

1
5

0
0

0
0

2
0

0
0

0
0

2
5

0
0

0
0

3
0

0
0

0
0

3
5

0
0

0
0

4
0

0
0

0
0

4
5

0
0

0
0

5
0

0
0

0
0

N
O

M
A

D
S

 x
 2

00
0

N
O

M
A

D
S

E
M

A
A

D
'A

g
en

ts

T
as

k 
T

im
es

 1
00

M
b

p
s 

5%

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

01
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

N
O

M
A

D
S

 x
 3

00
0

N
O

M
A

D
S

D
'A

g
en

ts

E
M

A
A

T
as

k 
T

im
es

 1
00

M
b

p
s 

20
%

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

01
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

N
O

M
A

D
S

 x
 1

00
0

D
'A

g
en

ts

E
M

A
A

N
O

M
A

D
S

F
ig

ur
e

6:
T
as

k
ti

m
es

,f
or

al
ls

ys
te

m
s,

al
lt

hr
ee

ba
nd

w
id

th
s,

an
d

bo
th

se
le

ct
io

n
ra

ti
os

.
N

ot
e

th
at

th
e

ve
rt

ic
al

sc
al

e
va

ri
es

.
T

he
N

O
M

A
D

S
da

ta
sh

ou
ld

al
lb

e
re

ad
us

in
g

th
e

sc
al

e
on

th
e

ri
gh

t-
ha

nd
si

de
of

th
e

gr
ap

h.



Ju
m

p
 T

im
es

 1
M

b
p

s 
5%

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

02
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

N
O

M
A

D
S

 x
 1

0

N
O

M
A

D
S

E
M

A
A

D
'A

g
en

ts

Ju
m

p
 T

im
es

 1
M

b
p

s 
20

%

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

N
O

M
A

D
S

E
M

A
A

D
'A

g
en

ts

Ju
m

p
 T

im
es

 1
0M

b
p

s 
5%

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

05
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

N
O

M
A

D
S

 x
 2

5

N
O

M
A

D
S

E
M

A
A

D
'A

g
en

ts

Ju
m

p
 T

im
es

 1
0M

b
p

s 
20

%

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

05
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

N
O

M
A

D
S

 x
 6

N
O

M
A

D
S E
M

A
A

D
'A

g
en

ts

Ju
m

p
 T

im
es

 1
00

M
b

p
s 

5%

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

02
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

N
O

M
A

D
S

 x
 2

0

N
O

M
A

D
S

D
'A

g
en

ts

E
M

A
A

Ju
m

p
 T

im
es

 1
00

M
b

p
s 

20
%

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er
 o

f 
C

lie
n

ts

Time (ms)

N
O

M
A

D
S

D
'A

g
en

ts

E
M

A
A

F
ig

ur
e

7:
Ju

m
p

ti
m

es
,f

or
al

ls
ys

te
m

s,
al

lt
hr

ee
ba

nd
w

id
th

s,
an

d
bo

th
se

le
ct

io
n

ra
ti

os
.

N
ot

e
th

at
th

e
ve

rt
ic

al
sc

al
e

va
ri

es
.

T
he

N
O

M
A

D
S

da
ta

sh
ou

ld
in

m
an

y
ca

se
s

be
re

ad
us

in
g

th
e

sc
al

e
on

th
e

ri
gh

t-
ha

nd
si

de
of

th
e

gr
ap

h.



C
lie

nt-Se
rve

r/A
g

e
nt Pe

rfo
rm

a
nc

e
 Ra

tio
 1M

b
p

s 5%

0 5 10 15 20 25 30 35 40 45

1
2

3
4

5
6

7
8

9
10

N
um

b
e

r o
f C

lie
nts

Client-Server/Agent Ratio

N
O

M
A

D
S

EM
A

A

D
'A

g
e

nts

C
lien

t-S
erver/A

g
en

t P
erfo

rm
an

ce R
atio

 1M
b

p
s 20%

0 1 2 3 4 5 6 7

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er o
f C

lien
ts

Client-Server/Agent Ratio

N
O

M
A

D
S

E
M

A
A

D
'A

g
en

ts

C
lie

nt-Se
rve

r/A
g

e
nt Pe

rfo
rm

a
nc

e
 Ra

tio
 10M

b
p

s 5%

0 2 4 6 8 10 12 14

1
2

3
4

5
6

7
8

9
10

N
um

b
e

r o
f C

lie
nts

Client-Server/Agent Ratio

N
O

M
A

D
S

EM
A

A

D
'A

g
e

nts

C
lien

t-S
erver/A

g
en

t P
erfo

rm
an

ce R
atio

 10M
b

p
s 20%

0 1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er o
f C

lien
ts

Client-Server/Agent Ratio

N
O

M
A

D
S

E
M

A
A

D
'A

g
en

ts

C
lie

nt-Se
rve

r/A
g

e
nt Pe

rfo
rm

a
nc

e
 Ra

tio
 100M

b
p

s 5%

0

0.2

0.4

0.6

0.8 1

1.2

1
2

3
4

5
6

7
8

9
10

N
um

b
e

r o
f C

lie
nts

Client-Server/Agent Ratio

N
O

M
A

D
S

D
'A

g
e

nts

EM
A

A

C
lien

t-S
erver/A

g
en

t P
erfo

rm
an

ce R
atio

 100M
b

p
s 

2
0

%

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
2

3
4

5
6

7
8

9
1

0

N
u

m
b

er o
f C

lien
ts

Client-Server/Agent Ratio

N
O

M
A

D
S

D
'A

g
en

ts

E
M

A
A

F
igure

8:
P
erform

ance
ratios

for
allsystem

s,for
both

selection
ratios,com

bining
allbandw

idths
on

one
plot.

