
Copyright 1997 by the authors

AGDB� A Debugger for Agent Tcl

Melissa Hirschl and David Kotz

Department of Computer Science

Dartmouth College

Hanover� NH �����

E�mail� fhershey� dfkg�dartmouth�edu

Technical Report PCS�TR	����

February �� �		�

Abstract

The Agent Tcl language is an extension of Tcl�Tk that supports distributed programming
in the form of transportable agents� AGDB is a debugger for the Agent Tcl language� AGDB
mixes of traditional and distributed debugging facilities� Traditional debugging features in�
clude breakpoints �line�speci�c� conditional� and once�only�� watch conditions and variables�
and interrupts� Distributed�debugging features address issues inherent in distributed program�
ming such as migration and communication� These capabilities make debugging distributed
programs di�cult because they add complexities like race conditions to the set of problems a
program can encounter� This paper discusses how AGDB uses distributed debugging features
to debug agents�

� Introduction

A transportable agent is an autonomous program that can interrupt execution at any point� collect

its state� migrate to di�erent machines and resume execution at the point of interruption� They

provide a shift in programming paradigm from the traditional client�server model in that they can

move the computation to the location of the data� or vice�versa� This �exibility can often reduce

network usage and improve overall performance� This often blends well with applications such as

mobile computing and information retrieval where network bandwidth is limited�

The Agent Tcl language is an extension of Tcl�Tk that supports distributed programming in the

form of transportable agents �Gra��a� Gra��c	� AGDB is a debugger for the Agent Tcl language�

AGDB mixes traditional and distributed debugging facilities� Traditional debugging features in�

clude breakpoints
line�speci�c� conditional� and once�only�� watch conditions and variables� and

interrupts� Distributed�debugging features address issues inherent in distributed programming such

as migration and communication� These capabilities make debugging distributed programs dicult

�

because they add complexities like race conditions to the set of problems a program can encounter

�MH��	� This paper discusses how AGDB uses distributed debugging features to debug agents�

��� Tcl�Tk Overview

Tcl is a scripting language similar to other UNIX shell languages �Ous��� Wel��	� Tk is an extension

of Tcl that supports creation and manipulation of user�interface widgets� The Tcl�Tk interpreter

contains built�in functions such as source� catch� exit� main� etc� This paper assumes the reader

is familiar with
though not an expert on� Tcl�

The Tcl source procedure is analogous to the source command available in most UNIX shells�

It allows the user to include a library or to divide code into multiple �les to keep the code organized�

The main procedure creates a widget on the display� it is built�in to Tk and not Tcl� The catch

procedure takes a script as its argument� and the interpreter executes the script� If the script

executes without errors� catch returns �� otherwise catch traps the error and returns �� thereby

averting an exit call�

��� Agent Tcl Overview

The Agent Tcl language is an extension of Tcl�Tk in which built�in functions support imple�

mentation of transportable agents �Gra��a� Gra��b� Gra��c� Gra��	�� In Agent Tcl� agents as�

sume their identity� �machine�name� machine�ip� numeric�id� symbolic�name�� by executing

the agent�begin and agent�name commands� After the execution of agent�begin� the agent is

able to communicate with other agents� migrate to remote machines� and spawn child agents�

Agents migrate to remote machines by executing the agent�jump procedure� During migration

of transportable agents written in Agent Tcl
caused when the agent executes the agent�jump

command�� the Agent Tcl interpreter suspends an agent�s execution� sends the agent�s state to the

destination machine� and arranges for a new interpreter process to load that state and resume the

agent�s execution at its point of suspension� Since an agent executing on a remote machine cannot

a�ect the display of its home machine� it may be dicult for a programmer to verify an agent�s

progress�

In Agent Tcl� agents spawn children
non�root agents� by executing either the agent�fork or

the agent�submit command� Like UNIX fork� agent�fork creates a copy of the agent� After an

�For more information� see http���www�cs�dartmouth�edu��agent�

�

agent�fork call� both parent and child agents begin running at the parent�s point of suspension�

The agent�submit command takes a script as its argument and spawns a child agent to execute

that script�

Agent Tcl supports communication among agents through the agent�send� agent�receive�

and agent�meet procedures� Knowledge of an agent�s birth� whereabouts� and interaction with

other agents may give the programmer a clearer picture of the agent�s progress� We have imple�

mented AGDB to aid in the programmer�s struggle to monitor an agent�s progress�

��� AGDB Overview

The AGDB implementation is split into two parts� a debugger agent and a library containing

procedures an agent uses to communicate with the debugger agent� The debugger agent can

monitor as many agents as the user chooses� The debugger monitors an agent by transforming it to

include the library component of AGDB as well as a password and other information discussed in

sections ��� and ���� The agent begins each communication with the debugger with its password�

The debugger thus identi�es and authenticates the agent�s communication via the password�

The library component of the debugger contains wrappers for most built�in Agent Tcl proce�

dures
such as agent�jump and agent�receive� as well as several built�in Tcl�Tk procedures� By

wrappers � we mean that the procedure is rede�ned to execute extra code both before and after

the actual procedure call� The wrappers include code to help the agent maintain contact with the

debugger� Throughout this paper� we discuss details concerning the wrapper procedures�

� File Preprocessing

Whenever the agent makes contact with the debugger� the agent tells the debugger which line

of code it is about to execute� and the debugger highlights that line in the agent�s window
see

Figure � in Appendix C�� For the agent to know which line it is about to execute� the debugger

must infuse a knowledge of line numbers into the agent� The debugger does so by preprocessing a

�le when the user adds it to the debugger�s domain�

The �le is only preprocessed again at the user�s direction� using the reload menu option� Also�

if the user chooses the auto reload option and then presses run� the debugger checks the �le�s most

recent modi�cation time� and if the modi�cation time is later than the time of the last preprocessing�

�

the debugger preprocesses the �le again� resulting in removal of all line�speci�c breakpoints�

��� How the Preprocessor works

The debugger reads the original �le and saves the preprocessed version of the �le in the �tmp

directory� We call this new �le the p��le� The p��le is a copy of the original �le� except that it has

calls to the AGDB library procedure �agdb�dynamic�break interspersed among the lines of code�

For a sample p��le� see Appendix A� During execution of the �agdb�dynamic�break procedure�

the agent decides whether to stop at a breakpoint�

��� Limitations of the Preprocessor

Since the preprocessor analyzes code on a line�by�line basis� the user cannot specify breakpoints

between statements that appear on the same line in the �le� We call same�line code debug�atomic

because the debugger treats it as an atom for the purposes of breakpoints and watch conditions�

The user can interrupt or kill the agent� however� during execution of a debug�atom� Although the

debug�atom is interruptible� the user only sees the debug�atom�s entry�point� Figure � shows how

the user can write code to minimize the number of debug�atoms �

� debug�atomic code� ���

if 	
x � � 	set y � else 	set y � � set z �

���

� debugger friendly code� ���

if 	
x � � 	

���

set y �

���

 else 	

���

set y �

���

set z �

���

���

Figure �� debug�atomic versus trackable code� ��� denotes a possible breakpoint�

�

� Running Agents

When the user presses run� AGDB creates another �le in the �tmp directory� We call this �le the

g��le because it contains global variables that the agent needs to communicate with the debugger�

After the debugger creates the g��le� it is executes the g��le in the background� After setting up

the debugging environment� the g��le sources the p��le� For a sample g��le� see Appendix B�

��� G�File

In this section� we describe the g��le�s structure� The �rst line of the g��le must tell whether the

agent is a Tcl agent or a Tk agent� We copy this line from the agent�s original �le� The second part of

the g��le sources agdb lib�tcl� which contains all the procedures the agent needs to communicate

with the debugger� The next section of the g��le initializes global variables� including the agent�s

password� the debugger�s hostname and agent id� information describing when and why to initiate

breakpoints� and other options chosen by the user� The g��le sources the p��le� We enclose the

source in a catch to preserve the return value of the p��le
or the error information therein�� After

sourcing
and thus executing� the p��le� the g��le calls the library procedure �agdb�end�comm with

the catch and source results as its arguments� For Tcl agents� the �agdb�end�comm procedure

performs a �nal communication with the debugger� and the g��le ends by returning the source

result� We want Tk agents to enter the event loop� so after sourcing
and thus executing� the p��le�

the Tk agent only makes a �nal communication with the debugger if an error was caught in the

p��le� The Tk agent normally makes its �nal communication with the debugger when the agent

calls the exit wrapper de�ned in AGDB�s library�

� Breakpoints

AGDB o�ers traditional debugging features such as line�speci�c breakpoints and watch variables

and conditions� The user can add and remove these features via the graphical user interface
see

Figure � in Appendix C�� To add a line�speci�c breakpoint� the user selects a line of code and

decides which type of breakpoint to add
via the agent window�s breakpoint menu�� A line�speci�c

breakpoint may or may not be conditional� and may occur only once or each time the line of code

is reached� If the user adds a watch condition
via the agent window�s watch menu�� the agent will

break before each line of code for which the condition the user entered is true� If the user adds a

�

watch variable
via the agent window�s watch menu�� the agent will break after every modi�cation

of the the variable the user entered�

At startup� the debugger modi�es its mask to trap all meeting requests to the �debug�trap

procedure� where it accepts the meeting and validates the identity of the agent being debugged via

its password�

mask add �mask new� �ANY �handler �debug�trap�

When an agent hits a breakpoint
during either �agdb�dynamic�break or a wrapper procedure��

it calls agent�meet to arrange a meeting with the debugger� and the request is trapped to the

debugger�s �debug�trap procedure� The agent blocks until the debugger accepts the meeting� at

which time a TCP�IP connection is made� Thereafter� the TCP�IP connection is maintained until

the user directs the agent to continue running�

AGDB allows the user to examine the agent�s stack as well as to evaluate commands in the

context of the agent and to print variable values during any break� The user�s requests for these

activities warrant immediate response from the agent� Since other agents may be trying to com�

municate with the debugger� we cannot allow the debugger to wait for a response from the agent�

Instead� when the agent has formed its response� it calls agent�send to send the response to the

debugger� The debugger traps all messages received to the �answer�trap procedure� which outputs

the agent�s response to the user�

� Beginning Agents

All agents are required to call agent�begin to acquire a controlling server and receive an identity

other than their process id� When an agent calls agent�begin successfully� it uses its password

to initiate its �rst meeting with the debugger� For non�root agents� agent�begin is implicit� A

non�root agent�s �rst meeting with the debugger
through its parent�s password� is similar to the

meeting initiated during an agent�begin call� During the �rst meeting� the agent noti�es the

debugger of its identity �machine�name� machine�ip� numeric�id� symbolic�name�� After a

successful agent�begin call� the agent modi�es its mask variable to receive interrupts from the

debugger
see Section ��� The agent also activates the source wrapper described in Section ���

�

� Interrupting Agents

The user can interrupt an agent between the time the agent calls agent�begin and agent�end�

except during jumps and breakpoints
see Section ��� for details on jumps�� After an agent calls

agent�jump or agent�begin
either regularly or implicitly�� the agent modi�es its global mask

variable mask�message� to trap messages from the debugger to the �agdb�debug�trap procedure�

thereby enabling the agent to accept interrupts from the debugger�

mask add
mask�message� �

�
�agdb�debugger�machine
�agdb�debugger�id �handler �agdb�debug�trap�

When the user presses interrupt� the debugger sends the agent a message� If the agent is

blocking for any reason
such as an I�O call or a blocking receive�� the interpreter queues the

debugger�s message until the agent returns from the blocking call� Unfortunately� this precludes

the debugger from relieving the agent of inde�nite blocking� When the interpreter dequeues the

message� the agent initiates a non�interactive breakpoint with the debugger� By non�interactive� we

mean that the user cannot access any information pertaining to the stack frame of the interrupted

agent
other than climbing up and down to see each level�s entry�point�� This is because the

interpreter executes the �agdb�debug�trap call at the global level� which conceptually is the same

as executing the call on a separate stack� Future releases of Agent Tcl�Tk will o�er a way for

