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ABSTRACT
Wireless Local Area Networks (WLANs) are now commonplace
on many academic and corporate campuses. As “Wi-Fi” technol-
ogy becomes ubiquitous, it is increasingly important to understand
trends in the usage of these networks.

This paper analyzes an extensive network trace from a mature
802.11 WLAN, including more than 550 access points and 7000
users over seventeen weeks. We employ several measurement tech-
niques, including syslogs, telephone records, SNMP polling and
tcpdump packet sniffing. This is the largest WLAN study to date,
and the first to look at a large, mature WLAN and consider geo-
graphic mobility. We compare this trace to a trace taken after the
network’s initial deployment two years ago.

We found that the applications used on the WLAN changed dra-
matically. Initial WLAN usage was dominated by Web traffic; our
new trace shows significant increases in peer-to-peer, streaming
multimedia, and voice over IP (VoIP) traffic. On-campus traffic
now exceeds off-campus traffic, a reversal of the situation at the
WLAN’s initial deployment. Our study indicates that VoIP has
been used little on the wireless network thus far, and most VoIP
calls are made on the wired network. Most calls last less than a
minute.

We saw greater heterogeneity in the types of clients used, with
more embedded wireless devices such as PDAs and mobile VoIP
clients. We define a new metric for mobility, the “session diameter.”
We use this metric to show that embedded devices have different
mobility characteristics than laptops, and travel further and roam to
more access points. Overall, users were surprisingly non-mobile,
with half remaining close to home about 98% of the time.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion; C.2.3 [Network Operations]: Network monitoring

General Terms
Measurement
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1. INTRODUCTION
Wireless Local Area Networks (WLANs) have become com-

monplace, especially on university and corporate campuses, and
increasingly in public “Wi-Fi hotspots” as well. Most modern
laptops are equipped with a network adapter that can access one
or more types of IEEE 802.11 network, but wireless devices are
rapidly diversifying to include PDAs, printers, audio players, and
more. These new devices lead to changes in the way that WLANs
are used. For instance, we might expect a wireless PDA to have dif-
ferent usage patterns than a wireless printer; a PDA might be more
mobile as its user traverses a WLAN-enabled campus, whereas the
printer may remain in one place to serve wireless clients.

The growing popularity of WLANs encourages the development
of new applications, which may also exhibit new usage charac-
teristics. Real-time multimedia applications, for example, have
quality-of-service (QoS) requirements that may be difficult to fulfill
in a shared-medium WLAN. Some of these new applications and
devices may emerge simultaneously; for instance many wireless
PDAs are sold equipped with streaming audio or video software.

Understanding the usage, and trends in usage, of these new de-
vices and applications is important for providers who deploy and
manage WLANs, for designers who develop new high-throughput
and multimedia-friendly wireless networking standards, and for
software developers who create new wireless and location-aware
applications.

In this paper we study a large trace of network activity in a ma-
ture production wireless LAN. Dartmouth College has had 802.11b
coverage for three years in and around nearly every building on
campus, including all administrative, academic, and residential
buildings, as well as most social and athletic facilities. We collected
extensive trace information from the entire network throughout the
Fall and Winter terms of 2003/2004.

Our work expands significantly upon previous studies. Tang
and Baker [19] traced 74 computer-science clients in one build-
ing for 12 weeks. There are two more recent studies; Schwab and
Bunt [18] examine 134 users over one week, and Chinchilla et al.
track over 7,000 wireless cards for 11 weeks at UNC, examining
web-browsing activity (for 4 weeks) and location prediction. Our
earlier study, conducted at Dartmouth in 2001 [11], looked at more
than 1700 users over 11 weeks. In this new 2003/04 study, we
observed over 7,000 unique wireless cards using over 550 access
points over the course of a 17-week trace period.

In particular, our study extends previous work by examining
trends in behavior of a mature WLAN, and by examining geo-
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graphic mobility within a large WLAN. We compare this 2003/4
trace to our earlier trace from Fall 2001, taken shortly after the ini-
tial installation of our campus WLAN. We found that the workload
has changed significantly since 2001, and is significantly different
than in other previous studies. We saw new embedded wireless
devices, and new applications such as peer-to-peer services and
streaming multimedia.

We next describe the environment of our study, the Dartmouth
College campus, and then detail our tracing methodology in Sec-
tion 3. In Section4 we present and compare the most interesting
characteristics of the data to those taken from an earlier study dur-
ing the initial WLAN deployment. In Section5 we examine three
particular applications in detail: peer-to-peer file sharing, stream-
ing media, and voice over IP. In Section6 we analyze some of the
mobility characteristics of the new devices and applications that we
observed. Section7 compares our results with those of earlier stud-
ies, and Section8 draws overall conclusions and lists recommenda-
tions for developers and deployers of wireless network technology.

2. THE TEST ENVIRONMENT
The Dartmouth College campus has over 190 buildings on 200

acres. 476 Cisco 802.11b access points (APs) were installed in
2001 to cover most of the campus. Since then, APs have been
added to increase coverage and to cover new construction, and there
are currently 566 APs. The compact nature of the campus means
that the signal range of interior APs extends to cover most of the
campus’ outdoor areas.

All APs share the same SSID, allowing wireless clients to roam
seamlessly between APs. On the other hand, a building’s APs are
connected to the building’s existing subnet. The 188 buildings with
wireless coverage span 115 subnets, so clients roaming between
buildings may be forced to obtain new IP addresses. (During our
study, Dartmouth began to move its WLAN to a small set of sepa-
rate VLANs, reducing the number of subnets).

Dartmouth College has about 5500 students and 1200 faculty,
and during our study there were approximately 3200-3300 under-
graduates on campus. Students are required to own a computer,
and most purchase a computer through the campus computer store.
Wireless laptops increasingly dominate those purchases, making
up 45% of the total in 2000, 70% in 2001, 88% in 2002, and 97%
in 2003. Assuming that students obtaining computers elsewhere
choose laptops in the same proportion, we estimate that over 75%
of the undergraduates owned laptops at the time of our study.

2.1 Voice over IP
In the summer of 2003 Dartmouth began to migrate its telephone

system from a traditional analog Private Branch Exchange (PBX)
to a Voice over IP (VoIP) system. A new Cisco VoIP system in-
cludes a “CallManager” call processing server, which serves to
connect callers and callees, and bridge to the PBX and the local
telephone company. A second, independent VoIP system by Vo-
cera [20] serves wearable voice-controlled Wi-Fi badges; its server
connects Vocera callers to other Vocera users, and bridges to the
PBX, CallManager, and telephone company. Note that only our in-
ternal telephone network has migrated to IP; all off-campus calls
route to the telephone company and beyond, and these other tele-
phony providers may or may not use VoIP.

The VoIP roll-out was still underway during this study. Eventu-
ally, all undergraduates will be issued free telephony software; at
the time of our study only approximately 500 licenses (for Cisco’s
SoftPhone) had been issued. Vocera devices are available for rent
at subsidized rates. Wired and wireless Cisco VoIP phones are also
available, along with a client for wireless PocketPCs.

Table 1: Devices seen on the wireless network
Guessed OS/DeviceNumber of MAC addresses

Windows 3627 50.8%
MacOS 1838 25.8%

Unidentified 1468 20.6%
Vocera 70 0.98%

PalmOS 41 0.057%
Cisco 7920 VoIP phone 27 0.038%

Linux 27 0.038%
Dualboot Windows/Linux 24 0.034%

PocketPC 11 0.015%
Dualboot MacOS/Linux 1 0.00014%

total 7134 100.0%

2.2 Client devices
Since most students own laptops, we expected most of the de-

vices on our WLAN to be Windows or Macintosh laptops. As the
WLAN has matured and a larger variety of client devices has be-
come available, however, we also expected to see more non-laptop
devices on the network.

To determine the types of devices in use, we used the OS fin-
gerprinting tool p0f [15] on our tcpdump traces (see Section3 for
details of our collection infrastructure) to identify the operating sys-
tems used by a given device. p0f uses differences in TCP/IP stacks
and implementation flaws (e.g., timestamp values, initial window
sizes, ACK values and TCP options), to derive an OS signature by
scanning packet traces, much as nmap [6] and TBIT [16] do. We
chose p0f for its extensive list of OS signatures.

For each card (MAC address) seen in our syslog and SNMP
traces, we ran p0f on all of its TCP flows recorded by our sniffers.
If all guesses for a card were the same OS (ignoring version num-
bers), then we assigned that OS to the card. If all guesses could run
on the same CPU (e.g., Linux and Windows both run on x86), then
we assumed that card was a dual-boot machine.1 We left the card
as “unidentified” if p0f guessed OSes that run on different CPUs,
such as MacOS and Windows; these cards may have been used in
multiple devices, or been in a host emulating another OS.

For cards that p0f could not identify, we looked at the OUI (Or-
ganizationally Unique Identifier) of the MAC address. We classi-
fied the card appropriate to the OUI if it matched an “unambigu-
ous” vendor, i.e., one that does not sell standalone 802.11 cards
that could be inserted into multiple devices. For example, Vocera
is an unambiguous vendor, because the only devices with a Vocera
OUI are the Vocera badges.

Table 1 shows that, unsurprisingly, Windows machines were
most common, representing over 64% of the 5666 identified MAC
addresses (the 1468 unknown entries include MAC addresses that
we did not see on our sniffers, or for which we obtained several
conflicting guesses). We also saw a large number of MacOS ma-
chines: 32% of our identifiable clients. Linux users made up a tiny
proportion of our population. There were approximately 150 em-
bedded 802.11 PDAs and VoIP devices.

3. TRACE COLLECTION
In this paper we focus on data collected during the Fall 2003 and

Winter 2004 terms, a 17 week period from 2 November 2003 to
28 February 2004, inclusive.

1We assume that these cards represent dual-boot laptops. They
could be cards that have been inserted in different machines. This
distinction, however, does not affect our analysis.
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We used four techniques to trace WLAN usage: syslog events,
SNMP polls, network sniffers, and VoIP records.

3.1 Syslog
The APs were configured to send syslog messages to a central

server whenever clients authenticated, associated, roamed, disasso-
ciated or deauthenticated. We have been continuously collecting
syslogs since the installation of our WLAN in 2001.

Unfortunately we have three holes in our syslog data due to
server failures. Two holes are just under four hours long, and the
third is 43 hours long.

3.2 SNMP
We used the Simple Network Management Protocol (SNMP) to

poll each AP every five minutes, querying AP and client-specific
counters. AP-specific variables included inbound/outbound bytes,
packets and errors, and the clients associated with a given AP.
Client-specific variables included MAC and IP addresses, signal
strength and quality.

We have two holes in our SNMP data: one week over the Christ-
mas break, when we disabled our polls to aid network maintenance,
and one day in February, where network problems on our poller
caused many polls to fail (we ignore this day in our analysis).

3.3 Ethernet sniffers
We used network “sniffers” to obtain detailed network-level

traces. Due to the volume of traffic on the wireless network, it was
impractical to capture all the traffic. Moreover, the structure of our
WLAN, with several subnets, meant that there was no convenient
central point for capturing wireless traffic. Instead, we installed
18 sniffers in 14 different buildings; in some large buildings, we
needed multiple sniffers to monitor all of the building’s APs. The
buildings were among the most popular wireless locations in 2001,
and included libraries, dormitories, academic departments and so-
cial areas. In total, our 18 sniffers covered 121 APs.

Each sniffer was a Linux box with two Ethernet interfaces. One
interface was used for remote access, to maintain the sniffer and to
obtain the data for analysis. The other interface was used for col-
lecting (“sniffing”) data. In each of the 18 switchrooms we attached
the APs to a switch, and set another port on the switch to “mirror”
mode, so that all the traffic on that switch would be sent to this
port. The sniffer’s second interface was attached to this mirrored
port. We used tcpdump to capture any wireless traffic that came
through these APs and their wired interfaces. We missed any traffic
between two clients associated with the same AP, as this would not
be sent via the AP’s wired interface, but we believe this occurred
rarely.

3.4 VoIP CDR data
To understand the usage of our campus VoIP system, we config-

ured the Cisco Call Manager server to export the details of every
VoIP telephone call. These Call Detail Records (CDR) include the
time and duration of the call, the caller’s, callee’s and final numbers
(the latter represents the final reached number, e.g., if a call is di-
verted to voice-mail) caller and/or callee IP addresses, and reasons
for call termination (e.g., a normal hang-up or a diverted call).

We have a nine-day hole at the start of our trace period due to
delays in configuring the Call Manager. We lack Vocera server
logs, so we have no record of Vocera calls, unless they involve a
Cisco device and were logged by the CCM.

For comparison, we also look at CDR data from our analog PBX
system. This data does not include on-campus calls, as these inter-
nal calls are not billed for and are thus not logged.

3.5 Definitions
One of our goals is to understand user behavior. We imagine

“sessions” where a user joins the network, uses the network, pos-
sibly roams to other APs, and disconnects. We use the following
definitions:
Card: A wireless NIC, identified by MAC address.2

Session:A session consists of an associate event, followed by zero
or more roam events, and ends with a disassociate or deauthenti-
cate event, or at the beginning of one of the holes mentioned in
Section3.1.
Active Card: A card that is involved in a session, during a given
time period or at a given place.
Active AP: An AP with which one or more cards are associated,
during a given time period.
Roam: A card switches APs within a session. An Associate or Re-
associate message that occurs within 30 seconds after any previous
event for that card is considered a roam rather than the start of a
new session. (Some cards never send Reassociate messages, but
only send Associate messages. It is difficult to identify precisely
which of these Associate messages represent a new “session,” and
which are roams within the current session. We chose 30 seconds,
assuming that anything shorter is not a new “session” in the eyes of
the user.)
Roaming Session:A session containing roams.
Roamer Card: A card involved in one or more Roaming Sessions.

We use card-oriented definitions of “in” and “out” [11, 19]:
Inbound: Traffic sent by the AP to the card.3

Outbound: Traffic sent by the card to the AP.

3.6 Defining mobility
We are interested in user mobility; i.e., how often, and how far, a

user moves during a session. We cannot directly measurephysical
mobility; we must infer it from users’ roaming patterns. Unfor-
tunately, roaming does not imply physical motion; we often saw
cards ‘ping-pong’, associating and reassociating with several APs
many times in succession. Although Kotz and Essien [11] define a
“mobile session” as one where a card visits APs in more than one
building, we found that stationary cards may ping-pong between
APs in different buildings.

We define amobile sessionto be one whose diameter is larger
than a minimum sizeD. The diameterof a session is the maxi-
mum horizontal distance between any two APs visited during the
session.4 We used a map of the campus to determine the position
of each AP.5 Note that we consider all pairs of APs, not simply the
first and last AP, because a session may wander far, only to loop
back to the start by the end of the session. We cannot only consider
the distance of each roam in the session, since a user may walk
across campus, making short hops from AP to AP. Nor do we con-
sider the sum of the distances of each roam in the session, because

2 Our WLAN has no MAC or IP layer authentication. Any card can
associate with any AP, and obtain an IP address via DHCP. Thus we
cannot identify any of the clients in our traces. We have chosen to
equate a MAC address with a single user. Although some users
may have multiple cards, or some cards may be shared by multiple
users, we believe that this is a good approximation.
3 If a sniffer sees a frame with a wireless sourceanddestination, we
counted it as “inbound,” rather than double-counting it as inbound
and outbound. In the SNMP data, we believe the AP counted such
traffic twice. In practice, such frames were rare.
4We ignore the APs’ altitude; our campus is relatively flat.
5Some APs were located off the map, e.g., off-campus student
housing or athletics facilities. We ignored the few (5%) sessions
that visit these APs when calculating mobility.
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Figure 1: A mobile session’s maximum inter-AP distance (“ses-
sion diameter”) exceeds a thresholdD.
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a stationary user can ping-pong between nearby APs many times.
Figure1 shows a session where a user starts ata, visitsb andc, and
ends the session associated tod. Even if ab, bc, cd andda are all
shorter thanD, this session is mobile ifac or bd are longer than
D. Intuitively, the session diameter indicates the size of the area in
which the user traveled during that session. We refer to a card that
is involved in a mobile session over a given time period as amobile
card.

The Cisco specifications for our APs state that indoor and out-
door range at 11 Mbps is 39.6m and 244m respectively. Most APs
are located indoors, although they may cover outdoor areas, so an
appropriateD would be slightly greater than the indoor range. Af-
ter experimentation and studying data from clients that we knew to
be non-mobile, we choseD = 50m.

4. CHANGES
Our data collection resulted in an extremely large dataset, and

it is impossible to present all of the interesting characteristics of
this data in this paper. Over the 17 weeks of our trace we saw
7134 unique cards associate with an AP (Table2). We received
32,742,757 syslog messages, conducted 16,868,747 SNMP polls
and sniffed 4.6TB of data.

In this section we present some general aspects of our dataset
and compare this to our Fall 2001 trace. For each figure or table, we
identify the source as one or more of [syslog], [SNMP], [tcpdump]
or [CDR].

We classify APs by the type of building in which they are lo-
cated: 221 residential, 147 academic, 72 administrative, 59 library,
45 social and 22 athletic. Residences include dormitories, fraterni-
ties, business school and faculty housing. Social buildings include
dining areas, an arts center and a museum. Athletic facilities in-
clude skating rinks, football fields, boathouses and a ski lodge.

4.1 Clients
We are interested in understanding changes in the number of

users on our WLAN. Has the population grown? Have usage pat-
terns changed? Where do users visit?

The user population increased.Figure 2 shows the number
of unique cards that have associated with an AP on our WLAN
each week, since the installation of the network in April 2001. As
each new incoming class arrives equipped with wireless laptops,
and the outgoing non-wireless classes leave, the number of clients
has grown steadily. The short dips represent Christmas and Spring

Table 2: Overall client observations
Total cards 7134
Peak simultaneous cards 2146
Peak simultaneous cards on an AP 91
Peak simultaneous cards in a building 193
Peak simultaneous active APs 429
Peak simultaneous active buildings 145

Figure 2: [syslog] Number of active cards per week. Note that
this graph is derived from ongoing continuous data monitoring
from April 2001, whereas in most of this paper we only discuss
two traces from Fall 2001 and 2003/4. The vertical grid lines
indicate our two trace periods.
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breaks, while the longer dips are summer terms, when fewer stu-
dents were on campus.

Figure3 shows our two trace periods in further detail. The dip
in Figure3(a) in late November indicates the Thanksgiving holi-
day, and the two week dip in late December indicates the Christ-
mas break, when most students and faculty were not on campus.
We can again see that the population has increased dramatically.
In the 2001 trace, the WLAN was still new, and consequently the
population grew over time, from around 800 cards per day to 1000
cards by December 2001. In the 2003/4 trace, we saw 3000–3500
cards every day. There were slightly fewer cards in the Winter term
(Jan–Feb 2004), which may reflect the smaller student population
that term. In both traces, about half of the population was active on
a given day.

Roaming increased. The proportion of mobile and roaming
cards (Figure3) increased from approximately one-third in 2001,
to one-half of the cards in 2003/4.

Usage remained diurnal.As might be expected from an aca-
demic campus where most students and some staff live on campus,
we see diurnal usage patterns in Figure4, but usage does not drop
to zero during the night. These diurnal patterns have not changed
significantly — we see usage peaking in the afternoon, and usage
dropping from midnight to 6 a.m. The proportion of cards that re-
main active overnight has risen, most likely due to devices left on
overnight.

The proportion of heavy users remained static.Figure5 shows
the distribution of the average time spent per day by a card on the
network. This distribution is almost linear. Surprisingly, the distri-
bution hardly changed between 2001 and 2003/4. This is confirmed
by looking at a quantile-quantile plot (Figure6). Although our user
population grew significantly, the proportion of heavy users (those
who spend a long time on the network each day) remained constant.
Similarly, the distribution of the average number of active days per
week per card has shown little change (Figure7).
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Figure 3: [syslog] Number of active, mobile, and roamer cards per day. A date’s data appears to the right of its tick-mark. Note that
the scales differ between 2001 and 2003/4.
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Figure 4: [syslog] Number of active cards per hour. The number of active cards for each hour of the day, separately for weekdays
and weekends. The curve shows the mean, while the bars show standard deviation. The two curves are slightly offset so the bars are
distinguishable.
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Figure 6: Quantile-Quantile plot, average time per day per
user.
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AP utilization increased.In Figure8 we examine the number of
APs that see a user association each day. Our network has grown
from 476 APs in 2001 to 566 APs today (Figure8(b) includes data
from only 430 APs that reported syslog records). The average per-
centage of active APs has risen from 66.4% to 76.4%, despite the
quiet Christmas break in our 2003/4 trace. Interestingly, the num-
ber of active APs during the Christmas break does not decrease by
the same proportion as the number of active cards (Figure3(a)).
Many of the cards that we see during the break may have been de-

vices that are always left turned on, and it appears that these are
widely distributed across campus. The fact that the proportion of
active APs has increased may indicate that the 136 new APs have
been added to locations that not only lacked coverage, but locations
where potential wireless users existed. Despite the increase in APs,
there was a larger increase in the population of wireless users; thus,
we saw a rise in the density of users on each AP: Figure9 shows
the average cards per AP in our two traces. It can be seen that the
number of clients on each AP has increased markedly, and peak
density in our 2001 trace is comparable to the off-peak (vacation)
density in 2003/4.

Figures10–14 illustrate the most popular locations on campus.
The AP and building names have been anonymized with a name in-
dicating the building’s type, e.g., “ResBldg1” is a residential build-
ing.

The busiest types of building remained the same.We see in
Figure10that academic buildings and libraries continued to see the
largest population of cards. This result is not surprising, given that
these are communal areas visited by many, if not most, students.

4.2 Traffic
In this section we look at traffic changes on our WLAN.
Overall traffic increased. Unsurprisingly, given the increased

population, we saw an increase in the daily amount of traffic, with
peaks of over 400GB in 2003/4, compared to 150–250GB in 2001
(Figure11). Nonetheless, the average daily trafficper active card
rose from 27.0MB in 2001 to 71.2MB in 2003/4. Today’s wireless
users are far more active on the network than before.
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Figure 5: [Syslog] Average active time per day per user, distribution across users. Only days where a user is active on the network
are considered.
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Figure 7: [Syslog] Average active days per week per user, distribution across users.
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Figure 8: [syslog] Number of active APs per day. The y-axis range is from 0 to the total number of APs.
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Figure 9: [syslog] Average number of active cards per active AP per day.
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Figure 10: [syslog] Maximum cards per hour, for the busiest buildings. Ranked by their busiest hour (in number of active cards).
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Figure 11: [SNMP] Daily traffic (GB). A date’s bar appears to the right of its tick-mark. Gaps in the plot represent holes in our
data.
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We now consider the applications used on the WLAN. To iden-
tify applications, we compared the TCP or UDP port number to
a customized “services” file, based on the official IANA list, but
with several changes to include well-known applications that lack
assigned numbers, such as games, peer-to-peer (P2P) applications
and malware.

To identify Cisco VoIP traffic, which uses randomly assigned
port numbers, we identified and parsed SCCP call setup packets di-
rected to and from the CCM servers to determine the host addresses
and ports for each call. We classify all UDP traffic within the Vo-
cera port range of 5300–5400 sent to and from the central Vocera
server as Vocera VoIP.

The port numbers that we saw represented thousands of applica-
tions. To summarize these, we grouped the applications by type.
We based our groupings on the SLAC monitoring project [12], but
with changes to reflect some of the most popular applications on
campus (Table3). Two applications are Dartmouth-specific: DND
is a directory service, and BlitzMail is a popular e-mail and news
client.

For those comparing this paper to our earlier work [11], note
that this application classification is different than the more specific
view of the data presented in our earlier work. Also, the tcpdump-
based plots in the Mobicom paper were corrected by the TR and
then expanded significantly in the MONET paper.

The applications used on the network changed significantly.
Figure12 shows the total amount of traffic observed to (inbound)
and from (outbound) hosts on the WLAN. Note that both plots
show only the traffic observed at our sniffers, which covered 121
out of 566 APs in 2003/4, and 22 out of 476 APs in 2001. Also
note that Figure12(b) does not contain a bar for VoIP, since this
dataset predates the installation of the VoIP system. The proportion

Table 3: Classification of applications
Category Applications
bulk FTP, backup
database Oracle, PostgreSQL, SQLnet
interactive IRC, AIM, iChat, klogin, rlogin, ssh, telnet
mail POP, SMTP, IMAP, NNTP, BlitzMail
p2p DirectConnect, Gnutella, Kazaa, BitTorrent,

eDonkey, Napster
services X11, DNS, finger, ident, DND, Ker-

beros, LDAP, NTP, printer, BOOTP, Ren-
dezvous/ZeroConf

filesystem SMB/CIFS, NetBIOS, AppleShare, NFS, AFS
streaming RealAudio, QuickTime, ShoutCast, RTSP,

Windows Media
voip Cisco CallManager, SCCP, Vocera
www HTTP, HTTPS
unknown All unnamed and unidentified ports
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Figure 12: [tcpdump] Total traffic (GB), by TCP or UDP protocol.
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of web traffic (marked www) decreased significantly, from 62.9%
of the traffic in 2001, to 28.6% in 2003/4. Three types of applica-
tion saw the largest increases: P2P (from 5.2% in 2001 to 19.3%
in 2003/4), filesystems (from 5.3% to 21.5%) and streaming (from
0.9% to 4.6%). We saw 5.16GB of VoIP traffic, representing 0.2%
of the total traffic.

Traffic destinations changed.Figure13 shows the proportion
of near (on-campus) traffic to far (remote, off-campus) traffic. In
2001, off-campus traffic made up 64.5% of the total bytes seen
on the WLAN. In 2003/4 this situation reversed, and off-campus
traffic only represented 30.4% of the traffic. This reversal may
be explained by the shift from a web-dominated workload in 2001
to a P2P-dominated workload in 2003/4, due to heavy local peer-
to-peer usage, as we discuss in Section5.2. This shift came very
soon after the installation of our campus WLAN; we noticed it in a
Spring 2002 trace [11], though without identifying the strong shift
to P2P traffic.

Residences continued to generate the most traffic.Figure14
shows the average daily traffic levels on each AP. It can be seen
that the increase in traffic was not due to additional wireless cover-
age; as increased user population and traffic per user increased, the
traffic per AP increased. We also see that residential buildings re-
mained the most active. The ordering of the less popular categories
(social, adminstrative, and athletic buildings) changed, but the ma-
jority of wireless network traffic continued to occur in residential,
academic and library buildings.

5. SPECIFIC APPLICATIONS
In Section4, we present the changes that we have seen in WLAN

usage, and note significant increases in the amount of peer-to-peer
and streaming multimedia traffic. In this section we analyze these
applications in more detail. We begin with a look at VoIP usage.

5.1 VoIP
Our VoIP usage data came from Call Manager CDR records,

which included data for both wired and wireless users. Since a
SoftPhone user could be wired or wireless, depending on the user’s
network connection at the time of the call, we used our SNMP data
to determine whether a given call was made on the wireless net-
work. If either IP address in a CDR record was seen in an SNMP
poll during the period of the call, we consider the call to be wire-
less.

VoIP usage mirrors general network usage.VoIP usage shows
diurnal patterns (Figure15), and these are similar to those for over-
all WLAN usage (Figure4).

Figure 15: [CDR] Number of calls made by hour. The line
shows the mean, and the bars show standard deviation. The
values are slightly offset so that the bars are distinguishable.
The wireless curve is on the bottom.

 0

 5

 10

 15

 20

 25

 30

 0  3  6  9  12  15  18  21  23

C
al

ls

Hour of the day

Total calls
Wired calls

Wireless calls

Figure 16: [CDR] Number of devices that made a call each day.
The wireless curve is much smaller than the wired curve.
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Figure 13: [tcpdump] Proportion of near and far traffic. “Near” traffic is to or from dartmouth.edu , all else is “Far.”
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Figure 14: [SNMP] Average daily traffic per AP (GB), by category.
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Figure 17: [CDR] log-log CCDF (Complementary Cumulative
Distribution Function) of call duration. We only consider calls
of duration ≥ 1 second and≤ 6 hours.
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VoIP population was static.The number of regular VoIP users
shows little growth over the course of our trace (Figure16). We
again see two dips for Thanksgiving and Christmas break. The total
number of calls made each day also showed similar static levels.

VoIP users made short calls.We found that the median call
duration was 41 seconds (Figure17). For calls from wired devices,
the median duration was 42 seconds, whereas for wireless devices,
the median duration was 31 seconds. A Kolmogorov-Smirnov (K-
S) test indicates that the difference in distributions is insignificant;
VoIP calls tended to be short.

The VoIP calls are much shorter than the non-VoIP calls. The
median duration of the off-campus VoIP calls6 was 63 seconds,

6Our non-VoIP data only includes off-campus calls.

Figure 18: [CDR] CDF of the number of calls made by a VoIP
device.
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whereas the median duration for off-campus non-VoIP calls was
103 seconds. A K-S test indicates that non-VoIP calls are signif-
icantly longer. It is not clear why the VoIP calls, both wired and
wireless, would be shorter than the PBX phone calls; the PBX pop-
ulation is much larger and more diverse. We hope to collect more
VoIP data once the bulk of the PBX population shifts to VoIP and
then we can examine this issue more deeply.

Wireless users made fewer calls.During our trace, we observed
that wired devices tended to make more calls than wireless devices
(Figure18). Many wireless devices were only used once or twice,
or not at all. Unfortunately, we lack detailed QoS data, but this low
usage may be due to the difficulty of delivering VoIP in 802.11b
networks.

VoIP calls were long-distance.Just over half of our VoIP calls,
both wired and wireless, were made to long-distance destinations
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Table 4: VoIP calls, by destination
Destination Total Wired Wireless
Campus 2385 (17.6%) 2122 (16.9%) 263 (26.4%)
Local 1574 (11.6%) 1461 (11.6%) 113 (11.3%)
Regional 844 (6.2%) 759 (6.0%) 85 (8.5%)
Long-distance 7515 (55.4%) 7003 (55.7%) 512 (51.3%)
411/911 7 (0.05%) 7 (0.06%) 0 (0.00%)
Voicemail 1242 (9.2%) 1217 (9.7%) 25 (2.5%)
Total 13567 (100.0%) 12569 (100.0%) 998 (100.0%)

Figure 19: [tcpdump] Total p2p traffic (GB), by TCP or UDP
protocol.
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(Table4). Campus and local calls were the next most popular des-
tinations. This skew may be an effect of a recent decision by our
network administrators to make all domestic telephone calls free to
the end-user. We also saw a high proportion of long-distance traf-
fic in the non-VoIP calls, with 72.5% of off-campus non-VoIP calls
made to long-distance destinations.

5.2 Peer-to-peer applications
Peer-to-peer (P2P) traffic increased from 5.3% of the total traffic

in 2001 to 19.3% in 2003/4. The absolute increase was from 9.7GB
to 548.8GB, although we had fewer sniffers installed for our 2001
trace.

In this section, we analyze the P2P file sharing that we observed
on our WLAN. Note that we only consider the applications listed
as “p2p” in Table3, and not filesystems such as SMB/CIFS.

Wireless P2P users both downloaded and uploaded files.Fig-
ure19 shows that the most popular P2P application on our WLAN
was “DirectConnect”. This P2P application differs from many oth-
ers in that it enforces sharing: to connect to a DirectConnect “hub”,
a client has to be willing to offer a hub-specific amount of files to
share with other users. Thus we did not see the general free-riding
behavior seen in other P2P populations, where most users down-
load files and only a few users share and upload [1]. Surprisingly,
with another P2P application, Kazaa, which does not enforce shar-
ing, we saw more outbound than inbound traffic. The reasons for
this result are unclear, but it may be the presence of a packet shaper
on our border router. This packet shaper limited the bandwidth for
applications on certain ports, and it may have been configured to
only limit Kazaa downloaders (inbound traffic).

Peer-to-peer traffic was predominantly internal;72.7% of the
wireless P2P traffic was between on-campus hosts (Figure20).
This may be due to our packet shaper. Our campus, however, is
not atypical in its use of such a shaper; the Campus Computing
Project [4] reports that over two-thirds of universities have some
policy for limiting file transfers of audio and video files. We thus

Figure 20: [tcpdump] Proportion of near and far traffic for P2P
users. “Near” traffic is to/from dartmouth.edu .
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expect that this P2P behavior would be observed in many academic
campus environments. The outbound remote traffic that we do see
is mainly Kazaa traffic.

A few users were responsible for most of the P2P throughput.
Examining the extremes of Figure21 shows that a small number
of cards send and receive a large amount of P2P data. In fact, of
the 147 cards that saw more than 1MB of P2P traffic, a mere 10
cards (6.8% of the population) were responsible for over 50% of
the traffic. This behavior has been observed elsewhere [17].

5.3 Streaming media
The proportion of wireless streaming audio/video traffic in-

creased by 405% between 2001 and 2003/4, and we saw over
129GB of streaming traffic in our 2003/4 trace.

Most, but not all, streaming media was inbound.Figure 22
shows that this traffic was made up mainly of two applications:
iTunes and RealAudio. Most streaming traffic was inbound: ap-
plications such as RealAudio and Quicktime are intended for large
streaming media operators such as news websites, and so there tend
to be a few servers, and these are rarely wireless laptops. The ex-
ception is iTunes, which allows users to easily stream music to each
other. Thus we see some wireless cards sharing their iTunes music
with other users, and 28% of the iTunes traffic was outbound.

Most streaming traffic was within campus.We see that most
(79.6%) of the streaming traffic was to or from hosts on campus
(Figure 23). This may be surprising given the number of main-
stream off-campus websites that offer streaming audio and video.
Within our campus, however, streaming media is used heavily for
teaching, e.g., in language courses. Some of these teaching files are
very large, reaching hundreds of megabytes in size, and this con-
tent may account for much of the on-campus traffic. By default,
iTunes will only stream music to users on the same subnet, and
hence almost all of the iTunes outbound traffic is on-campus.
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Figure 21: [tcpdump] log-log CCDF of traffic per card by P2P
users. Cards that saw less than 1MB are ignored.
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Figure 22: [tcpdump] Total streaming traffic (GB), by TCP or
UDP protocol.
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Figure 23: [tcpdump] Proportion of near and far traffic for
streaming users. “Near” traffic is to/from dartmouth.edu .
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Figure 24: [syslog] Fraction of time that users spend at their
home location, by the building type of their home location.
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6. MOBILITY
In this section we analyze the mobility of the users in our trace.

We used only the syslog records for mobility analysis, as they con-
tain the most detailed and comprehensive record of user location.

Users spent almost all their time in their home location.Fig-
ure24 indicates the amount of time that a user spent at their “home
location.” We base our definition of home location on that of Bal-
azinska and Castro [3], who choose the AP at which a client spent
more than 50% of their total time on the network. We modify this
definition, however, to account for our 50m session diameter. For
each card, we find all the APs with which they associated over the
course of our trace. Using our syslog data, we take the AP where
they spend the most time associated, and consider all APs within
50m of this to represent the card’s home location. Like Balazinska
and Castro, we do not consider users who spend less than 50% of
their time at APs in their home location, due to the difficulty of ac-
curately determining a “home” for such users. Thus, only the right
half of Figure24 is meaningful.

We have dramatically different results than Balazinska and Cas-
tro, who found that 50% of their users spent 60% of the time in their
home location. Our population is far less mobile: 95.1% of our
users have a home location, and 50% of those users spend 98.7%
of their time there. This striking difference was only partly due to
our redefinition of “home location.” If we follow Balazinska and
choose just one AP as a home location, we still found that 50%
of our users spend 74.0% of their time associated with a single
AP. This result seems surprising, as Balazinska and Castro study
a corporate campus, and one might expect higher mobility on an
academic campus, with students traveling between classes. On the
other hand, our trace covers residential users, who spend more time
in their home location, especially if devices are left switched on
overnight. Figure24 shows that those users with a home location
in a social or library building spent less time there than those with
home locations in residential, academic or administrative buildings.
Overnight usage is not the only reason for our low mobility, how-
ever. If we remove overnight (12 midnight to 6 am) from our data,
then we still find that 50% of our users spend 69.2% of their time
associated with a single AP.

Our results may also differ from the corporate data because
we use syslog records, with a one-second timestamp resolution,
whereas Balazinska and Castro use SNMP with a five-minute poll
period. Their use of five-minute intervals led them to overestimate
the time spent at a location (missing all short-term stays), and thus
the two sets of results differ further.

Prevalence indicates the time that a user spends on a given AP,
as a fraction of the total amount of time that they spend on the
network [3]. Figure25again shows that our users were less mobile
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Figure 25: [syslog] CDF of prevalence values for all buildings.
Zero-values are discarded.
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(had lower prevalence) than corporate users: the dashed line in Fig-
ure25 represents the line of best fit for the corporate data [3]. This
difference in prevalence may actually be larger, since the SNMP-
collected corporate data missed short visits to APs and thus tends
to overestimate prevalence.

Users persisted at a single location for longer.Another metric
for demonstrating mobility is user persistence: the amount of time
that a user stays associated with an AP before moving on to the next
AP or leaving the network [3]. We again consider persistence using
our 50m session diameter. We keep a list of all the APs that a user
visits; whenever a user visits a new AP, we calculate the session
diameter of this list of APs, and if the diameter is greater than 50m,
we output a persistence value and clear the list.

The line in Figure26 marked 0.92/x is the line of best fit
from [3]. It is clear that our data is different, and that users tended
to remain in a single location for longer. This difference may be
due, however, to our redefinition of “location” to match our notion
of a session diameter. In Figure26 we have also calculated persis-
tence as originally defined (the line marked “All (by AP)”). These
persistence values are lower, as they include roams within a 50m di-
ameter that may not be due to physical mobility. Nonetheless, they
are still far higher than the values for corporate users; our users
move less often. Moreover, since their SNMP approach tends to
overestimate persistence, the fact that we saw longer persistence in
our data is not an artifact of the different measurement techniques;
if anything, the difference is stronger than it appears.

Different devices traveled more widely.Figure 27 shows the
total number of APs visited by a device, over the course of our
trace. The median number of APs visited by a user has risen from 9
in 2001 to 12 in 2003/4. In general, VoIP devices visited the largest
number of APs, because these devices are “always on” and ready to
receive a call. Thus a VoIP device is likely to associate with almost
every AP that its owner passes, whereas a laptop will only associate
with those APs where a user stops, opens the laptop and connects
to the network.

A similar effect can be seen in Figure28, which shows the ses-
sion diameter for different types of devices. The always-on VoIP
devices tend to travel further than laptops and PDAs.

Different devices had different session characteristics.Some
of the mobility differences between devices can be attributed to the
different session types for different devices. Figure29 shows the
distribution of session durations for different types of devices. As
many sessions lasted almost the length of our trace period (station-
ary devices that were never switched off), the inset plot shows those

Figure 26: [syslog] log-log CCDF of user persistence values. We
show values calculated using our session diameter metric and
persistence on a per-AP basis for comparison.
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Figure 27: [syslog] CDF of the number of APs visited by a user.
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Figure 28: [syslog] Session diameter, distribution across ses-
sions, by device. The vertical dashed line indicates 50m, our
threshold for a mobile session.
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Figure 29: [syslog] Session duration, distribution across ses-
sions, by device. The inset plot shows durations≤ one hour.
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Figure 30: [syslog] Session diameter, distribution across ses-
sions, by application. The vertical dashed line indicates 50m,
our threshold for a mobile session.
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durations of less than one hour for clarity. All of the device types
have a short median session duration, less than 10 minutes. The
short median, consistent with our earlier results, is detectable in
the syslog data but would be difficult to observe with a 5-minute
SNMP polling interval.

PDAs, shown in the leftmost curve, have much shorter durations
than other types of devices. These short sessions are due to the way
a PDA is used: kept in a pocket until needed, and switched on spo-
radically for short periods of time to access information. Always-
on devices, however, are already becoming more common on our
campus; indeed, PDAs and laptops are becoming always-on as they
are used as VoIP clients. The session behavior that we show here
for VoIP devices may thus be a broader indicator of future usage
trends.

Different applications had different mobility characteristics.In
Section5 we focus on three of the newest wireless applications:
VoIP, P2P, and streaming media. In Figure30 we look at the dis-
tance traveled during a VoIP, P2P, or streaming session. We classify
a session as containing a given application if, during that session, a
host was seen by one of our sniffers, and was seen to send or receive
traffic of that application category. We again see that VoIP sessions
tend to travel further. Streaming sessions were less mobile than
P2P sessions, perhaps because a streaming video application tends
to involve active user participation, and so mobility is impeded by
the need to continuously look at a device. A P2P application, how-
ever, can run in the background; a user could easily share files while
moving, perhaps with a laptop left in a bag while connected to the
network.

7. RELATED WORK
Our study is the largest and most comprehensive characterization

of WLAN users to date. One of the earliest analyses of WLAN
usage was by Tang and Baker, who use tcpdump and SNMP to trace
74 users in the Stanford CS Department over a 12-week period in
2000 [19]. While this study is similar to our own, our population
is much larger and more diverse. Their top five applications (http,
netbios, ftp, unknown, ssh+telnet), vary from ours, and indicate
both a CS workload, and one that predates the popularity of P2P
file sharing.

Balachandran et al. [2] traced 195 wireless users during the ACM
SIGCOMM 2001 conference. They use SNMP to poll each of their
four APs every minute. Such a small interval would have been
impractical in our scenario, as it took about 90 seconds to receive
SNMP responses from all of our APs. As they study a conference,
user behavior is homogeneous, with clients following the confer-
ence schedule. Most sessions were short (< 10 min), and longer

sessions tended to be idle. About 46% of the TCP traffic was http,
and 18% ssh, again indicating a CS workload.

Hutchins and Zegura used sniffers, SNMP and Kerberos au-
thentication logs to trace 444 clients over a subset of the Georgia
Tech WLAN, totaling 109 APs spread across 18 buildings, for two
months in 2001 [9]. Authentication data means that they can more
accurately identify sessions. As they only examine non-residential
areas of campus, they find stronger diurnal usage patterns. One-
third of their users do not move, although their measurements are
less accurate than ours due to a 15 minute poll interval.

We have already mentioned Balazinska and Castro’s study [3].
They traced 1366 corporate users on 117 APs over four weeks.
They developed two metrics for mobility,prevalenceand userper-
sistence. As they used SNMP, with a five minute poll period, their
data lack the precision of our syslog trace, and Section6 shows that
our results were very different.

Saroiu et al. [17] traced all HTTP and P2P traffic at the Uni-
versity of Washington border routers for nine days in 2002. P2P
dominates, accounting for 43% of the traffic, compared to 14% for
web traffic. We found slightly more web than P2P traffic, although
we were examining traffic within the campus and they were exam-
ining the border. They look at both wired and wireless traffic, and
a WLAN’s lower throughput may have led some heavy P2P clients
to use the wired network instead.

McNett and Voelker [13] install a tool on wireless PDAs, and
used this to collect detailed mobility and session-level data for 272
residential users over an 11 week period on the University of Cal-
ifornia San Diego WLAN. This approach was impractical for our
study, given the variety of operating systems and devices on our
WLAN. They found similar session behavior to our study: mostly
short sessions. As with our embedded device users, their PDA users
associated with many APs.

One of the most recent campus WLAN studies comes from
Schwab and Bunt at the University of Saskatchewan [18]. Their
network uses a central RADIUS authentication server, allowing for
accurate session determination. Their trace is significantly smaller
than ours, covering 136 users on 18 APs over a one-week period.
Their WLAN does not cover residential areas, and so their diurnal
usage patterns differ from ours. The largest identified protocol on
the wireless network was HTTP, at 28% of packets. They were un-
able to identify 35% of TCP packets, most of which is probably
due to P2P applications (the fact that they identified only Gnutella,
at 1.5%, indicates that they likely did not search for the other major
P2P protocols).

Chinchilla et al analyzed WWW users on the University of North
Carolina campus WLAN [5]. They tracked syslog from 222 APs
and 7694 users over a 11 week period. As in our study, student resi-
dences saw the most wireless associations. Clients had fewer roams
between APs, but this may have been due to lower AP density, and
thus a smaller likelihood of overlapping AP coverage.

8. CONCLUSIONS AND RECOMMENDA-
TIONS

This paper presents the results of the largest WLAN trace to date,
and the first analysis of a large, mature WLAN to measure geo-
graphic mobility as well as network mobility. Most importantly,
this is the first study that revisits a WLAN. We consider the changes
in usage of the WLAN since its initial deployment, by re-examining
usage after the WLAN has matured, and the user-base has grown
beyond the early adopters. We found dramatic increases in usage,
and changes in the applications and devices used on the network.
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Our study has several implications for wireless network designers,
network modelers, and software developers.

Although roaming increased from our previous study, our users
were not very mobile, and tended to stay, or persist, at one home
location for most of the time. This behavior can be exploited by
network designers, for instance in the use of network caches, or
prediction-based mobility schemes.

Although most users stayed predominantly in one location over-
all, different devices and applications had different mobility char-
acteristics. In particular, always-on VoIP devices tend to associate
with more APs and have longer-lived and farther-ranging sessions.
Always-on devices are becoming more popular, and as a result
WLANs will see an increase in the number of devices associated
with individual APs, even though each device may not be sending
or receiving large quantities of data. Designers should be conscious
of this behavior, for instance, when allocating memory for associ-
ation tables. Application developers may wish to consider higher
levels of mobility, as it may be some time before new standards
such as Mobile IP or IPv6 are widely deployed.

The higher mobility of always-on devices over laptops suggests
that different devices may benefit from different policies. For ex-
ample, a WLAN designer might choose to place VoIP phones and
PDAs on a separate VLAN. This VLAN might be Mobile IP-
enabled, or comprise one subnet that spanned an entire campus,
whereas laptops could reside on building-specific subnets, on the
assumption that they tend not to move around as much. This setup
might also be preferable for non-mobility related reasons, such as
security, since many embedded wireless devices lack software for
newer wireless security standards like IEEE 802.1x.

There was a large increase in the amount of peer-to-peer traffic
on our WLAN, despite the presence of a high-speed wired Ether-
net network throughout our campus, and particularly in the dorms
where much peer-to-peer activity takes place. Evidently the con-
venience of a wireless solution outweighs the limited bandwidth of
an 802.11b network. As 802.11 is a shared medium, large peer-
to-peer file transfers may impact other users in different ways to
the wired network, and wireless-specific traffic management may
be desirable. WLAN designers cannot assume that the WLAN will
only be used when users are on the move, away from their home
location. Instead, the WLAN has replaced the wired LAN as the
primary means of network connectivity for many users.

Wireless VoIP appeared and is likely to become much more com-
mon. The wireless VoIP calls that we saw were short, with a me-
dian duration of 31 seconds, significantly shorter than calls on the
old non-VoIP phone network. If such short calls are representa-
tive of typical wireless VoIP usage, this may impact the design of
WLAN protocols: it may not be cost-effective to implement com-
plex reservation schemes for such short calls.

The short VoIP calls could be a result of the difficulties of pro-
visioning for VoIP in an 802.11b WLAN [8]; if users lack the re-
quired QoS, they may be hanging up calls in frustration. The short
calls, however, were observed on both the wireless and wired net-
work, and one would expect that our wired network is capable of
handling VoIP traffic.

As well as highlighting changes between our two traces, it is im-
portant to look at those usage aspects that did not change. We found
that the proportion of heavy users on our WLAN remained static,
despite the shift from early adopters to a more general population.
The number of hours that each client spent on the network each day
was also similar between the two trace periods. This information
could be useful for provisioning a WLAN. Usage remained diurnal,
although given our residential campus, the diurnal variations were

lower than those observed elsewhere. Residences continued to be
the largest WLAN users.

Although our study is large, our results must be interpreted in
context. We highlight differences in mobility between our users
and previous studies of corporate users, and our academic popula-
tion may not reflect activity in other venues. We believe that aca-
demic campuses are important WLAN venues, however. WLANs
have been deployed at many academic institutions [4], and busi-
ness surveys have started to examine academic wireless usage in
addition to public usage [10]. Indeed, a university campus contains
elements of an enterprise, a residential community, public hotspots
(libraries), research labs, and educational workloads.

Another caveat to be considered is that our results only look at
the wireless portion of our campus LAN. Some of the changes that
we have observed, for example, the increase in P2P applications,
may not be wireless-specific, and may have occurred on the wired
LAN as well. Unfortunately it was impractical for us to measure
the wired LAN due to the structure of the wired network and the
quantities of data that would need to be monitored.

8.1 Future work
Our monitoring efforts are ongoing. Dartmouth College is cur-

rently in the midst of upgrading the entire WLAN to a tri-mode
802.11/a/b/g network. Soon, the campus cable television network
will be migrated to an IP-based streaming video platform. As a re-
sult, we expect to see more streaming media usage on the wireless
network in the future, and in particular higher-quality and higher-
bandwidth video on the 802.11a network that is difficult to provide
over 802.11b.

Our existing sniffers, SNMP and syslog measurement infrastruc-
ture only looks at the wired side of our wireless APs. We are cur-
rently extending our sniffing capability to include wireless sniffers,
so as to monitor the 802.11 MAC layer. Whilst some researchers
have taken 802.11 wireless measurements [21, 7, 14], these have
typically taken place in laboratory conditions, and there is little
wireless monitoring of production WLANs. As the quantity of
data collected by wireless sniffing is much greater than for wired
sniffing, we again intend to only monitor the most popular parts
of campus. We expect, however, that this data will provide further
insights into WLAN usage, and the effects of new applications on
the network.

Owing to the large amount of data that was collected, we have
only shown selected characteristics of the wireless traffic in this
paper. There remain many questions that require further analysis
of our traces. For instance, we observed high numbers of small
SMB/CIFS packets involving many hosts; these are likely to be
worm and virus traffic, and we are presently analyzing the effects
of these worms on our WLAN.

We also welcome other researchers to make use of our data, and
anonymized versions of both our 2001 and 2003/4 traces are pub-
licly available for the community.
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