N
ote

that
the

verticalscale
varies.



100M
b

p
s 5%

10M
b

p
s 5%

2M
b

p
s 5%

1M
b

p
s 5%
1 2 3 4 5 6 7 8 9

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

D
A

g
e

nts Pe
rfo

rm
a

nc
e

 Ra
tio

s 5%
27-28

26-27

25-26

24-25

23-24

22-23

21-22

20-21

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

100M
b

p
s 5%

10M
b

p
s 5%

2M
b

p
s 5%

1M
b

p
s 5% 1

4

7
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

D
A

g
e

nts Pe
rfo

rm
a

nc
e

 Ra
tio

s 5%
27-28

26-27

25-26

24-25

23-24

22-23

21-22

20-21

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

100M
b

p
s 20%

10M
b

p
s 20%

3M
b

p
s 20%

2M
b

p
s 20%

1M
b

p
s 20%
1 2 3 4 5 6 7 8 9

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

D
a

g
e

nts Pe
rfo

rm
a

nc
e

 Ra
tio

s 20%

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1
100M

b
p

s
20%

10M
b

p
s 20%

3M
b

p
s 20%

2M
b

p
s 20%

1M
b

p
s 20%

1

3

5

7

9
0 1 2 3 4 5 6 7 8 9 10 11

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

D
a

g
e

nts Pe
rfo

rm
a

nc
e

 Ra
tio

s 20%

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

100M
b

p
s 20%

10M
b

p
s 20%

3M
b

p
s 20%

2M
b

p
s 20%

1M
b

p
s 20%
1 2 3 4 5 6 7 8 9

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

D
a

g
e

nts Pe
rfo

rm
a

nc
e

 Ra
tio

s 20%

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

100M
b

p
s 20%

10M
b

p
s 20%

3M
b

p
s 20%

2M
b

p
s 20%

1M
b

p
s 20%

1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 10 11

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

D
a

g
e

nts Pe
rfo

rm
a

nc
e

 Ra
tio

s 20%

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

F
igure

9:
P
erform

ance
ratios

for
D

’A
gents,for

both
selection

ratios,com
bining

allbandw
idths

on
one

plot.
T

he
second

and
third

row
s

are
all

the
sam

e
data

presented
from

different
view

s.
N

ote
that

the
bandw

idth
axis

is
neither

linear
nor

logarithm
ic.



100M
b

p
s 5%

10M
b

p
s 5%

1M
b

p
s 5%
1 2 3 4 5 6 7 8 9

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

EM
A

A
 Pe

rfo
rm

a
nc

e
 Ra

tio
s 5%

0-1
1-2

2-3
3-4

4-5
5-6

6-7
7-8

8-9
9-10

10-11
11-12

12-13
13-14

14-15
15-16

16-17
17-18

18-19
19-20

20-21
21-22

22-23
23-24

24-25
25-26

26-27
27-28

28-29
29-30

30-31
31-32

32-33
33-34

34-35
35-36

36-37
37-38

38-39
39-40

100M
b

p
s 5%

10M
b

p
s 5%

1M
b

p
s 5% 1

3

5

7

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

EM
A

A
 Pe

rfo
rm

a
nc

e
 Ra

tio
s 5%

0-1
1-2

2-3
3-4

4-5
5-6

6-7
7-8

8-9
9-10

10-11
11-12

12-13
13-14

14-15
15-16

16-17
17-18

18-19
19-20

20-21
21-22

22-23
23-24

24-25
25-26

26-27
27-28

28-29
29-30

30-31
31-32

32-33
33-34

34-35
35-36

36-37
37-38

38-39
39-40

100M
b

p
s 20%

10M
b

p
s 20%

1M
b

p
s 20%
1 2 3 4 5 6 7 8 9

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

EM
A

A
 Pe

rfo
rm

a
nc

e
 Ra

tio
s 20%

4-5

3-4

2-3

1-2

0-1

100M
b

p
s 20%

10M
b

p
s 20%

1M
b

p
s 20%

1

3

5

7

9

0
0.5 1
1.5 2
2.5 3
3.5 4
4.5

Ba
nd

w
id

th (M
b

p
s)

N
um

b
e

r o
f C

lie
nts

EM
A

A
 Pe

rfo
rm

a
nc

e
 Ra

tio
s 20%

4-4.5

3.5-4

3-3.5

2.5-3

2-2.5

1.5-2

1-1.5

0.5-1

0-0.5

F
igure

10:
P
erform

ance
ratios

for
E

M
A

A
,
for

both
selection

ratios,
com

bining
all

bandw
idths

on
one

plot.
N

ote
that

the
bandw

idth
axis

is
neither

linear
nor

logarithm
ic.