�agdb�debug�trap to access the original stack�

� Killing Agents

The user can kill an agent by pressing kill in either the agent�s window or the manager window�

These buttons are only e�ective between the time the agent starts running and the time the agent

calls agent�end� except during jumps
see Section ��� for details on jumps�� Before an agent calls

agent�begin� the debugger kills it by executing a kill on the agent�s process id
obtained when the

debugger executes the agent in the background�� For as long as an agent is registered� the debugger

can employ agent�force to kill it� Unfortunately� after an agent calls agent�end� the agent is no

longer registered� and the debugger has no way of killing it� Future releases of Agent Tcl will allow

a more reliable kill command�

�

� Naming and Forcing

The debugger uses an agent�s machine�name and numeric�id to interrupt or kill the agent� Al�

though the debugger does not use symbolic names to communicate with agents� other agents may

use the symbolic names as parameters to agent�send and agent�meet procedures� For this rea�

son� the user may �nd it useful to keep track of an agent�s symbolic name� After each successful

agent�name call� an agent noti�es the debugger of its new name� If agent�name fails� the agent

noti�es the debugger of the failure� In both cases� the debugger noti�es the user of the result� The

most likely cause for failure in an agent�name call is the existence of another agent with the desired

name on the same machine�

Users may wish to avoid naming con�icts by calling agent�force before each agent�name call�

thereby killing an agent with the desired name if one exists one the local machine� AGDB o�ers no

support for the agent�force procedure� Due to security issues� the speci�cation of agent�force

will change signi�cantly in future releases of Agent Tcl�Tk�

� Jumping to Remote Machines

Agents use the agent�jump procedure to move to remote machines� Although agents can migrate at

will� AGDB must always keep as close a contact as possible with the agents it is debugging� When�

ever an agent calls agent�jump� it initiates a pre�jump meeting to tell the debugger that there will be

a brief loss of contact� After the jump is completed� the agent initiates a post�jump meeting to notify

the debugger of its new identity �machine�name� machine�ip� numeric�id� symbolic�name� or

of its failure to jump�

��� How AGDB Handles Jumping

Between the pre�jump and post�jump meetings� we consider the agent to be in a transitional state�

The debugger can neither kill nor interrupt a transitional agent� Even if the debugger tried to

contact a transitional agent on both the original and the target machines� there is still a moment

during which the agent is unreachable� Therefore� the debugger takes no action if the user tries to

interrupt or kill a transitional agent� If the user quits AGDB while an agent is in transition� the

agent hangs inde�nitely while trying to initiate a post�jump meeting with the debugger� Section ����

discusses several possible solutions to this problem�

�

��� Jump Options

AGDB o�ers the user �ve options concerning jumping� ignore� track� break before� break after� and

break before and after� The track option causes the debugger to notify the user of all agent�jump

calls� regardless of their outcome� The track option is the default for root agents� The ignore

option causes the debugger to obtain but suppress
from the user� information about agent�jump

calls� Although the user is not informed of the agent�s jumping activity� the debugger must still

keep track of the agent�s location� The break options are an extension of the track options in

that they cause the agent to initiate a breakpoint just before or after
or both� it makes the actual

agent�jump call� The user is able to switch jump options before running an agent or during any

breakpoint�

�	 Agent Communication

Agents can communicate with one another via agent�send� agent�receive� and agent�meet calls�

We �nd that most Agent Tcl�Tk programmers have not used agent�meet to implement commu�

nication between their agents� This choice may be due to agent�meet�s additional complexity� We

do not yet support agent�meet in AGDB� but expect to do so in the future� For now� AGDB

supports both agent�send and agent�receive�

���� Send and Receive Options

AGDB o�ers four separate options for agent�send and agent�receive� complete� �K� ���

bytes� and ignore� These options allow the user to choose how much of each message the debugger

should display in the agent�s window� If the user chooses the ignore option� the agent does not

notify the debugger of any agent�send or agent�receive calls� The user is able to switch send

and receive options before running an agent or during any breakpoint�

���� Implementation Details of Sending and Receiving

Before each agent�send call� an agent tells the debugger the contents and destination of its message�

After an agent�send call� the agent tells the debugger whether or not the call was successful�

Before each agent�receive call� an agent tells the debugger the options with which it will at�

tempt to receive a message� After a successful agent�receive call� the agent tells the debugger the

�

contents and the sender of the message it received� If the agent�receive call fails� the agent reports

the failure to the debugger� In the event that an agent calls agent�receive with the �blocking

option� the agent hangs inde�nitely until another agent sends it a message� Unfortunately� the

debugger is not able to interrupt the blocked agent because messages sent by the debugger are

automatically trapped to a �agdb�debug�trap event� which is then queued� Section ���� describes

two possible solutions to this problem�

�� Sourcing Files

For AGDB to debug all activities of an agent� it must be able to debug the code in �les sourced

by an agent� Hence� AGDB must preprocess sourced �les as it does the main �le� AGDB supports

the sourcing of �les� but it does so on a more limited basis than does Tcl�

���� Implementation Details of File Sourcing

AGDB is capable of debugging any �les sourced between the agent�begin call and the �rst

agent�jump attempt or the agent�end call� We call the state of execution between these calls

p�safe because the debugger can preprocess any �les the agent sources� For the debugger to carry

out the preprocessing� the agent must have called agent�begin� so the agent can contact the de�

bugger� Also� the agent cannot have jumped to a remote machine� If both processes are running

on the same machine with the same user id� they have the same �le�access permissions� and the

debugger can preprocess the sourced �le just as it did the main �le�

When the agent is executing in a p�safe state� the source procedure is rede�ned to the

�agdb�source�wrapper procedure� In the wrapper procedure� the agent sends the debugger the

name of the �le it wishes to source� The debugger reads the �le� creates a new �le in the �tmp in

which it places the preprocessed version of the �le� and sends the agent the name of the new �le�

The agent then sources the preprocessed version of the �le�

When an agent is executing in a p�unsafe state� �le sourcing occurs as it usually would in

Tcl� Since the debugger does not preprocess the �le� code in that �le is e�ectively debug�atomic

even though it may span many lines of code� Since agent�submit and agent�fork have implicit

agent�jump calls in the child agent� non�root agents never execute in the p�safe state�

It is possible that the agent could preprocess all sourced code without the help of the debugger�

��

The agent could even send the debugger a string containing the code in the sourced �le� so the code

could be displayed for the user in the agent�s debugger window� However� it seems that the decision

to limit sourcing capabilities of the debugger to the p�safe state will not signi�cantly diminish the

debugger�s usefulness� Once the agent has jumped� its user id becomes agent�tcl� and it may not

to be able to access the same �le system� Files the agent sources from a remote machine are likely

to contain library procedures� images� sound sequences� etc�� o�ered by the new host� The user is

probably unfamiliar to the internal code of remote libraries� and we assume the user wants it to

remain debug�atomic�

���� Source Options

AGDB o�ers the user three options concerning �le sourcing� ignore� track� and break� The user

is able to switch �le�sourcing options before running an agent or during a breakpoint of a root

agent� The default option for root agents� track� produces the behavior described in section �����

The ignore option causes an agent to leave all source code debug�atomic� Since non�root agents

never run in a p�safe state� they have no source options�

The break option is an extension of the track option in that it causes a root agent to break

just before it sources the preprocessed version of the �le� The break option is useful because it

allows the user to add line�speci�c breakpoints in code that is about to be sourced� Line�speci�c

breakpoints remain during multiple sourcings of the same �le in a given run of the agent� They

also remain during multiple runs of an agent� Line�speci�c breakpoints are removed when the

user explicitly removes the breakpoint in the agent window�s breakpoint menu� or when the �le is

preprocessed again�

�� Forking and Submitting Agents

When an agent spawns a child� the debugger can either track the child or it can ignore the child�

The user can control the debugger�s initial treatment of a child via the parent agent�s default

menu� By default� the child agent inherits all option values� watch conditions and variables� and

line�speci�c breakpoints from its parent� The child agent uses the parent�s password to establish a

meeting with the debugger� During this meeting� the child noti�es the debugger of its new identity

�machine�name� machine�ip� numeric�id� symbolic�name�� In exchange� the debugger gives

��

the child a new password� so the child no longer uses its parent�s password to communicate with

the debugger�

���� Fork and Submit Options

AGDB o�ers the user three options concerning fork and submit� ignore� track� and break� The

ignore option causes the child agent and the debugger to have no knowledge of or contact with

each other� The track option causes the debugger to track the child agent as it would a root agent�

The track option is the default� The break option is an extension of the track option in that

it causes the agent to initiate a breakpoint just after spawning a child� If the fork or submit call

was successful� the child will also break just after it receives its new password from the debugger�

The break option is useful because it allows the user to change options in a newly spawned agent

before it executes any code� The user is able to switch fork and submit options before running an

agent or during any breakpoint�

���� Implementation Details of Fork and Submit

The semantics of forking are such that all variables and procedures available to a parent agent are

copied to the child� On the other hand� the semantics of submitting are such that only variables

and procedures speci�ed in the arguments to the submit procedure are available to the child� Since

the child needs the debugging environment
supplied by the g��le global variables and library

procedures� to communicate with the debugger� we must add all variables and procedures therein

to the argument list� We must also add code to the beginning of the �script argument to initiate

the child�s �rst meeting with the debugger�

If the user wants to ignore children of a particular parent� the parent must nullify preprocessing

so the child does not try to contact the debugger� During preprocessing� the debugger only adds two

di�erent library procedure calls to the agent�s code� �agdb�end�comm and �agdb�dynamic�break�

The fork and submit wrappers temporarily rede�ne the two library procedures to be empty� In the

submit wrapper� the two empty procedures are then added to the �procs section of the parent�s

submit argument list� After the actual submit or fork call is completed� the parent restores the

�agdb�end�comm and �agdb�dynamic�break procedures to their original de�nitions�

��

���� Migration Issues

Migration�related procedures such as jump� fork� and submit� threaten contact with the debugger

because they may result in an agent�s relocation to a remote machine� During execution of migration

procedures� the Agent Tcl�Tk interpreter rede�nes built�in Tcl�Tk procedures� Rede�nition of

procedures destroys the library�de�ned wrappers� so the agent must protect its wrappers� Also�

migration procedures may invoke these commands
agent�jump does indeed call source�� and

expect that the functionality has not been altered by the agent� The agent avoids trouble with

wrappers by temporarily removing its wrapper procedures source� exit� and main before it makes

a migration call� Upon completion of the migration� the agent reinstates its source� exit� and

main wrappers� except that children and agents that have jumped never reinstate their source

wrappers� and ignored child agents never reinstate their exit and main wrappers�

Built�in Agent Tcl procedures
beginning with the pre�x agent�� are neither rede�ned nor

called during execution of migration procedures�� so we do not need to protect the wrappers for

built�in Agent Tcl procedures� However� the Agent Tcl�Tk interpreter rede�nes the value of the

global variable mask during a successful migration� After each successful migration� the agent must

add the mechanism that traps messages from the debugger to the �agdb�debug�trap procedure�

Section � o�ers details about modifying mask�

�� Summary

AGDB combines traditional and distributed debugging facilities to aid programmers in debugging

Agent Tcl agents� The debugger keeps the user informed of the agent�s migration and communica�

tion by transforming the agent to include a library to communicate with the debugger� The library

contains wrappers for the built�in Tcl�Tk and Agent Tcl procedures as well as procedures to carry

out interrupts� Library procedures use Agent Tcl�s built�in agent�meet procedure to communicate

with the debugger� These communications can help the programmer get a better sense of the

agent�s behavior� and thus produce a more reliable agent�

�All agent procedures have agent clones that are called internally�

��

�� Future Work

We can improve AGDB in several ways� For example� we can improve AGDB�s error handling by

catching each command of the user�s code and interrupting the agent
rather than killing it� if an

error is caught� To implement these ideas� we need support from the interpreter�

If at all possible� we would like to avoid preprocessing �les� Rather than inserting proce�

dure calls into the user�s code� we would like to use a general�purpose command hook� By

general�purpose command hook � we mean a procedure that the interpreter automatically calls be�

fore each command� Agent Tcl already supports command hooks� Command hooks could call

