AGDB: A Debugger for Agent Tcl

Melissa Hirschl and David Kotz
Department of Computer Science
Dartmouth College
Hanover, NH 03755
E-mail: {hershey, dfk}@dartmouth.edu

Technical Report PCS-TR97-306

February 4, 1997

Abstract

The Agent Tel language is an extension of Tel/Tk that supports distributed programming
in the form of transportable agents. AGDB is a debugger for the Agent Tcl language. AGDB
mixes of traditional and distributed debugging facilities. Traditional debugging features in-
clude breakpoints (line-specific, conditional, and once-only), watch conditions and variables,
and interrupts. Distributed-debugging features address issues inherent in distributed program-
ming such as migration and communication. These capabilities make debugging distributed
programs difficult because they add complexities like race conditions to the set of problems a
program can encounter. This paper discusses how AGDB uses distributed debugging features
to debug agents.

1 Introduction

A transportable agent is an autonomous program that can interrupt execution at any point, collect
its state, migrate to different machines and resume execution at the point of interruption. They
provide a shift in programming paradigm from the traditional client-server model in that they can
move the computation to the location of the data, or vice-versa. This flexibility can often reduce
network usage and improve overall performance. This often blends well with applications such as
mobile computing and information retrieval where network bandwidth is limited.

The Agent Tcl language is an extension of T'cl/ Tk that supports distributed programming in the
form of transportable agents [Gra9ha, Gra95c]. AGDB is a debugger for the Agent Tcl language.
AGDB mixes traditional and distributed debugging facilities. Traditional debugging features in-
clude breakpoints (line-specific, conditional, and once-only), watch conditions and variables, and
interrupts. Distributed-debugging features address issues inherent in distributed programming such

as migration and communication. These capabilities make debugging distributed programs difficult

Copyright 1997 by the authors

because they add complexities like race conditions to the set of problems a program can encounter

[MHS89]. This paper discusses how AGDB uses distributed debugging features to debug agents.
1.1 Tcl/Tk Overview

Tcl is a scripting language similar to other UNIX shell languages [Ous94, Wel95]. Tk is an extension
of Tecl that supports creation and manipulation of user-interface widgets. The Tcl/Tk interpreter
contains built-in functions such as source, catch, exit, main, etc. This paper assumes the reader
is familiar with (though not an expert on) Tcl.

The Tcl source procedure is analogous to the source command available in most UNIX shells.
It allows the user to include a library or to divide code into multiple files to keep the code organized.
The main procedure creates a widget on the display; it is built-in to Tk and not Tcl. The catch
procedure takes a script as its argument, and the interpreter executes the script. If the script
executes without errors, catch returns 0, otherwise catch traps the error and returns 1, thereby

averting an exit call.
1.2 Agent Tcl Overview

The Agent Tecl language is an extension of Tcl/Tk in which built-in functions support imple-
mentation of transportable agents [Gra95a, Gra95b, Gra95c, Gra96]!. In Agent Tcl, agents as-
sume their identity, (machine-name, machine-ip, numeric-id, symbolic-name), by executing
the agent_begin and agent_name commands. After the execution of agent_begin, the agent is
able to communicate with other agents, migrate to remote machines, and spawn child agents.

Agents migrate to remote machines by executing the agent_jump procedure. During migration
of transportable agents written in Agent Tcl (caused when the agent executes the agent_jump
command), the Agent Tcl interpreter suspends an agent’s execution, sends the agent’s state to the
destination machine, and arranges for a new interpreter process to load that state and resume the
agent’s execution at its point of suspension. Since an agent executing on a remote machine cannot
affect the display of its home machine, it may be difficult for a programmer to verify an agent’s
progress.

In Agent Tcl, agents spawn children (non-root agents) by executing either the agent_fork or

the agent_submit command. Like UNIX fork, agent_fork creates a copy of the agent. After an

!For more information, see http://www.cs.dartmouth.edu/ agent/

agent_fork call, both parent and child agents begin running at the parent’s point of suspension.
The agent_submit command takes a script as its argument and spawns a child agent to execute
that script.

Agent Tcl supports communication among agents through the agent_send, agent_receive,
and agent_meet procedures. Knowledge of an agent’s birth, whereabouts, and interaction with
other agents may give the programmer a clearer picture of the agent’s progress. We have imple-

mented AGDB to aid in the programmer’s struggle to monitor an agent’s progress.
1.3 AGDB Overview

The AGDB implementation is split into two parts: a debugger agent and a library containing
procedures an agent uses to communicate with the debugger agent. The debugger agent can
monitor as many agents as the user chooses. The debugger monitors an agent by transforming it to
include the library component of AGDB as well as a password and other information discussed in
sections 2.1 and 3.1. The agent begins each communication with the debugger with its password.
The debugger thus identifies and authenticates the agent’s communication via the password.

The library component of the debugger contains wrappers for most built-in Agent Tecl proce-
dures (such as agent_jump and agent_receive) as well as several built-in Tcl/Tk procedures. By
wrappers, we mean that the procedure is redefined to execute extra code both before and after
the actual procedure call. The wrappers include code to help the agent maintain contact with the

debugger. Throughout this paper, we discuss details concerning the wrapper procedures.

2 File Preprocessing

Whenever the agent makes contact with the debugger, the agent tells the debugger which line
of code it is about to execute, and the debugger highlights that line in the agent’s window (see
Figure 2 in Appendix C). For the agent to know which line it is about to execute, the debugger
must infuse a knowledge of line numbers into the agent. The debugger does so by preprocessing a
file when the user adds it to the debugger’s domain.

The file is only preprocessed again at the user’s direction, using the reload menu option. Also,
if the user chooses the auto reload option and then presses run, the debugger checks the file’s most

recent modification time, and if the modification time is later than the time of the last preprocessing,

the debugger preprocesses the file again, resulting in removal of all line-specific breakpoints.
2.1 How the Preprocessor works

The debugger reads the original file and saves the preprocessed version of the file in the /tmp
directory. We call this new file the p-file. The p-file is a copy of the original file, except that it has
calls to the AGDB library procedure _agdb_dynamic_break interspersed among the lines of code.
For a sample p-file, see Appendix A. During execution of the _agdb_dynamic_break procedure,

the agent decides whether to stop at a breakpoint.
2.2 Limitations of the Preprocessor

Since the preprocessor analyzes code on a line-by-line basis, the user cannot specify breakpoints
between statements that appear on the same line in the file. We call same-line code debug-atomic
because the debugger treats it as an atom for the purposes of breakpoints and watch conditions.
The user can interrupt or kill the agent, however, during execution of a debug-atom. Although the
debug-atom is interruptible, the user only sees the debug-atom’s entry-point. Figure 1 shows how

the user can write code to minimize the number of debug-atoms.

debug-atomic code: k¥
if {$x > 6} {set y 4} else {set y 0 ; set z 3}
ok ok

debugger friendly code: kkx
if {$x > 63 {

*okok
set y 4
*okok

} else {
K%k
set y O
K%k

set z 3
K%k

*kk

Figure 1: debug-atomic versus trackable code. *** denotes a possible breakpoint.

3 Running Agents

When the user presses run, AGDB creates another file in the /tmp directory. We call this file the
g-file because it contains global variables that the agent needs to communicate with the debugger.
After the debugger creates the g-file, it is executes the g-file in the background. After setting up

the debugging environment, the g-file sources the p-file. For a sample g-file, see Appendix B.

3.1 G-File

In this section, we describe the g¢-file’s structure. The first line of the g-file must tell whether the
agent is a Tl agent or a Tk agent. We copy this line from the agent’s original file. The second part of
the g-file sources agdb_1ib.tcl, which contains all the procedures the agent needs to communicate
with the debugger. The next section of the g-file initializes global variables, including the agent’s
password, the debugger’s hostname and agent id, information describing when and why to initiate
breakpoints, and other options chosen by the user. The g-file sources the p-file. We enclose the
source in a catch to preserve the return value of the p-file (or the error information therein). After
sourcing (and thus executing) the p-file, the g-file calls the library procedure _agdb_end_comm with
the catch and source results as its arguments. For Tcl agents, the _agdb_end_comm procedure
performs a final communication with the debugger, and the g-file ends by returning the source
result. We want Tk agents to enter the event loop, so after sourcing (and thus executing) the p-file,
the Tk agent only makes a final communication with the debugger if an error was caught in the
p-file. The Tk agent normally makes its final communication with the debugger when the agent

calls the exit wrapper defined in AGDB’s library.

4 Breakpoints

AGDB offers traditional debugging features such as line-specific breakpoints and watch variables
and conditions. The user can add and remove these features via the graphical user interface (see
Figure 2 in Appendix C). To add a line-specific breakpoint, the user selects a line of code and
decides which type of breakpoint to add (via the agent window’s breakpoint menu). A line-specific
breakpoint may or may not be conditional, and may occur only once or each time the line of code
is reached. If the user adds a watch condition (via the agent window’s watch menu), the agent will

break before each line of code for which the condition the user entered is true. If the user adds a

watch variable (via the agent window’s watch menu), the agent will break after every modification
of the the variable the user entered.

At startup, the debugger modifies its mask to trap all meeting requests to the _debug_trap
procedure, where it accepts the meeting and validates the identity of the agent being debugged via

its password.
mask add [mask new] "ANY -handler _debug_trap"

When an agent hits a breakpoint (during either _agdb_dynamic_break or a wrapper procedure),
it calls agent_meet to arrange a meeting with the debugger, and the request is trapped to the
debugger’s _debug_trap procedure. The agent blocks until the debugger accepts the meeting, at
which time a TCP/IP connection is made. Thereafter, the TCP /IP connection is maintained until
the user directs the agent to continue running.

AGDB allows the user to examine the agent’s stack as well as to evaluate commands in the
context of the agent and to print variable values during any break. The user’s requests for these
activities warrant immediate response from the agent. Since other agents may be trying to com-
municate with the debugger, we cannot allow the debugger to wait for a response from the agent.
Instead, when the agent has formed its response, it calls agent_send to send the response to the
debugger. The debugger traps all messages received to the _answer_trap procedure, which outputs

the agent’s response to the user.
5 Beginning Agents

All agents are required to call agent_begin to acquire a controlling server and receive an identity
other than their process id. When an agent calls agent_begin successfully, it uses its password
to initiate its first meeting with the debugger. For non-root agents, agent_begin is implicit. A
non-root agent’s first meeting with the debugger (through its parent’s password) is similar to the
meeting initiated during an agent_begin call. During the first meeting, the agent notifies the
debugger of its identity (machine-name, machine-ip, numeric-id, symbolic-name). After a
successful agent_begin call, the agent modifies its mask variable to receive interrupts from the

debugger (see Section 6). The agent also activates the source wrapper described in Section 11.

6 Interrupting Agents

The user can interrupt an agent between the time the agent calls agent_begin and agent_end,
except during jumps and breakpoints (see Section 9.1 for details on jumps). After an agent calls
agent_jump or agent_begin (either regularly or implicitly), the agent modifies its global mask
variable mask(message) to trap messages from the debugger to the _agdb_debug_trap procedure,

thereby enabling the agent to accept interrupts from the debugger.

mask add $mask(message) \

"$_agdb_debugger_machine $_agdb_debugger_id -handler _agdb_debug_trap"
g gg g g8 g g p

When the user presses interrupt, the debugger sends the agent a message. If the agent is
blocking for any reason (such as an I/O call or a blocking receive), the interpreter queues the
debugger’s message until the agent returns from the blocking call. Unfortunately, this precludes
the debugger from relieving the agent of indefinite blocking. When the interpreter dequeues the
message, the agent initiates a non-interactive breakpoint with the debugger. By non-interactive, we
mean that the user cannot access any information pertaining to the stack frame of the interrupted
agent (other than climbing up and down to see each level’s entry-point). This is because the
interpreter executes the _agdb_debug_trap call at the global level, which conceptually is the same
as executing the call on a separate stack. Future releases of Agent Tcl/Tk will offer a way for

_agdb_debug_trap to access the original stack.
7 Killing Agents

The user can kill an agent by pressing kill in either the agent’s window or the manager window.
These buttons are only effective between the time the agent starts running and the time the agent
calls agent_end, except during jumps (see Section 9.1 for details on jumps). Before an agent calls
agent_begin, the debugger kills it by executing a kill on the agent’s process id (obtained when the
debugger executes the agent in the background). For as long as an agent is registered, the debugger
can employ agent_force to kill it. Unfortunately, after an agent calls agent_end, the agent is no
longer registered, and the debugger has no way of killing it. Future releases of Agent Tcl will allow

a more reliable kill command.

8 Naming and Forcing

The debugger uses an agent’s machine-name and numeric-id to interrupt or kill the agent. Al-
though the debugger does not use symbolic names to communicate with agents, other agents may
use the symbolic names as parameters to agent_send and agent_meet procedures. For this rea-
son, the user may find it useful to keep track of an agent’s symbolic name. After each successful
agent_name call, an agent notifies the debugger of its new name. If agent_name fails, the agent
notifies the debugger of the failure. In both cases, the debugger notifies the user of the result. The
most likely cause for failure in an agent_name call is the existence of another agent with the desired
name on the same machine.

Users may wish to avoid naming conflicts by calling agent_force before each agent_name call,
thereby killing an agent with the desired name if one exists one the local machine. AGDB offers no
support for the agent_force procedure. Due to security issues, the specification of agent_force

will change significantly in future releases of Agent Tcl/Tk.

9 Jumping to Remote Machines

Agents use the agent_jump procedure to move to remote machines. Although agents can migrate at
will, AGDB must always keep as close a contact as possible with the agents it is debugging. When-
ever an agent calls agent_jump, it initiates a pre-jump meeting to tell the debugger that there will be
a brief loss of contact. After the jump is completed, the agent initiates a post-jump meeting to notify
the debugger of its new identity (machine-name, machine-ip, numeric-id, symbolic-name) or

of its failure to jump.
9.1 How AGDB Handles Jumping

Between the pre-jump and post-jump meetings, we consider the agent to be in a transitional state.
The debugger can neither kill nor interrupt a transitional agent. Even if the debugger tried to
contact a transitional agent on both the original and the target machines, there is still a moment
during which the agent is unreachable. Therefore, the debugger takes no action if the user tries to
interrupt or kill a transitional agent. If the user quits AGDB while an agent is in transition, the
agent hangs indefinitely while trying to initiate a post-jump meeting with the debugger. Section 14.3

discusses several possible solutions to this problem.

9.2 Jump Options

AGDB offers the user five options concerning jumping: ignore, track, break before, break after, and
break before and after. The track option causes the debugger to notify the user of all agent_jump
calls, regardless of their outcome. The track option is the default for root agents. The ignore
option causes the debugger to obtain but suppress (from the user) information about agent_jump
calls. Although the user is not informed of the agent’s jumping activity, the debugger must still
keep track of the agent’s location. The break options are an extension of the track options in
that they cause the agent to initiate a breakpoint just before or after (or both) it makes the actual
agent_jump call. The user is able to switch jump options before running an agent or during any

breakpoint.

10 Agent Communication

Agents can communicate with one another via agent_send, agent_receive, and agent_meet calls.
We find that most Agent Tcl/Tk programmers have not used agent_meet to implement commu-
nication between their agents. This choice may be due to agent_meet’s additional complexity. We
do not yet support agent_meet in AGDB, but expect to do so in the future. For now, AGDB

supports both agent_send and agent_receive.
10.1 Send and Receive Options

AGDB offers four separate options for agent_send and agent_receive: complete, 1K, 128
bytes, and ignore. These options allow the user to choose how much of each message the debugger
should display in the agent’s window. If the user chooses the ignore option, the agent does not
notify the debugger of any agent_send or agent_receive calls. The user is able to switch send

and receive options before running an agent or during any breakpoint.
10.2 Implementation Details of Sending and Receiving

Before each agent_send call, an agent tells the debugger the contents and destination of its message.
After an agent_send call, the agent tells the debugger whether or not the call was successful.
Before each agent_receive call, an agent tells the debugger the options with which it will at-

tempt to receive a message. After a successful agent_receive call, the agent tells the debugger the

contents and the sender of the message it received. If the agent_receive call fails, the agent reports
the failure to the debugger. In the event that an agent calls agent_receive with the -blocking
option, the agent hangs indefinitely until another agent sends it a message. Unfortunately, the
debugger is not able to interrupt the blocked agent because messages sent by the debugger are
automatically trapped to a _agdb_debug_trap event, which is then queued. Section 14.2 describes

two possible solutions to this problem.

11 Sourcing Files

For AGDB to debug all activities of an agent, it must be able to debug the code in files sourced
by an agent. Hence, AGDB must preprocess sourced files as it does the main file. AGDB supports

the sourcing of files, but it does so on a more limited basis than does Tcl.
11.1 Implementation Details of File Sourcing

AGDB is capable of debugging any files sourced between the agent_begin call and the first
agent_jump attempt or the agent_end call. We call the state of execution between these calls
p-safe because the debugger can preprocess any files the agent sources. For the debugger to carry
out the preprocessing, the agent must have called agent_begin, so the agent can contact the de-
bugger. Also, the agent cannot have jumped to a remote machine. If both processes are running
on the same machine with the same user id, they have the same file-access permissions, and the
debugger can preprocess the sourced file just as it did the main file.

When the agent is executing in a p-safe state, the source procedure is redefined to the
_agdb_source_wrapper procedure. In the wrapper procedure, the agent sends the debugger the
name of the file it wishes to source. The debugger reads the file, creates a new file in the /tmp in
which it places the preprocessed version of the file, and sends the agent the name of the new file.
The agent then sources the preprocessed version of the file.

When an agent is executing in a p-unsafe state, file sourcing occurs as it usually would in
Tel. Since the debugger does not preprocess the file, code in that file is effectively debug-atomic
even though it may span many lines of code. Since agent_submit and agent_fork have implicit
agent_jump calls in the child agent, non-root agents never execute in the p-safe state.

It is possible that the agent could preprocess all sourced code without the help of the debugger.

10

The agent could even send the debugger a string containing the code in the sourced file, so the code
could be displayed for the user in the agent’s debugger window. However, it seems that the decision
to limit sourcing capabilities of the debugger to the p-safe state will not significantly diminish the
debugger’s usefulness. Once the agent has jumped, its user id becomes agent-tcl, and it may not
to be able to access the same file system. Files the agent sources from a remote machine are likely
to contain library procedures, images, sound sequences, etc., offered by the new host. The user is
probably unfamiliar to the internal code of remote libraries, and we assume the user wants it to

remain debug-atomic.
11.2 Source Options

AGDB offers the user three options concerning file sourcing: ignore, track, and break. The user
is able to switch file-sourcing options before running an agent or during a breakpoint of a root
agent. The default option for root agents, track, produces the behavior described in section 11.1.
The ignore option causes an agent to leave all source code debug-atomic. Since non-root agents
never run in a p-safe state, they have no source options.

The break option is an extension of the track option in that it causes a root agent to break
just before it sources the preprocessed version of the file. The break option is useful because it
allows the user to add line-specific breakpoints in code that is about to be sourced. Line-specific
breakpoints remain during multiple sourcings of the same file in a given run of the agent. They
also remain during multiple runs of an agent. Line-specific breakpoints are removed when the
user explicitly removes the breakpoint in the agent window’s breakpoint menu, or when the file is

preprocessed again.

12 Forking and Submitting Agents

When an agent spawns a child, the debugger can either track the child or it can ignore the child.
The user can control the debugger’s initial treatment of a child via the parent agent’s default
menu. By default, the child agent inherits all option values, watch conditions and variables, and
line-specific breakpoints from its parent. The child agent uses the parent’s password to establish a
meeting with the debugger. During this meeting, the child notifies the debugger of its new identity

(machine-name, machine-ip, numeric-id, symbolic-name). In exchange, the debugger gives

11

the child a new password, so the child no longer uses its parent’s password to communicate with

the debugger.
12.1 Fork and Submit Options

AGDB offers the user three options concerning fork and submit: ignore, track, and break. The
ignore option causes the child agent and the debugger to have no knowledge of or contact with
each other. The track option causes the debugger to track the child agent as it would a root agent.
The track option is the default. The break option is an extension of the track option in that
it causes the agent to initiate a breakpoint just after spawning a child. If the fork or submit call
was successful, the child will also break just after it receives its new password from the debugger.
The break option is useful because it allows the user to change options in a newly spawned agent
before it executes any code. The user is able to switch fork and submit options before running an

agent or during any breakpoint.
12.2 Implementation Details of Fork and Submit

The semantics of forking are such that all variables and procedures available to a parent agent are
copied to the child. On the other hand, the semantics of submitting are such that only variables
and procedures specified in the arguments to the submit procedure are available to the child. Since
the child needs the debugging environment (supplied by the g-file global variables and library
procedures) to communicate with the debugger, we must add all variables and procedures therein
to the argument list. We must also add code to the beginning of the -script argument to initiate
the child’s first meeting with the debugger.

If the user wants to ignore children of a particular parent, the parent must nullify preprocessing
so the child does not try to contact the debugger. During preprocessing, the debugger only adds two
different library procedure calls to the agent’s code: _agdb_end_comm and _agdb_dynamic_break.
The fork and submit wrappers temporarily redefine the two library procedures to be empty. In the
submit wrapper, the two empty procedures are then added to the -procs section of the parent’s
submit argument list. After the actual submit or fork call is completed, the parent restores the

_agdb_end_comm and _agdb_dynamic_break procedures to their original definitions.

12

12.3 Migration Issues

Migration-related procedures such as jump, fork, and submit, threaten contact with the debugger
because they may result in an agent’s relocation to a remote machine. During execution of migration
procedures, the Agent Tcl/Tk interpreter redefines built-in Tcl/Tk procedures. Redefinition of
procedures destroys the library-defined wrappers, so the agent must protect its wrappers. Also,
migration procedures may invoke these commands (agent_jump does indeed call source), and
expect that the functionality has not been altered by the agent. The agent avoids trouble with
wrappers by temporarily removing its wrapper procedures source, exit, and main before it makes
a migration call. Upon completion of the migration, the agent reinstates its source, exit, and
main wrappers, except that children and agents that have jumped never reinstate their source
wrappers, and ignored child agents never reinstate their exit and main wrappers.

Built-in Agent Tcl procedures (beginning with the prefix agent_) are neither redefined nor
called during execution of migration procedures?, so we do not need to protect the wrappers for
built-in Agent Tcl procedures. However, the Agent Tcl/Tk interpreter redefines the value of the
global variable mask during a successful migration. After each successful migration, the agent must
add the mechanism that traps messages from the debugger to the _agdb_debug_trap procedure.

Section 6 offers details about modifying mask.

13 Summary

AGDB combines traditional and distributed debugging facilities to aid programmers in debugging
Agent Tcl agents. The debugger keeps the user informed of the agent’s migration and communica-
tion by transforming the agent to include a library to communicate with the debugger. The library
contains wrappers for the built-in Tcl/Tk and Agent Tcl procedures as well as procedures to carry
out interrupts. Library procedures use Agent Tcl’s built-in agent_meet procedure to communicate
with the debugger. These communications can help the programmer get a better sense of the

agent’s behavior, and thus produce a more reliable agent.

2All agent_ procedures have _agent_ clones that are called internally.

13

14 Future Work

We can improve AGDB in several ways. For example, we can improve AGDB’s error handling by
catching each command of the user’s code and interrupting the agent (rather than killing it) if an
error is caught. To implement these ideas, we need support from the interpreter.

If at all possible, we would like to avoid preprocessing files. Rather than inserting proce-
dure calls into the user’s code, we would like to use a general-purpose command hook. By
general-purpose command hook, we mean a procedure that the interpreter automatically calls be-
fore each command. Agent Tecl already supports command hooks. Command hooks could call
_agdb_dynamic_break, but we still need Tcl/Tk support to supply the line and filename argu-
ments to _agdb_dynamic_break. Future releases of Tcl/Tk will contain built-in procedures to
keep track of line numbers with respect to code files.

Another way in which we can improve AGDB is by catching each command of the user’s code
and interrupting the agent (rather than killing it) if an error is caught in a block of code that is
not already encapsulated by a catch (by the programmer’s design). For this, we need support from

the Agent Tcl interpreter.
14.1 Debugging Many Agents

Currently, AGDB can support an unlimited number of agents. However, the agents are monitored
at too fine a grain for the debugger to be useful on a large scale. For a look at AGDB’s graphical
user interface, see Figure 2 in Appendix C. A new window pops up for each agent, and there is a
practical limit to the number of windows a user can monitor, so we need to incorporate a graphical,
global view of the interaction between agents on a large scale. A future release of AGDB will

address this issue.
14.2 Handling Blocking Receives

The agent_receive call is truly atomic in that the debugger is unable to interrupt the agent while
executing the receive call. We could solve this problem by modifying the agent_receive wrapper
to impose a time limit on all blocking receives. We could also solve this problem by modifying
the agent_receive wrapper to change the mask before each blocking agent_receive call to keep

the agent from trapping the debugger’s messages to the _agdb_debug_trap procedure. Another

14

solution to this problem is to modify the interpreter to execute trapped messages immediately,

rather than queuing them.
14.3 Quitting AGDB and Killing Running Agents

When AGDB quits, it attempts to kill all running agents. Transitional agents are left hanging,
however, while waiting to meet with the debugger. Future releases of Agent Tecl will solve this
problem by including a built-in agent_status procedure that the agent can use to check whether
or not another agent, namely the debugger, is still running before it makes a blocking agent_meet
call. Instead of waiting indefinitely, transitional agents will call exit if the debugger no longer
exists. We could also resolve this issue by adding a -time option to the agent_meet command so

that the transitional agent can exit if a meeting is not established within a given amount of time.
14.4 Quitting AGDB Gracefully

There are many ways for an agent to be killed. AGDB is no different from any another agent; it
can be forced or killed by anyone with the proper authority. When the user quits AGDB via the
manager window’s file menu, AGDB removes all the files it created in the /tmp directory, saves
transcripts if user asked for them, and kills running agents (when possible). If AGDB is killed in
any other way, we would like it to catch the kill signal and exit just as gracefully as if the user had
quit via the manager window’s file menu. In C programs, it is easy to catch a kill signal. In Tcl,

however, this task is not so simple.
Acknowledgments

Many thanks to Robert Gray for offering advice and interpreter support at various stages of AGDB
development. Also thanks to Fred Henle, Vishesh Khemani, and others for help with the graphical

user interface and advice on standard debugging features.

References

[Gra95a] Robert S. Gray. Agent Tcl: A transportable agent system. In Proceedings of the CIKM
Workshop on Intelligent Information Agents, Fourth International Conference on Infor-

mation and Knowledge Management (CIKM 95), Baltimore, Maryland, December 1995.

15

[Gra95b] Robert S. Gray. Agent Tcl: Alpha Release 1.1, December 1995. Dartmouth College. Avail-

able by WWW at http://www.cs.dartmouth.edu/ rgray/documentation/doc.1.1.ps.gz.

[Gra95c] Robert S. Gray. Transportable agents. Technical Report PCS-TR95-261, Dept. of Com-

puter Science, Dartmouth College, 1995. Thesis proposal.

[Gra96] Robert S. Gray. Agent Tcl: A flexible and secure mobile-agent system. In Proceedings of
the 1996 Tecl/Tk Workshop, pages 9-23, July 1996.

[MH89] Charles E. McDowell and David P. Helmbold. Debugging concurent programs. ACM

Computing Surveys, 21(4):593-622, December 1989.

[Ous94] John K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, Reading, Massachusetts,
1994.

[Wel95] Brent B. Welch. Practical Programming in Tecl and Tk. Prentice Hall PTR, 1995.

16

A Sample P-File

Background infomation regarding the p-file is supplied in Section 2. The p-file is is a copy of
the original file, except that it has calls to the AGDB library procedure _agdb_dynamic_break
interspersed among the lines of code.

The _agdb_dynamic_break procedure takes two parameters: the first is the number of the
following line in its original file, and the second is the index location of the file in the buffer menu
of the agent’s window (0 unless the file was sourced). The _agdb_dynamic_break procedure decides
whether the agent should break. If so, the agent requests a meeting with the debugger, thereby

initiating a breakpoint.
#!/usr/contrib/bin/agent

this is an agent which jumps to three machines and
collects data at each site.

define the get_data procedure
proc get_data {x y} {
_agdb_dynamic_break 7 O
set list "" ; set z [expr $x + $yl
_agdb_dynamic_break 8 0
set machines "muir.cs.dartmouth.edu \
tuolomne.cs.dartmouth.edu \
tioga.cs.dartmouth.edu"
jump to each machine
_agdb_dynamic_break 12 0
foreach m $machines {
_agdb_dynamic_break 13 0
if {[catch "agent_jump $m"1} {
_agdb_dynamic_break 14 0
append list "\n$m: \t unable to JUMP to this machine"
_agdb_dynamic_break 15 0
} else {
_agdb_dynamic_break 16 0
append list "\n$m: \t[exec last]"
_agdb_dynamic_break 17 O
b
_agdb_dynamic_break 18 0
b
_agdb_dynamic_break 19 0
return $list

17

_agdb_dynamic_break 20 0
b

_agdb_dynamic_break 22 0
agent_begin

_agdb_dynamic_break 24 0
set answer [get_data 44 55]

_agdb_dynamic_break 26 0
agent_end

_agdb_dynamic_break 28 0
return $answer

18

B Structure of the G-File

Background information regarding the g-file is supplied in Section 3. This g-file corresponds to the

p-file in Appendix A.

#!/usr/contrib/bin/agent-tk

source the library functions

source /usr/bin/agdb_lib.tcl

password information initialization
set _agdb_agent_num 1
set _agdb_password 336699

debugger identity initialization
set _agdb_debugger_machine muir.cs.dartmouth.edu

set _agdb_debugger_id 22

initialize the state of the agent
set _agdb_never_registered 1
set _agdb_never_jumped 1
set _agdb_stepwise_break O
set _agdb_nextwise_break O
set _agdb_nextwise_level O
set _agdb_line_number(0) -1
set _agdb_buffer_index(0) O
set _agdb_level 0

breakpoint information initialization

set _agdb_num_watches 4

set _agdb_watch_cond_list {{$x > 53 {$y $< 3}
set _agdb_watch_var_list {i j%

set _agdb_general_break_list {37 54}

set _agdb_temp_break_list {54}

set _agdb_break_condition(37.0) {$q == 6}

initialize default option settings
set _agdb_track_jump 1
set _agdb_track_submit 1
set _agdb_track_source 1
1

set _agdb_track_fork

19

set _agdb_track_send 128
set _agdb_track_recv 128

catch the sourcing of the p-file
set _agdb_catch_result [catch {source agdb_lib.tcl} _agdb_src_result]

Tcl agents make a final communication with the debugger
Tk also do iff an error is caught

_agdb_end_comm $_agdb_catch_result $_agdb_src_result

Tcl agents end by returning the source result
if {$agent(language) !'= "STATE-TK"} {
return -code $_agdb_catch_result $_agdb_src_result

¥

20

C Graphical User Interface

COLOR KEY:

user made a selection wit

[«] AGDB: Agent Tcl Debugger Window Manager

Files

Defaults | Help

dkkkkok

Agent 1 in file "example.tel":
mnning, at a breakpoint
Machine name: mmir.cs.dartmouth.edn

Machine IP: 129.170.192.42
Agent name:
Agent id: 261
mn | intermpt | kill | step | hext | continme

last point of contact——debu

user selected a breakpoint on this line
hreakpoint in progress: breakpoint on
hreakpoint in progress: entry pointno

intermpt in progress: ahout to e RN

[*] agent_3

most recent point of contag eI

Apgent 1 in file example.tel is mnning.
Machine name: mir.cs.dartmouth.edu
Machine IP: 129.170.192.42
Agent name:
Agent id: 261

Files | Buffers

Breakpoints | Watch || Defaults | Search

set machine list "tuolomne.cs dartmonth.edu tioga.cs.dartmonth edu”
foreach m $machine list {
if {[catch “agent jump $m"]} {
append travel history "$m: unable to JUMP to this machine ‘n"

}else {

append travel history "$m: agent server is receptive ‘n"

Cuwrrently viewing file: “example.tel"

print
wlues Agent has begun.
B Bk o R
hreakpoint namber 1, ron nummber 1
evaluate | Break in proc "travel”

Break on line 21 of file "example.tel"
Arpument values at invokation of proc "travel" --»
agl:x=7 arg2:y=35

13

Enter an expression of the form expr $x + 5: |1appem:1 machine list glacier@es.dart |

=

=i

Figure 2: Graphical User Interface for AGDB.

21