�agdb�dynamic�break� but we still need Tcl�Tk support to supply the line and �lename argu�

ments to �agdb�dynamic�break� Future releases of Tcl�Tk will contain built�in procedures to

keep track of line numbers with respect to code �les�

Another way in which we can improve AGDB is by catching each command of the user�s code

and interrupting the agent
rather than killing it� if an error is caught in a block of code that is

not already encapsulated by a catch
by the programmer�s design�� For this� we need support from

the Agent Tcl interpreter�

���� Debugging Many Agents

Currently� AGDB can support an unlimited number of agents� However� the agents are monitored

at too �ne a grain for the debugger to be useful on a large scale� For a look at AGDB�s graphical

user interface� see Figure � in Appendix C� A new window pops up for each agent� and there is a

practical limit to the number of windows a user can monitor� so we need to incorporate a graphical�

global view of the interaction between agents on a large scale� A future release of AGDB will

address this issue�

���� Handling Blocking Receives

The agent�receive call is truly atomic in that the debugger is unable to interrupt the agent while

executing the receive call� We could solve this problem by modifying the agent�receive wrapper

to impose a time limit on all blocking receives� We could also solve this problem by modifying

the agent�receive wrapper to change the mask before each blocking agent�receive call to keep

the agent from trapping the debugger�s messages to the �agdb�debug�trap procedure� Another

��

solution to this problem is to modify the interpreter to execute trapped messages immediately�

rather than queuing them�

���� Quitting AGDB and Killing Running Agents

When AGDB quits� it attempts to kill all running agents� Transitional agents are left hanging�

however� while waiting to meet with the debugger� Future releases of Agent Tcl will solve this

problem by including a built�in agent�status procedure that the agent can use to check whether

or not another agent� namely the debugger� is still running before it makes a blocking agent�meet

call� Instead of waiting inde�nitely� transitional agents will call exit if the debugger no longer

exists� We could also resolve this issue by adding a �time option to the agent�meet command so

that the transitional agent can exit if a meeting is not established within a given amount of time�

���� Quitting AGDB Gracefully

There are many ways for an agent to be killed� AGDB is no di�erent from any another agent� it

can be forced or killed by anyone with the proper authority� When the user quits AGDB via the

manager window�s �le menu� AGDB removes all the �les it created in the �tmp directory� saves

transcripts if user asked for them� and kills running agents
when possible�� If AGDB is killed in

any other way� we would like it to catch the kill signal and exit just as gracefully as if the user had

quit via the manager window�s �le menu� In C programs� it is easy to catch a kill signal� In Tcl�

however� this task is not so simple�

Acknowledgments

Many thanks to Robert Gray for o�ering advice and interpreter support at various stages of AGDB

development� Also thanks to Fred Henle� Vishesh Khemani� and others for help with the graphical

user interface and advice on standard debugging features�

References

�Gra��a	 Robert S� Gray� Agent Tcl� A transportable agent system� In Proceedings of the CIKM

Workshop on Intelligent Information Agents� Fourth International Conference on Infor�

mation and Knowledge Management �CIKM ���� Baltimore� Maryland� December �����

��

�Gra��b	 Robert S� Gray� Agent Tcl� Alpha Release �	�� December ����� Dartmouth College� Avail�

able by WWW at http���www�cs�dartmouth�edu��rgray�documentation�doc�����ps�gz�

�Gra��c	 Robert S� Gray� Transportable agents� Technical Report PCS�TR������� Dept� of Com�

puter Science� Dartmouth College� ����� Thesis proposal�

�Gra��	 Robert S� Gray� Agent Tcl� A �exible and secure mobile�agent system� In Proceedings of

the ���
 Tcl�Tk Workshop� pages ����� July �����

�MH��	 Charles E� McDowell and David P� Helmbold� Debugging concurent programs� ACM

Computing Surveys� ��
����������� December �����

�Ous��	 John K� Ousterhout� Tcl and the Tk Toolkit� Addison�Wesley� Reading� Massachusetts�

�����

�Wel��	 Brent B� Welch� Practical Programming in Tcl and Tk� Prentice Hall PTR� �����

��

A Sample P
File

Background infomation regarding the p��le is supplied in Section �� The p��le is is a copy of

the original �le� except that it has calls to the AGDB library procedure �agdb�dynamic�break

interspersed among the lines of code�

The �agdb�dynamic�break procedure takes two parameters� the �rst is the number of the

following line in its original �le� and the second is the index location of the �le in the bu�er menu

of the agent�s window
� unless the �le was sourced�� The �agdb�dynamic�break procedure decides

whether the agent should break� If so� the agent requests a meeting with the debugger� thereby

initiating a breakpoint�

���usr�contrib�bin�agent

� this is an agent which jumps to three machines and

� collects data at each site�

� define the get�data procedure

proc get�data 	x y 	

�agdb�dynamic�break � �

set list �� � set z �expr
x �
y�

�agdb�dynamic�break � �

set machines �muir�cs�dartmouth�edu �

tuolomne�cs�dartmouth�edu �

tioga�cs�dartmouth�edu�

� jump to each machine

�agdb�dynamic�break �� �

foreach m
machines 	

�agdb�dynamic�break �� �

if 	�catch �agent�jump
m�� 	

�agdb�dynamic�break �� �

append list ��n
m� �t unable to JUMP to this machine�

�agdb�dynamic�break �� �

 else 	

�agdb�dynamic�break �� �

append list ��n
m� �t�exec last��

�agdb�dynamic�break �� �

�agdb�dynamic�break �� �

�agdb�dynamic�break �� �

return
list

��

�agdb�dynamic�break �� �

�agdb�dynamic�break �� �

agent�begin

�agdb�dynamic�break �� �

set answer �get�data �� ���

�agdb�dynamic�break �� �

agent�end

�agdb�dynamic�break �� �

return
answer

��

B Structure of the G
File

Background information regarding the g��le is supplied in Section �� This g��le corresponds to the

p��le in Appendix A�

���usr�contrib�bin�agent�tk

� source the library functions

source �usr�bin�agdb�lib�tcl

� password information initialization

set �agdb�agent�num �

set �agdb�password ������

� debugger identity initialization

set �agdb�debugger�machine muir�cs�dartmouth�edu

set �agdb�debugger�id ��

� initialize the state of the agent

set �agdb�never�registered �

set �agdb�never�jumped �

set �agdb�stepwise�break �

set �agdb�nextwise�break �

set �agdb�nextwise�level �

set �agdb�line�number��� ��

set �agdb�buffer�index��� �

set �agdb�level �

� breakpoint information initialization

set �agdb�num�watches �

set �agdb�watch�cond�list 		
x � � 	
y
� �

set �agdb�watch�var�list 	i j

set �agdb�general�break�list 	�� ��

set �agdb�temp�break�list 	��

set �agdb�break�condition������ 	
q �

� initialize default option settings

set �agdb�track�jump �

set �agdb�track�submit �

set �agdb�track�source �

set �agdb�track�fork �

��

set �agdb�track�send ���

set �agdb�track�recv ���

� catch the sourcing of the p�file

set �agdb�catch�result �catch 	source agdb�lib�tcl �agdb�src�result�

� Tcl agents make a final communication with the debugger

� Tk also do iff an error is caught

�agdb�end�comm
�agdb�catch�result
�agdb�src�result

� Tcl agents end by returning the source result

if 	
agent�language� � �STATE�TK� 	

return �code
�agdb�catch�result
�agdb�src�result

��

C Graphical User Interface

Figure �� Graphical User Interface for AGDB�

��

