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Abstract

We extend the logic and semantics of authoriza-
tion due to Abadi, Lampson, et al. to support re-
stricted delegation. Our formal model provides
a simple interpretation for the variety of con-
structs in the Simple Public Key Infrastructure
(SPKI), and lends intuition about possible ex-
tensions. We discuss both extensions that our
semantics supports and extensions that it cau-
tions against.

1 Introduction

This paper provides a formal semantics for the
Simple Public Key Infrastructure (SPKI), an In-
ternet Experimental Protocol [EFL+99]. The
current (2.0) version of SPKI is a merger of SPKI
1.0 and the Simple Distributed Security Infras-
tructure (SDSI) 1.0.

SPKI is an elegant practical system that ad-
dresses the problem of ensuring that a user is
authorized to perform an action, not just the
problem of identifying the user. This focus al-
lows for much more flexible sharing of resources
through delegation; in contrast, systems based
on authentication with a conventional public-
key infrastructure (PKI) plus authorization with
conventional ACLs limit the available modes of

∗Supported by a research grant from the USENIX As-
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resource sharing. SPKI does incorporate a no-
tion of authentication as well: its linked local
namespaces bind keys to names. This notion of
authentication is more general than conventional
hierarchical PKI naming, allowing it to escape
the “trusted-root” problem.

Unfortunately, SPKI is not founded on a for-
mal semantics that can provide intuition for
what it does, what it promises, what it assumes,
and how it may or may not be safely extended.

Abadi, Lampson, and others defined an au-
thorization system called the Calculus for Access
Control [ABLP93, LABW92]. This system pro-
vides delegation without restrictions. A user can
encode restrictions by delegating control over
“self as role” to another user, and adding the
principal “self as role” to the ACL of the re-
source to be shared. The system is based on a
formal semantics that explains how delegations
interact with various combination operators for
principals. Our formalism for SPKI is based on
the semantics of the Calculus for Access Con-
trol, extended to support restricted delegation
and SPKI names.

Our formal treatment of SPKI is attractive for
two reasons:

First, it supplies intuition for what SPKI oper-
ations mean. The proliferation of concrete con-
cepts in SPKI can be understood as applications
of just three abstractions: principal, statement,
and name.
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Second, the formalism gives us guidance in ex-
tending SPKI. We give an example of a danger-
ous extension that the formalism advises against,
and we give examples of extensions that the for-
malism supports and that we use in our concrete
system implementation.

We begin in Section 2 by discussing related
formalisms. We then provide a quick overview
of modal logic and possible-worlds semantics in
Section 3, followed by reviews of the original Cal-
culus for Access Control and SPKI in Sections 4
and 5. In Section 6, we describe our extension
to the Calculus for Access Control and our ex-
tensions to its semantics to support restricted
delegation. Section 7 further extends the for-
malism to support SPKI linked local names, and
discusses the shortcomings of Abadi’s semantics
for SPKI names. We model SPKI tags in Sec-
tion 8. In Section 9, we use the work from the
prior two sections to construct a formal scaffold-
ing under SPKI, and we discuss some of the inter-
esting ramifications of our formalism. We sum-
marize our contributions in Section 10. Proofs
appear in the appendix.

2 Related work

Abadi provides a semantics for SPKI names in
[Aba98], but its definition shares a flaw with that
used for roles in [ABLP93]. We discuss Abadi’s
name semantics in Section 7.3.

Halpern and van der Meyden supply an al-
ternate semantics for SPKI names in [HvdM99],
but it only encompasses the containment rela-
tion among names, and does not treat names as
principals. As a result, it cannot relate names to
compound principals nor relate names to other
principals that are only connected by a restricted
delegation.

Aura supplies a semantics for SPKI restricted
delegation in [Aur98], but it is unsatisfying in
that it essentially says what the reduction pro-
cedure says: a delegation is in place if there is a
chain of delegation certificates and principals. It
does not lend intuition about what the delega-
tions mean. In contrast, our semantics connects
restricted delegation to the logic of belief, a for-

mal model that describes what a principal means
when it delegates authority.

3 Review: the logic of belief

The Sicilian smiled and stared at the wine
goblets. “Now a great fool,” he began,
“would place the wine in his own goblet,
because he would know that only another
great fool would reach first for what he was
given. I am clearly not a great fool, so I
will clearly not reach for your wine.”

“That’s your final choice?”

“No. Because you knew I was not a great
fool, so you would know that I would never
fall for such a trick. You would count on it.
So I will clearly not reach for mine either.”
[Gol73, p. 157]

The Sicilian’s great effort went into reasoning
about the beliefs of his opponent, including his
opponent’s beliefs about his own beliefs, and so
on. His watertight reasoning is an example of
modal logic, the logic of belief. One way to rea-
son about permissions and sharing is to reason
about who believes what. We call participants
in a distributed system agents, and the sym-
bols that represent agents in logical expressions
principals. Principals can also represent sets of
agents, or one agent quoting another; these are
called compound principals, and we discuss them
in Section 3.1. If Alice believes everything Bob
believes (that is, Alice trusts Bob in every mat-
ter), then if Bob believes it is good to read a
given file, Alice must believe the same. In this
section, we develop a model for reasoning about
logic in the presence of belief.

We begin with propositional logic. Assume
there is a set of primitive (uninterpreted, inde-
pendent) statements Σ.1 For our purposes of
access control, we consider primitive statements
such as “it is good to write to file X.” This in-
terpretation turns an imperative command into
a declarative proposition. The primitive state-
ments may be connected with and (∧) and not
(¬) to form arbitrary formulas. The or (∨)

1Figure 3 provides a table of sets and variable notation
used in this paper.
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and implies ( �
�) operators are abbreviations for

longer formulas made of ∧ and ¬.
Next we introduce a modal operator

believes .2 If σ is a formula and principal
A represents agent Alice, Abelievesσ is a
formula that can be read “Alice believes σ

is true.” In time, we will introduce multiple
believes operators, one per principal. For
now, we would like to build a model that helps
us understand which formulas A believes; that
is, for which σ do we have Abelievesσ?

To model this logic, we build a Kripke struc-
ture. A Kripke structure is a tuple of sets
M = 〈W, I, J〉. The members of set W represent
possible worlds. The function I maps a primi-
tive proposition (s) to the set of worlds where
it is true, and the function J maps a principal
to a relation on worlds in W . Together, I and J

determine the truth value of every formula in ev-
ery world in W ; we describe them in more detail
shortly.

First, some intuition: A principal A living in
world w0 considers some other set of worlds pos-
sible, and if a formula σ is true in each of those
other worlds, then A believes the formula. The
interesting thing about possible worlds is that
the set of worlds A considers possible captures
what she does not know: if a statement σ ap-
pears in one possible world and ¬σ appears in
another, then A knows neither σ nor ¬σ. As far
as she is concerned, σ could go either way, be-
cause A cannot tell which of the possible worlds
she actually is in.

When we write M, w0 |= σ (pronounced “M
at w0 models σ”), we mean that in model M at
world w0, the formula σ is true. The mapping
I tells us immediately about the truth of primi-
tive propositions at different worlds, but we wish
to determine the truth of arbitrary statements
σ, including propositional connectives and our
modal operators (σ = Abelievesτ). We illus-
trate with an example structure, shown in Fig-
ure 1.

The model contains three primitive state-
ments, l, b, and p. The statement l means that

2In conventional modal logic, Abelieves σ is written
�Aσ.

our agent Alice (A) is in the produce depart-
ment of a grocery store. Its negation, ¬l, means
that Alice is in the meat department (it’s a small
store). The b primitive means that the store’s
bananas are yellow, and the p primitive means
that the store’s pork is fresh.

Recall the three parts of a model, 〈W, I, J〉.
W is the set of possible worlds; in our case,
since there are three primitive statements, there
are at most eight: W = {w0, w1, . . .w7}. I
is a relation that defines which primitive state-
ments are true at which worlds. In our example,
I(b) = {w0, w1, w4, w5}, since the bananas are
only yellow in those four worlds. Finally, J is a
function that maps principals to relations. Be-
cause we have only one principal (Alice), J has
only one mapping, written J(A). The relation
J(A) is depicted with arrows in the diagram. For
example, 〈w0, w1〉 ∈ J(A); that is, when the ac-
tual world is w0, w1 is a world Alice considers
possible. In our example, it happens that Alice
considers two worlds possible from each world.

Assume for a moment that the actual world is
in fact w0: Alice is in the produce department,
the bananas are yellow and the pork is fresh. If
Alice were omniscient, she would consider only
w0 possible, for that is indeed the state of things.
Alice, however, is merely a shopper. She cannot
see from the produce department what is going
on in the meat department, and thus she cannot
tell if the pork is fresh. She must also consider
possible world w1, where the pork is spoiled. She
knows for certain her own location, though, so
she can ignore worlds w4 · · ·w7. Because she is
in the produce department and can see the ba-
nanas, she can also ignore worlds w2 and w3 in
which the bananas are green.

We have explained the two arrows emanating
from world w0. The other arrows in the diagram,
comprising the relation J(A), communicate the
same sort of information about any other state
of affairs. For example, if the actual world were
w1 (the pork is in fact spoiled), Alice considers
just the same worlds w0 and w1 possible, and for
the same reasons.

Now that you have the intuition behind the
Kripke structure, we can formally define when
various statements are true. Primitive proposi-
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Figure 1: A model of eight worlds (circles), illustrating the relationship between the accessibility
relation (arrows) and the the modal operator (A believes ).

tions are easy: the casual definition of I above
becomes:

M, w0 |= s when w0 ∈ I(s)

This definition can be read “Statement s is true
at world w0 in model M when w0 is in the set
I(s).”

What about formulas constructed from the
propositional connectives ∧ and ¬? The truth of
some complex formula σ in a world is completely
determined by the truth of its primitive proposi-
tions, which the model defines by the mapping I .
So we can formally define an extension function
E to extend the definition of I to arbitrary for-
mulas. E is defined recursively starting with I ,
and extends as you would expect for the propo-
sitional connectives:

E(s) = I(s)
E(¬σ) = W − E(σ)

E(σ ∧ τ) = E(σ) ∩ E(τ)

Not surprisingly, ¬σ holds in exactly those
worlds where σ does not, and σ ∧ τ holds in ex-
actly those worlds where both subformulas hold.
Take a look at the example structure and con-
vince yourself that E(b ∧ ¬p) = {w1, w5}.

We embarked on this journey to discover when
Alice believes various statements, so we need to
find out when the model supports formulas in-
cluding our modal belief operator. The natural
intuition is that Alice should believe a statement
whenever it is true in every world Alice considers
possible. To recall our example, b is true (the ba-
nanas are yellow) in every world Alice considers
possible from w0, so M, w0 |= Abelievesb. But
because Alice considers w0 and w1 possible, she
considers both p and ¬p possible; and so she can
believe neither; hence we have ¬(Abelievesp)
and ¬(Abelieves¬p) at world w0. (You can
think of this situation as representing Alice’s “si-
lence” on the matter of p. Even though Alice as-
serts neither p nor ¬p, every formula is assigned
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a truth value. It is just that both Abelievesp

and Abelieves¬p are false.)
With this intuition, we fill out the definition

of E to mention formulas containing our modal
operator Abelieves :

E(Abelievesσ) = {w|J(A)(w) ⊆ E(σ)}

J(A)(w) denotes the set of worlds that A consid-
ers possible from w.3 So when σ is true in every
one of these worlds (i.e., J(A)(w) ⊆ E(σ)), then
A believes σ (i.e. Abelievesσ).

Of course, security is not very interesting in
a world with only one agent. To introduce a
second principal, we simply add a new rela-
tion J(B) to our model. Now we can reason
about what Bob believes (B believesσ), and
even about what Alice believes about what Bob
believes (AbelievesB believesσ). (In our ex-
ample, we could certainly discuss Alice’s beliefs
about her own beliefs, but for our application to
access control, that is not very interesting.)

3.1 Compound principals

It is also possible to talk about compound prin-
cipals. Lampson et al. define two operators on
principals that can be used to make new com-
pound principals. The first is fairly easy to de-
scribe: the principal A ∧ B believes only things
that both A and B believe. We can define a new
possible-worlds relation for the compound prin-
cipal in terms of the relations for A and B. To do
this, we extend the mapping J to a new mapping
R whose domain includes compound principals.
Like the definition of E , R is defined recursively
starting with J:

R(A) = J(A)
∀ primitive principals A

R(A∧ B) = R(A) ∪ R(B)
∀ arbitrary principals A,B

And R replaces J’s role in the definition of E :

E(Abelievesσ) = {w|R(A)(w) ⊆ E(σ)}
3Formally, J(A)(w) = {w′|〈w,w′〉 ∈ J(A)}.

That set union operation is surprising! What’s
going on? Recall that the more worlds an agent
considers possible, the less the agent believes. In
our example structure, Alice could not believe p
because she considered world w1 possible, where
p was false. Likewise, by taking the union of
the relations for principals A and B to get the
relation for the compound principal A ∧ B, we
ensure that the compound principal is at least
as ignorant as either of A or B. If A and B

disagree on any statement σ, then A∧B can see
both worlds where σ is true and worlds where it
is false, so A ∧ B can have neither belief.

The second operator for forming compound
principals is written B|A, and pronounced “B

quoting A.” (“Quoting” may seem an odd choice
of words when talking about belief; however,
when we translate our terminology into that of
Lampson et al., it reads more naturally.) This
principal captures B’s beliefs about A’s beliefs:
(B|A)believesσ should be synonymous with
B believes (Abelievesσ).

The relation for the compound principal B|A
is the composition of the relations of B and A:

R(B|A) = R(B) ◦ R(A)

What is the intuition for using composition?
Suppose we have M, w0 |= B|Abelievesσ: At
world w0, Bob (agent B) believes Alice believes
σ. That means that at every world Bob consid-
ers possible from w0 (R(B)(w0)), Alice believes
σ. But Alice only believes σ at those worlds if σ
is true at every world Alice can see from those
worlds:

⋃
w′∈R(B)(w0)

R(A)(w′)

The composition R(B) ◦R(A) relates w0 to just
this set. So B|Abelievesσ is true at w0 exactly
when σ is true in every world reachable from
w0 by the composited relation given above as
R(B|A).

3.1.1 The nature of principal relations

Now that we have a formal structure for dis-
cussing the beliefs of principals, let us consider
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what kinds of beliefs are reasonable, and how
principals’ beliefs should be related to one an-
other’s.

Recall our example structure, where in any
world, Alice was either ignorant (had no belief)
about either the pork or ignorant about the ba-
nanas. The first observation is that agents do
not need to believe every true thing; statements
about which they have neither a positive nor a
negative belief represent something the agent is
ignorant about.

Furthermore, observe that Alice never be-
lieved anything false: in every world, if
Abelievesσ, σ also held in that world. In the
parlance of modal logic, we would say Alice’s
belief is actually knowledge: although she does
not have all knowledge, everything she believes
is in fact true. Why was this the case? Notice
that Alice’s possible-worlds relation is reflexive:
for every world Alice’s relation includes an edge
pointing back to that world. That is why Alice
cannot believe anything false. If σ is not true
in a given world, Alice cannot believe σ there,
because the definition

M, w |= Abelievesσ iff w ∈ E(Abelievesσ)
iff R(A)(w) ⊆ E(σ)

precludes it.
In modeling access control in the presence

of arbitrary principals, however, we should cer-
tainly expect that some principals will believe (or
at least claim to believe) untrue things. So we
make no restriction of reflexivity on the relation
that defines a principal’s beliefs. Indeed, a prin-
cipal may have an empty relation at a world: it
may consider no worlds possible! In that case, at
that world, the agent considers every statement
true, since every statement is true in all of the
zero worlds the agent considers possible. Indeed,
the agent believes false. The agent’s reasoning
has become inconsistent; other agents would be
wise not to follow this agent’s beliefs.

3.1.2 Trust

Agents following one another’s beliefs is exactly
how we model trust. If Alice establishes that she

believes everything Bob believes, then Alice does
not have to be present for Bob to read one of her
files: if Bob claims that reading the file would
be good, Alice must agree, and the file server
grants the request. To capture this trust, we ob-
serve that Alice is “less ignorant” than Bob: she
believes everything Bob believes, and then per-
haps more (on which Bob may remain silent).
Therefore, from any actual world, Alice should
consider possible a subset of the worlds Bob con-
siders possible. When R(A) ⊆ R(B), Alice says
everything Bob says; if she says even more, it is
because she disregards some possible world that
leaves Bob’s belief ambiguous. You should con-
vince yourself that if Bob believes σ, Alice has
to believe the same thing, for she considers pos-
sible only a subset of the worlds Bob considers
possible.

4 Review: the original Calcu-

lus for Access Control

This section contains an introduction to the Cal-
culus for Access Control due to Abadi, Lampson,
et al.The reader familiar with it may skip to the
next section. We have preserved here the names
used for formulas in [LABW92]. We explicitly
name formulas L1–L3, which are mentioned in
passing in [LABW92, p. 273], and formulas A1–
A4, which are mentioned in [ABLP93, pp. 712,
714, and 718].

In the preceding section, we introduced an in-
stance of modal logic: propositional logic plus
some modal operators capture the possibly ig-
norant, possibly false beliefs of fallible princi-
pals. The semantics we presented, based on
Kripke structures, is exactly that used by Abadi
to justify the calculus for access control. We
introduced the semantics first, though, because
conventionally the semantics is the “intuitive
model” of the world, and the logic is a system for
discovering theorems (statements that are true
in every model) and reasoning from premises to
conclusions that must appear in the model.

To apply modal logic to access control, Abadi
et al. rename the operators. First, “believes” is
renamed “says.” This is meant to capture the
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notion that the logic is performative: sometimes
when a principal says something, that something
becomes true. The act of saying to a fileserver
that a file should be modified, given that the file-
server believes you, causes that file to indeed be
modified. This renaming makes the quoting op-
erator sound more natural: B|A is Bob quoting
Alice. B|A sayss is meant to be a synonym for
B saysA sayss. “Belief” is still useful intuition,
however. The operator is the same; Bob’s be-
lief in σ can be inherited by Alice without Alice
actually uttering σ.

A logic is a system of axioms and proof rules
that let one reason from premises to conclusions:
if the premise holds in a model, the conclusion
holds as well. The logic of the Calculus is sound
in that any conclusion proven in the logic holds
in the model, but it is not complete: there are
statements that are true in every model that can-
not be proven in the logic. Abadi suggests that in
fact the model may be undecidable: no logic sys-
tem is adequate to prove every valid statement
of the model.

The logic of access control is the same (up
to variations in notation) as the conventional
modal logic system Kn. The subscript n indi-
cates that there are multiple modal operators
[HC96, FHMV95, p. 51]. We present that system
here.

First, we write � σ if a statement σ is valid in
the logic: either taken as an axiom, or provable
as a theorem from other axioms and the proof
rules. We prove theorems using the following:

If σ is a tautology of propositional calculus,
then � σ (Axiom S1)

The axiom lets us pull in the theorems of propo-
sitional calculus without explicitly mentioning
the axioms and proof rules that produce them.

� σ � σ �
�τ

� τ
(Rule S2)

The proof rule (modus ponens) says that if both
σ and the implication σ �

�τ are valid (provable),
then τ is provable as well. It lets us prove the-
orems about formulas that include the modal
operators (says) by reasoning from premises to
conclusions.

We also have the Distribution Axiom (known
in modal logic as the axiom K, from which the
name of the system Kn derives):

� A says (σ �
�τ) �

�(A saysσ �
�A says τ)

(Axiom S3)

Intuitively it means that agents understand and
believe all of the consequences of their beliefs.
Furthermore, they believe every theorem:

∀A,
� σ

� A saysσ
(Rule S4)

That is, agents know all of the theorems of the
logic.

There is a subtle but important distinction be-
tween implication in the metalogic (the proof
rule above) and implication in the logic. The
logical symbol � means that the premises on its
left prove the conclusions on its right. The proof
rule condition � σ means that no premises are re-
quired to prove σ; that is, σ is a theorem. When
that is true, we may conclude � A saysσ: it is
proven that A saysσ.

In contrast, the corresponding statement in
the logic (not the metalogic) does not hold. The
statement � σ �

�A saysσ is read “it is not prov-
able that σ implies A saysσ.” The premise of
the implication is an arbitrary statement σ (un-
like the theorem � σ in the proof rule); it is not
true that principals say every true statement.
They say every theorem (those statements true
in every world), but not every true statement
(those statements true in the actual world from
which the statement is being uttered).

4.1 The calculus of principals

The symbol = is an equivalence relation on prin-
cipals; by A = B we mean that A and B have
the same relation and therefore the same beliefs.4

(Later in the paper we also use = to denote set
equality; its use should be clear from context.)

4Abadi et al. “note that A and B can have the same
beliefs without having the same possible worlds relation;
however, because principals are identified by their rela-
tions in the semantics, we define equality in terms of rela-
tions.” This is only possible if the model has two distinct
worlds in W that belong to all the same I sets; that is,
the model has two separate but indistinguishable worlds.
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We have presented the logical tools for reason-
ing about formulas of statements. Recall that we
can also combine principals into principal formu-
las. For example, A ∧ B is the principal that
believes (says) only things that A and B agree
upon. In the logic, A ∧ B is defined in terms of
its relationship to statements:

� (A ∧ B) saysσ ≡ (A sayss) ∧ (B saysσ)
(Definition P1)

Principal conjunction is associative, commu-
tative, and idempotent:

� (A ∧ B) ∧ C = A ∧ (B ∧ C) (Axiom P4)
� A ∧ B = B ∧ A (Axiom P4)
� A ∧ A = A (Axiom P4)

Quoting (B|A) is defined as:

� (B|A) saysσ ≡ B says (A saysσ)
(Definition P2)

In a sense, the quoting operator “curries” a says
operation from the propositional formula into
the principal formula, so that one can talk about
a principal quoting another without yet mention-
ing the specific statement being quoted.

Quoting is associative and distributes over
conjunction in both arguments:

� (A|B)|C = A|(B|C) (Axiom P5)

� A|(B ∧ C) = (A|B) ∧ (A|C)
� (A ∧ B)|C = (A|C) ∧ (B|C)

(Axiom P6)

4.2 The “speaks for” relation

A central concept of the calculus is the “speaks
for” relation (⇒), which defines a partial order
over all principals. This relation encodes the no-
tion of one principal trusting another that we in-
troduced in Section 3.1.2. The statement B ⇒ A
is read “B speaks for A,” and means that when-
ever B says something, A certainly agrees. For-
mally, we define

� (B ⇒ A) ≡ (B = B ∧ A) (Definition P7)

Why is this the case? If A trusts B, then A says
everything B says. So the set of things B∧A say

must be the same as the set of things B says. It
cannot be greater, by its semantic definition in
Section 3.1, and it cannot be less, or else there
is something B says that A does not.

From the definition we can derive:5

� (B ⇒ A) �
�((B saysσ) �

�(A saysσ))
(Theorem P8)

When B ⇒ A, B is a stronger principal than A in
the sense that B can do everything A can do (by
making A believe the appropriate performative
statement), and perhaps more.

Using the associativity of ∧ for principals, it
is clear that ⇒ is a transitive relation:

� (B ⇒ A) ∧ (C ⇒ B) �
�C ⇒ A

(Theorem L1)

(The ∧ in the theorem is that for statements. We
would like to use a different symbol for clarity,
but we stick with the notation of Abadi et al.
here.) Both the ∧ and | operators on principals
are monotonic with respect to ⇒:

� (A ⇒ B) �
�((A∧ C) ⇒ (B ∧ C))

(Axiom L2)

� (A ⇒ B) �
�((A|C) ⇒ (B|C))

� (A ⇒ B) �
�((C|A) ⇒ (C|B))

(Axiom L3)

With the speaks-for relation, we can finally see
why quoting is a useful operation. One can let
C|B ⇒ A, so that C can only speak for A when
it quotes B. Without quoting, we would need
a formal accounting for universal quantification
over formulas: ∀σ, C saysB saysσ �

�A saysσ.
The semantics of ⇒ falls out fairly directly.

Definition P7 requires that

M, w |= B ⇒ A

iff R(B) = R(B ∧ A) = R(B) ∪ R(A)
iff R(A) ⊆ R(B)

5Surprisingly, Abadi et al. drop Definition P7 and in-
stead treat Theorem P8 as an axiom. Doing so precludes
theorems with conclusions containing ⇒, since we are
left with no axioms with ⇒ in the conclusion. In fact,
Theorem P8 requires only the weaker operator → in its
premise, which we discuss in Section ??.
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Notice that the condition on the R relations is
independent of the world w. So the extension
function E is all-or-nothing for speaks-for formu-
las:

E(B ⇒ A) =
{

W if R(A) ⊆ R(B)
∅ otherwise

(Definition A1)

4.3 Access Control Lists

The speaks-for relation, because it is transitive,
lets us reason broadly about how principals’ be-
liefs affect one another. In the end, however, the
server wants to convince itself that some primi-
tive proposition s, perhaps to be interpreted “it
is okay to change the contents of the file,” is true.
To support this, Abadi, Lampson et al. use the
construct A controls s to indicate that principal
A’s beliefs about s are taken to be truth. It is
defined as:

A controls s ≡ ((A sayss) �
�s) (Definition A2)

Now suppose B wants to write to the file that
s describes, and the assumptions � B ⇒ A and
� A controls s hold. Then the file server will be
able to verify a proof of � s, convincing itself that
“it is okay to change the contents of the file.”

Lampson et al. encode access control lists
(ACLs) using controls assumptions:

ACL (O1) =




� A controls sread,
� A controls swrite,

� B controls sread




By adjusting which principals’ assertions are be-
lieved, the ACLs allow or disallow agents to ef-
fect action.

4.4 Higher-level operators

The operating system that instantiates the cal-
culus requires resource servers to construct and
then verify all necessary proofs [WABL94]. Wob-
ber calls it a pull model: it is the servers’
job to pull in necessary assumptions and proof
components needed to verify an agent’s access.
Building such proofs, when assumptions include
speaks-for formulas with arbitrary combinations

of ∧ and | operators, takes exponential time. To
make the decision problem tractable, Lampson
et al. define two high-level operators, as and
for , in terms of the lower-level operators. Each
operator is designed to reflect an idiomatic usage
pattern of the calculus. The higher-level opera-
tors can combine in fewer ways than the lower-
level operators, allowing an implementation to
exploit characteristics such as associativity and
idempotence. In the abstract, the operators can
be treated as abbreviations and replaced by their
definitions, and they do not affect the calculus.
We cover them here to demonstrate the idioms
they represent.

4.5 Roles and the “ as ” operator

Abadi et al. define a distinguished, disjoint set
of principals called roles. By quoting a role,
a principal restricts its own authority. For ex-
ample, define the roles Ruser and Radmin rep-
resenting a person acting as a user and as an
administrator, respectively. Suppose the ACLs
in the system include A|Radmin controls s1 and
A|Ruser controls s2. In her daily work, Alice may
step into her role as user by quoting Ruser; when
she needs to perform administrative tasks, Alice
can explicitly quote Radmin to gain access to ob-
jects such as s1 that mention her administrative
role. More interestingly, Alice can delegate just
one of her roles to another principal by arrang-
ing that B ⇒ A|Ruser. Now Bob can do anything
Alice could do as a user, but he cannot access her
administrative resources. Roles can also be used
to sandbox untrusted code. When running un-
trusted software, Alice might delegate to it only
authority over A|Runtrusted, preventing the code
from accessing the bulk of her resources.

The as operator stands for quoting when
the quoted principal is a role (Axiom R1 in
[LABW92]). In a sense, as adds strong typ-
ing, requiring that its right-hand argument be a
role. In contrast to general principals, quoting
is idempotent and commutative for roles, and all
principals automatically speak for themselves in
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every role:

R|R = R ∀R ∈ Roles (Axiom A3)
R′|R = R|R′ ∀R, R′ ∈ Roles (Axiom A4)

A ⇒ A as R ∀R ∈ Roles (Axiom R2)

By virtue of these special features of roles and its
strong typing, the as operator takes on idempo-
tence and commutativity. This helps make the
access control problem tractable.

4.5.1 Semantics for Roles

The axioms above are not supported for general
quoting, and yet as is simply an abbreviation
for quoting. Therefore, the axioms must be jus-
tified by some restriction on the possible-worlds
relations of the roles themselves. First we define
a special principal 1, the identity, who believes
everything that is true and nothing that is not:

R(1)(w) = w ∀w ∈ W

In any given world, 1 considers only that world
possible. Therefore, it only tells the truth (the
relation is reflexive), and it tells the whole truth
(no world has multiple arrows, so it is confused
about nothing). The identity serves as the most
trusted role a principal can assume. Why? Aas1
is shorthand for A|1, so R(A as 1) = R(A) ◦
R(1) = R(A): the identity role does not limit
A’s authority at all.

All roles are principals whose relations are con-
strained as follows:

R(R1) ⊆ R(1)

This means that the role relation may contain
some edges 〈w, w〉 and not others, but no edges
that take one world to another world. A role,
when composed with another principal’s rela-
tion, cannot expand the set of worlds the prin-
cipal considers possible, only reduce it. See Fig-
ure 2 for an illustration.

We are now prepared to justify the axioms for
roles. The first property is idempotence. R(R1)
takes each world to either itself or nowhere, so
composing R(R1) with itself should do the same.
The second property is commutativity. An ar-
row appears in R(R1) ◦ R(R2) exactly when it

appears in R(R1) ∩ R(R2), and ∩ is commuta-
tive. Finally, A ⇒ A as R1 is automatically true
when R1 is a role. Why? Composing R(R1) onto
R(A) cannot introduce any new worlds (since the
arrows of R(R1) are all reflexive), but may elim-
inate worlds (when R(R1)(w) = ∅). Hence

R(A) ◦ R(R1) ⊆ R(A)

and we conclude A ⇒ A as R1.

4.6 Delegation and the “for” operator

Besides encoding roles, quoting can be used to
encode delegations to trusted principals in a re-
stricted way. Here is the problem: Imagine that
both Alice and Bob log in to machine M . Using
just the speaks-for operator, Alice might estab-
lish that M ⇒ A and Bob that M ⇒ B. But
then when Bob (sitting at his terminal to ma-
chine M) tries to read a file that only A has
permission to read, M would say the request,
and the server would reason that A believed it.
In this situation, the access-control system can-
not help the server reason about whether the file
should be read, since M has not provided enough
information.

Instead, A could require that M explicitly
mention A whenever it makes requests on A’s
behalf: M |A ⇒ A. Now when M is working for
B, it will be quoting B, not A, and A’s file is
safe. If M were corrupt, of course, it could still
abuse the authority granted it by A. But quot-
ing principals helps an honest M pass the right
information to resource servers for access-control
decisions.

Lampson et al. define a slightly more compli-
cated concept of delegation from A to B, written
as the compound principal B for A. The key
idea behind delegation is that both the delega-
tor A and the delegate B must take some explicit
action for the delegation to take effect:

A says B|A ⇒ (B for A)
B|A says B|A ⇒ (B for A)

from which, using the definition of for in
[LABW92, p. 295], we can conclude

(B|A) ⇒ (B for A)

10



◦ =

An arbitrary principal
relation R(A) . . .

. . . composed with a
role relation R(R) . . .

. . . gives a new rela-
tion that is always a
subset of R(A).

Figure 2: Roles reduce relations they are composed with.

Then A installs B for A in ACLs for any re-
sources it wishes to allow B to access on its be-
half.

The difference between B simply taking care
to always quote A and B receiving a delegation
to B for A is subtle. In both cases, A must ex-
plicitly hand off authority to B. And in both
cases, B has to take some explicit action to ac-
cept the delegation; in the first case, that action
is to quote A, in the second, it must also make a
separate statement accepting the delegation.

Like as, for seems to be introduced for its
special properties, to enable a more efficient pull-
style theorem-proving implementation.

We have completed our review presentation of
the calculus due to Abadi, Lampson et al.

5 Review: The Simple Public

Key Infrastructure

The Simple Public Key Infrastructure 2.0 (SPKI,
pronounced “spooky”) is an Internet Experimen-
tal Protocol created by Ellison, Frantz, Lamp-
son, Rivest, Thomas, and Ylonen [EFL+99]. As
its name suggests, it is designed to be a unify-
ing standard for supporting public key autho-
rization across the global Internet. We highlight
here some of the features of SPKI relevant to this
work.

First, SPKI’s primary goal is to provide a
server with evidence that the holder of a given
cryptographic key is ultimately authorized for a

request signed by that key. This goal contrasts
with that of other public-key infrastructure ef-
forts that attempt to bind keys to identities, and
leave authorization to be handled in the conven-
tional fashion by ACLs that map identity to au-
thorization.

In this section, we review the types of certifi-
cates that SPKI supports, and outline the pro-
cedure used to determine whether a given certifi-
cate chain supports a requested operation.

5.1 Certificate types

SPKI defines its own certificate format, as well
as an internal representation of certificates to
which it can map other inputs, such as PGP
certificates, X.509 certificates, or locally main-
tained ACL entries. Authorization results can
be constructed from inputs providing informa-
tion in one of three forms:

• 〈authorization, key〉

• 〈authorization, name〉
• 〈name, key〉

The first form coincides with SPKI’s de-
sign philosophy of mapping keys directly to
authorizations. Inputs of the latter two
forms must ultimately be combined to form a
〈authorization, key〉 mapping to become useful.

Inputs of the first two forms are mapped into
a data structure called a 5-tuple for internal pro-
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cessing; inputs of the latter form are mapped into
a data structure called a 4-tuple.

5.2 The SPKI 5-tuple

A 5-tuple has the following fields:

• issuer: the public key granting the permis-
sion defined by the 5-tuple

• subject: a public key or name to which the
permission is being granted

• delegation-control: a boolean value indicat-
ing whether this permission may be further
delegated

• authorization: a set of primitive permissions
being granted

• validity dates: a date range limiting the va-
lidity of this delegation

The intended meaning is that the issuer grants
the subject the permission described in the au-
thorization field for the duration of the validity
dates. If the delegation-control bit is set, the
subject may further delegate any or all of the
permission to another subject.

The subject in a 5-tuple (or a 4-tuple, which
we present shortly) may be a k-of-n threshold
function. In this case, the permission is dele-
gated to any principal that can prove it is autho-
rized to speak for any k of the n “subordinate”
subjects listed in the threshold function.

The authorization fields contain primitive per-
missions whose interpretation is left to the ap-
plication employing the SPKI authorization en-
gine. These permissions are represented using
auth tags. Tags encode infinitely large sets of
primitive statements in a form that permits a
compact representation of certain subsets. No-
tably, a tag can represent only a set of primitive
symbols; never a formula made from the nega-
tion or conjunction of primitive symbols. Tags
admit a simple intersection algorithm that al-
ways yields a compact representation of the in-
tersected set.

SPKI certificates may also indicate an on-line
mechanism for verifying that the issuer consid-
ers a certificate still valid. Two of the checks,

the certificate revocation list (CRL, a nega-
tive list of revoked certificates) and the timed
revalidation (a positive list of still-valid certifi-
cates), are performed by consulting a list re-
vised more frequently than the original certifi-
cate being checked. The one-time revalidation
check, which “represents a validity interval of
zero” [EFL+99, p. 21], is performed by contact-
ing the specified server to verify that the server
still approves the certificate.

5.3 The SPKI 4-tuple

Symbolic names are always interpreted relative
to a globally unambiguous name, usually a pub-
lic key. As a consequence, the definition of a
symbolic name is never ambiguous; it is always
the definition supplied by the key that grounds
the name. The SPKI authors contrast this situ-
ation with that of PGP, where symbolic names
reside in a global namespace, and their meaning
depends on the beholder and the “introducers”
that the beholder trusts.

A symbolic name ultimately is defined as one
or more keys, although a single 4-tuple may de-
fine a name in terms of a chain of other names
grounded in a key. In that case, other 4-tuples
must participate in the reduction of the name
chain to a final key. A 4-tuple has the following
fields:

• issuer: the public key defining this name in
its private name space.

• name: the name being defined

• subject: a public key or name to which the
name is bound.

• validity dates: a date range limiting the va-
lidity of this delegation

The intended meaning of a 4-tuple is that the
issuer defines the symbolic name, when grounded
by the issuer’s key, to be equal to the key iden-
tified by the subject for the duration of the va-
lidity dates. It is easy to read this definition
backwards. Note that a name definition tuple
does not give the issuer control over the sub-
ject, but the subject control over any permission
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elsewhere granted to the grounded name “issuer:
name.” Hence a threshold subject is also mean-
ingful as the subject of a 4-tuple; its use means
that if a principal speaks for k of the n subordi-
nate subjects, that principal also speaks for “is-
suer: name,” and hence garners any permission
granted to that name.

5.4 Tuple reduction

The SPKI access-control decision procedure is
called “tuple reduction.” Once the appropriate
certificates for an access-control decision have
been gathered, the on-line checks performed, and
the certificates converted into internal tuples, the
tuples are “reduced.” If the reduction results in
a 5-tuple issued by the server that grants the
requested permission to the key that signed the
request, then the request is authorized.

Reduction proceeds as follows. First, 4-tuples
are reduced to resolve names. 4-tuples that de-
fine a name in terms of another grounded chain
of names are reduced using 4-tuples that define
a name in terms of a key. Eventually, 4-tuples
of the former form are reduced to 4-tuples of the
latter form. The validity date stored in the out-
come of each reduction is the intersection of the
validity dates of the 4-tuples being reduced.

Then the 〈name, key〉 bindings formed by the
reduced 4-tuples are applied to resolve names
in 5-tuples back to keys, again carrying validity
dates through with intersection operations. This
operation turns 〈authorization, name〉 5-tuples
into 〈authorization, key〉 tuples.

At this point, each 5-tuple represents a sub-
ject key (or threshold subject defined as a set of
keys) with authorization to perform some set of
actions on behalf of the issuer key. When two
5-tuples form a chain of delegation (the issuer of
the second is the subject of the first, and the first
tuple allows further delegation), the 5-tuples are
reduced to a new tuple whose subject is the sub-
ject of the second tuple and whose issuer is the
issuer of the first. The reduced tuple carries the
intersection of the authorizations of the source
tuples as its authorization, and the intersection
of the validity dates of the source tuples as its
validity dates. Finally, the reduced tuple carries

Set Example
members

Description

Σ s, t The set of primitive
propositions. They
represent resources.

Σ∗ σ, τ
s ∧ t

The set of well-formed
formulas (statements)
constructed from Σ, ∧,
¬, A says, and B ⇒ A

2Σ∗
S, T, V The set of sets of

statements

P A, B The set of primitive
principals. They
represent agents,
including people,
machines, programs, and
communications
channels.

P ∗ A,B
A ∧ B

The set of compound
principals constructed
from P , ∧, |, and ·N

N N The set of local names

Figure 3: The symbols used to represent sets in
this paper.

the same delegation control bit as the second tu-
ple did. Think of the delegation control bit as
the coupling on the back of a boxcar; if the first
tuple lacks it, the cars cannot couple; if the sec-
ond tuple lacks it, the cars may couple, but the
resulting “super-car” will also lack a rear cou-
pling.

We return to SPKI in Section 9, where we ap-
ply our extended calculus to model SPKI.

6 The logic and semantics of

restricted delegation

Lampson et al. mention in passing the idea of
a qualified speaks-for operator [LABW92, p.
272]. In this section, we introduce our speaks-
for-regarding operator, which formalizes the no-
tion of the restricted speaks-for operator. It is
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written B
T⇒ A, and read “B speaks for A re-

garding the set of statements in T .” T is any
subset of Σ∗. The desired meaning is that when
σ ∈ T ,

B
T⇒ A �

�((B saysσ) �
�(A saysσ))

The power of the speaks-for-regarding opera-
tor T⇒ is that A can delegate a subset of its au-
thority without modifying any ACLs. Contrast
the situation with the use of roles in Section 4.5,
where to delegate authority over a restricted sub-
set of her resources, a user had to define a role
and install that role in the ACLs of each resource
to be shared.

Restricted speaks-for is transitive:

� (C T⇒ B) ∧ (B T⇒ A) �
�(C T⇒ A) (Axiom E1)

We expect the ∧ operation on principals to be
monotonic over T⇒:

� (B T⇒ A) �
�(B ∧ C) T⇒ (A∧ C) (Axiom E2)

Restricted control over two principals is the
same as restricted control over their conjunct:

� (C T⇒ A) ∧ (C T⇒ B) ≡ C T⇒ (A∧ B)
(Axiom E3)

Let U be the universe of all well-formed formu-
las; that is, those formulas over which a model
M defines E . Restricted speaks-for degenerates
to the original speaks-for when the restriction set
is the set of all statements:

� (B U⇒ A) ≡ (B ⇒ A) (Axiom E4)

If Bob speaks for Alice regarding a set of state-
ments T , he surely speaks for her regarding a
subset T ′ ⊆ T :

∀T ′ ⊆ T,

�(B T⇒ A) �
�(B T ′⇒ A) (Axiom E5)

Using Axiom E5, a chain of delegations can be
collapsed to a single delegation, connecting the
head principal in the chain to the tail, whose

restriction set is the intersection of the restriction
sets of each of the original delegations.

� (C S⇒ B) ∧ (B T⇒ A) �
�(C S∩T⇒ A)

(Theorem E6)

This is not to say that C may not speak for A
regarding more statements than those in the in-
tersection; we address this topic further in Sec-
tion 9.9.

If we have two restricted delegations from Al-
ice to Bob, we might expect Alice to speak for
Bob with respect to the union of the restriction
sets. Because of the semantics we choose for T⇒,
however, this intuition does not hold.

(B S⇒ A) ∧ (B T⇒ A) � �
�B

S∪T⇒ A (Result E7)

In Section ??, we describe a relation weaker than
T⇒ for which the intuitive statement holds.

The quoting operator on principals (|) is
monotonic in both arguments over ⇒. Quoting
is still monotonic over T⇒ in its left argument:

�
(
B T⇒ A

)
�
�C|B T⇒ C|A (Axiom E8)

Our semantics does not justify monotonicity
in the right argument, however:(

B T⇒ A
)
� �
�B|C T⇒ A|C (Result E9)

This result appears to limit the usefulness of
quoting. The same counterexample that shows
Result E9 shows the same property for the weak
speaks-for relation defined in Section ??, so it
seems that the notion of quoting simply does not
mix easily with restricted delegation.

We can, however, propagate the quoted prin-
cipal through the restriction set. Let T ∗ be the
closure of T with respect to the propositional op-
erators ¬ and ∧: T ⊆ T ∗, and if σ, τ ∈ T ∗, then
¬σ ∈ T ∗ and σ ∧ τ ∈ T ∗. Furthermore let TC
be the closure of T with respect to the modal
operator C says: T ⊆ TC, and if σ ∈ TC, then
(C saysσ) ∈ TC. Now (T ∗)C is the modal clo-
sure applied to the propositional closure of some
original set T. With these definitions, we can jus-
tify this axiom:

�
(
B (T ∗)C⇒ A

)
�
�

(
B|C T⇒ A|C

)
(Axiom E10)
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When T = U , this axiom reduces to showing
right-monotonicity for the original speaks-for re-
lation. This axiom means that A’s restricted del-
egation to B must explicitly include any “quotes”
of C that it is willing to believe B about. It seems
awkward, but it is a useful result. Why? Be-
cause in any possible-worlds semantics wherein
(B T⇒ A) �

�(B|C T⇒ A|C) for all principals C,
the relation representing A depends on every
other principal relation. The introduction of ma-
licious principals with cleverly-chosen relations
into such a system can effectively expand T un-
til T = U .

6.1 Semantics of
T⇒

We use a semantics based on possible worlds,
modeling a system with a model M =
〈W, w0, I, J〉 whose components are defined as
in [ABLP93]. The semantic definition of T⇒ is
based on the notion of “projecting” a model into
a space where only the statements in set T are
relevant. The idea behind this definition is that
if one were to take the “quotient” of a model M
with respect to the dual of T , the resulting model
M would be concerned only with statements in
T . B ⇒ A in M should be equivalent to B

T⇒ A
in the original model. The model M is a projec-
tion of M that only preserves information about
statements in T .

We begin the construction by defining an
equivalence relation ∼=T : W ×W that relates two
worlds whenever they agree on all statements in
T :

w ∼=T w′ iff
(∀σ ∈ T, w ∈ E(σ) iff w′ ∈ E(σ)

)
(Definition E11)

Then we define the mapping φT : W → W
that takes worlds from the original model to
equivalence classes under ∼=T :

φT (w) = φT (w′) iff w ∼=T w′ (Definition E12)

The equivalence classes belong to a set W = 2T ;
notice that worlds (equivalence class representa-
tives) in M cannot be confused with those in M .
We give a construction of φT (w) in Appendix
Section A.1.

Next we extend φT to the function φw
T : 2W →

2W that maps a set of worlds Sw ⊆ W to a set of
equivalence class representatives in the projected
model:

φw
T (Sw) = {w | ∃w ∈ Sw, w = φT (w)}

(Definition E13)

We use bar notation (w) to indicate an equiva-
lence class representative (member of a world of
a projected model) as opposed to a member of
W in the original model.

We can now give our semantic definition of
restricted delegation:

E(B T⇒ A)

=




W if ∀w0

(
φw

T (R(A)(w0)) ⊆
φw

T (R(B)(w0))

)

∅ otherwise
(Definition E14)

For the justifications of several of the axioms
it is more convenient to shift the projection (φ)
operation to one side of the subset relation. To
do so, we define

φ+
T (R) =

{〈w0, w
′
1〉

∣∣ ∃w1
∼=T w′

1, 〈w0, w1〉 ∈ R
}

(Definition E15)

Think of φ+
T as a function that introduces as

many edges as it can to a relation without dis-
turbing its projection under T .

We can use φ+
T to give an equivalent definition

of T⇒:

E(B T⇒ A) =
{

W if R(A) ⊆ φ+
T (R(B))

∅ otherwise
(Definition E16)

The symbolic gymnastics of moving the projec-
tion to the right side of the ⊆ relation is equiva-
lent to the definition in terms of φw

T , but it makes
some of the proofs more concise. The equivalence
is shown in Appendix A.2.

A casual intuition for this definition is that φT

projects from the full model M down to a model
in which worlds are only distinguished if they
differ with regard to the truth of statements in T .
If we collapse away the accessibility arrows that
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do not say anything about what is happening in
T , and A’s relation is a subset of B’s relation
in the projection, then A knows everything B

knows about statements in T . This intuition is
exactly what we want for restricted delegation.

What happens if we take an alternative seman-
tic definition for restricted delegation?

6.2 Additional benefits of
T⇒

Introducing the T⇒ operator to the logic not only
provides the important feature of restricted del-
egation, but it simplifies the logic by replacing
the controls operator, replacing roles, and pro-
viding a formal mechanism for the treatment of
expiration times.

6.2.1 Supplanting controls

Now that we have the restricted speaks-for rela-
tion, we can dispense with the special controls
operator for building ACLs.

Recall Abadi et al.’s special identity princi-
pal 1 from Section 4.5.1. Because it believes
only truth, (1 sayss) �

�s for all statements s.
That is, there is an implicit principal that con-
trols all statements. We can replace every state-
ment of the form A controls s with an equivalent

one: A
{s}⇒w0 1. This statement ensures that

if A sayss, then at the actual world w0 of the
model, 1 sayss. Since the 1 relation only con-
tains edges from a node to itself, this condition
can only be satisfied by selecting an actual world
w0 where s is true.

6.2.2 Supplanting roles

Roles as originally defined are attractive, but
they have the significant difficulty that introduc-
ing a new restricted role R2 involves finding all of
the objects that role should be allowed to touch,
and adding AasR2 to each of those ACLs. When
one of those objects does not allow ACL modi-
fications by A, it is impossible for A to express
the desired new role. The SPKI document gives
a vivid example that shows how ACL manage-
ment can become unwieldy [EFL+99, p. 17].

With the speaks-for-regarding relation, A can
introduce a new role R2 for itself by allowing
(A as R2)

T2⇒ A. In fact, roles are no longer nec-
essary at all, but the as and for operator, or
operators like them, may still be useful for build-
ing tractable implementations.

Roles, as semantically defined by Abadi et al.,
can also have surprising consequences because
they belong to a global “namespace.” Imagine
that both Alice and Bob use the role Ruser in
their ACLs. That means that the same relation
R(Ruser) encodes both the way that A as Ruser

is weaker than A, and the way that B as Ruser is
weaker than B.

6.2.3 Formalizing statement expiration

Lampson et al. treat expiration times casually in
[LABW92, p. 270]: “Each premise has a lifetime,
and the lifetime of the conclusion, and therefore
of the credentials, is the lifetime of the shortest-
lived premise.” It is likely that a formal treat-
ment of lifetimes would be time-consuming and
unsurprising, but the lifetimes are an unsightly
element glued onto an otherwise elegant logical
framework. Fortunately, the T⇒ relation allows
us to dispense with lifetimes.

Recall from Section 4.3 that the primitive
statements such as s are meant to encode some
operation in a real system. Assume that each s

describes not only an operation, but the effective
time the operation is to take place.6 Further, as-
sume a restriction set T in a delegation B

T⇒ A

includes restrictions on the times of the opera-
tions under consideration. After the last time al-
lowed by the set, the delegation remains logically
valid, but becomes useless in practice. Further-
more, restrictions on T can be more than expi-
ration times; one can encode arbitrary temporal
restrictions, such as only allowing a delegation
to be valid on Friday afternoons.

6Like Lampson et al., we ignore the issue of securely
providing loosely synchronized clocks.
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7 The semantics of SPKI

names

Recall from Section 6.2.2 how roles share a global
“namespace,” and the danger of crosstalk be-
tween applications of the same role. SPKI names
are promising, but they have the same property:
identical names have different meaning depend-
ing on the “scope” in which they appear. To
model names, we need to extend our logic and
semantics.

We introduce to the logic a new set of primitive
names, N . We also extend principal expressions
to include those of the form P ·N , where P is an
arbitrary principal expression and N ∈ N . P ·N
is read “P ’s N .” Because · only accepts a prin-
cipal as its left argument, there is no ambiguity
in the order of operations; P · N1 · N2 can only
be parenthesized (P ·N1) · N2.

7.1 The logic of names

What properties do we want names to have?
Local namespaces. First, a principal should

control the meaning of any names defined rela-
tive to itself:

∀ principals A, names N :

(A says (B T⇒ A · N )) �
�(B T⇒ A · N )

We do not take this statement as an axiom for
the same reason that Abadi, Lampson et al. do
not accept the handoff axiom [LABW92, p. 715],
[ABLP93, p. 273]. In particular, our semantics
does not support it. Instead, as with the handoff
axiom, we allow the implementation to assume
appropriate instances of it.

Left-monotonicity. Second, name applica-
tion should be monotonic over speaks-for. If Al-
ice binds her name “barber” to Bob, and Bob
binds his name “butcher” to Charlie, then we
want “Alice’s barber’s butcher” to be bound to
Charlie.

(B ⇒ A) �
�(B ·N ⇒ A · N ) (Axiom E17)

Using this rule, we can write the following to

capture the desired intuition:

(B ⇒ A · Nbarber) �
�

B · Nbutcher ⇒ A ·Nbarber · Nbutcher

Distributivity. We combine the following
pair of results

(A∧ B) · N ⇒ (A · N ) ∧ (B ·N )
(Theorem E18)

(A · N ) ∧ (B · N ) ⇒ (A∧ B) · N (Axiom E19)

to show that names distribute over principal con-
junction:

(A∧ B) ·N = (A · N ) ∧ (B · N )
(Theorem E20)

Here is a motivating example: If Alice has two
doctors Ed (E) and Fred (F ), and Bob visits
doctors Fred and George (G), then who is “(Alice
and Bob)’s doctor?” Fred is the only person who
serves as both people’s doctor.

No quoting axiom. The principal (A|B) ·N
can be written, but we have yet to find a mean-
ingful intuitive interpretation for it. (A|B) · N

bears no obvious relation to (A · N )|(B · N ), for
example. We allow the principal in our logic, but
we have no axioms for extracting quoting from
inside a name application.

Nonidempotence. Finally, application of
names should not be always idempotent. Un-
less some other speaks-for statement causes it,
there is no reason that “Bob’s barber’s barber”
should speak for “Bob’s barber.” We were ini-
tially tempted to model name application (·)
with role application, because roles satisfy Ax-
iom E17; however, roles are idempotent.

7.2 The semantics of names

We mentioned above that names and name appli-
cation cannot be modeled with the roles and the
quoting operator, because quoting a role is al-
ways idempotent. Furthermore, using the same
role for multiple uses of the same name by differ-
ent principals introduces crosstalk as described
in Section 6.2.2.
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Instead, we model names as follows. First, we
add a new element K to the tuple that defines a
model. A model with naming consists of:

M = 〈W, w0, I, J, K〉

The new interpretation function K : P × N →
2W×W maps a primitive principal A and a name
N to a relation. The idea is that principals
only define the first level of names in their
namespaces; all other names are consequences
of chained first-level name definitions.

Next we extend R to define the relations for
principals formed through name application. We
want to define R(A·N ) as the intersection of sev-
eral other sets, each requirement ensuring a de-
sired property. Our definition, however, would
end up circular (at requirement I, with equal
principals) if it were expressed in terms of set
intersection. Instead, we define R(A ·N ) as the
largest relation (subset of 2W×W ) satisfying all
of the following requirements:

R(A ·N ) ⊆R(B · N ) (I)
(∀B : R(A) ⊆ R(B))

R(A ·N ) ⊆K(A, N ) (II)
(when A ∈ P )

R(A ·N ) ⊆R(B · N ) ∪R(C · N ) (III)
(when A = B ∧ C)

(Definition E21)

Requirement I supports Axiom E17. Require-
ment II applies only to primitive principals, and
allows each primitive principal to introduce def-
initions for first-level names in that principal’s
namespace. A system implementing instances of
the handoff rule does so conceptually by modi-
fying K(A, N ). Requirement III only applies to
principal expressions that are conjunctions, and
justifies Theorem E20.

There is no question some such largest rela-
tion exists. Since each requirement is a subset
relation, at least the empty set satisfies all three.
There is an upper bound, since every relation is
a subset of the finite set W × W .

7.3 Abadi’s semantics for linked local
namespaces

Abadi gives an alternate logic and semantics
for SPKI-style linked local namespaces [Aba98].
(He refers to SDSI, from which SPKI 2.0 de-
rives.) Abadi’s notation diverges from that used
in [ABLP93], but the semantics are the same.
Figure 4 helps translate the notation. Our se-
mantics differs in three interesting ways.

First, SPKI has special global names, so that
if NG is a global name, A · NG = NG. The re-
sult is that the same syntactic construct can be
used to bind a local name to another local name
or to a globally-specified name. All names in
linking statements are implicitly prefixed by the
name of the speaking principal; but if the explic-
itly mentioned name is global, the prefix has no
consequence. We consider this syntactic sugar,
and leave it to an implementation to determine
from explicit cues (such as a key specification or
a SDSI name that ends in !!) whether a men-
tioned principal should be interpreted as local to
the speaker.

Second, Abadi’s logic adopts the handoff rule
for names, which he calls the “Linking” axiom
Here it is, translated to our terminology:

A says (B ⇒ (A ·N )) �
�(B ⇒ (A · N ))

He validates the axiom by the use of composi-
tion to model name application, with which we
disagree.

The third and most important way our seman-
tics differs from Abadi’s is that Abadi’s seman-
tics models name application as quoting (compo-
sition). Each unqualified (local) name is mapped
to a single relation. This property can introduce
crosstalk between otherwise unconnected princi-
pals; recall the example from Section 6.2.2. Even
when a name relation is not constrained to be a
role, the same problem arises. For example, let
N represent the name “doctor.” Imagine that
Bob assigns Charlie to be his doctor: C ⇒ B|N .
This is fine; Charlie should be able to do some
things on Bob’s behalf, but not everything: If
B|N T⇒ B, then Charlie can do the things in T .

Enter Alice, who is not only omniscient (A =
1), but serves as her own doctor (A ⇒ A|N ).
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Abadi’s notation Our notation
S Σ

µ : S ×W → {true , false} I : Σ → 2W

ρ : N ×W → 2W K : P ×N → 2W×W

a ∈ W w ∈ W
principals p, q A,B ∈ P ∗

n ∈ N N ∈ N
[[n]]a = ρ(n, a) R(A ·N )(w) = K(A, N )(w)

[[p′s n]]a R(A ·N )(w)

Figure 4: A guide to translating between Abadi’s notation and ours

Abadi’s semantics requires that R(1) ◦ R(N ) ⊆
R(1). At worst, R(N ) = R(1), causing B|N =
B, enabling Charlie’s doctor to make invest-
ment decisions on Charlie’s behalf. At best,
R(N ) ⊂ R(1), and B|N begins spouting off ran-
dom statements, some of which may be in T ,
making Bob believe random statements.

Our semantics escapes this fate by assigning
to each use of a name its own relation, then
ensuring the correct subset relationships remain
among those relations. We must admit that our
semantics for names is at best opaque. Although
using an existential definition like “largest set
satisfying the requirements” is not illuminating,
we feel it is better than the alternative.

8 The semantics of authoriza-

tion tag notation

An important part of SPKI is a user-defined
<tag> object that describes either a specific re-
quest to be verified, or a set of permissions
granted in a delegation. SPKI defines how tags
are to be intersected, which gives the user some
idea about the meaning of tags. In this chapter,
we derive a formal language for tags and show
that tags are (almost) closed under intersection.
We also show that tags have a desirable prop-
erty that we depend upon for our formalization
of SPKI’s properties in Section 9.9.

8.1 Overview

One confusing aspect of tags is that they serve
to represent both single requests and delegation
restrictions (sets of requests to be permitted).
How do they do this? The short answer is con-
tainment. Most tags represent an infinite set of
finite strings. Let us call those strings powers.
A request to be verified is a set of powers; the
intuition is that executing the request requires
that the requester have at least a certain set of
privileges. A permission describes another set of
powers. If the permission’s set contains the re-
quest’s set, then the permission grants at least
each of the powers required for the request.

Why use infinite sets of powers? For exten-
sibility. In general, a permission (tag) is repre-
sented by an infinite set of powers. Therefore,
it can always be further subdivided into more-
specific permissions, each still represented by an
infinite subset of the original permission’s pow-
ers.

Given this motivation for the structure of tags,
we construct tags from the ground up using
grammars. We begin by defining bytestrings and
the atomic finite strings we have called powers.

8.2 Bytestrings and powers

Let Σ be the natural alphabet of our system; in
our case, let it be the set of 256 octets. Let B be
the set of all finite-length strings of octets, Σ∗:

B :=σB (∀σ ∈ Σ)
|ε

19



This is the set SPKI calls “bytestrings.” Next we
extend Σ with three metasymbols to unambigu-
ously demarcate the list structure of a power:
Σ′ = Σ∪{( , , ) }. Now we define the mutually-
recursive sets of expressions (E), lists of expres-
sions (L), and non-empty lists of expressions
(N):

E :=B

| ( L )
L :=N

|ε
N :=E N

|E

The gymnastics with the non-empty lists serve
to prevent lists from ending with a just before
the ) ; this feels right but it is not important for
the development of the semantics.

We call the set of expressions E the set of pow-
ers. Notice that every power is a finite object
with an unambiguous tree structure defined by
the special delimiters { ( , , ) }. Every internal
node is a list, and every leaf node is a bytestring.

8.3 Auths

Recall that a tag, which specifies either a request
or a set of delegated permissions, represents a
(usually infinite) set of powers. Our next task is
to define the set of auths, each a subset of E. In
the next section, we show that the set of SPKI
tags is, with some caveats, isomorphic to the set
of auths we define here.

We first define the base-case auths:

Anull = ∅ (Definition T1)
A∗ = E (Definition T2)

Abs(b) = {b} (∀b ∈ B)
(Definition T3)

A0 = Anull

⋃
A∗

⋃
b∈B

Abs(b) (Definition T4)

Then we extend it recursively:

Aset(a1...ak)

=
⋃

1≤i≤k

ai (Definition T5)

Alist(a1...ak)

=




( x1 x2 . . . xk · · · xn )
such that

xi ∈ ai ∀i, 1 ≤ i ≤ k

xi ∈ E ∀i, k < i




(Definition T6)

Aj = Aj−1⋃
Aset(a1 . . . ak) ∀ai ∈ Aj−1⋃
Alist(a1 . . . ak) ∀ai ∈ Aj−1

(∀j > 0)

(Definition T7)

Finally, the set A of auths is the union of all of
the Aj.

Observe that every member a ∈ A is indeed a
member of 2E. I show this inductively. Clearly
Anull and A∗ are members of the power set of E.
By rule E := B, every singleton set Abs belongs
to the power set of E. This shows the base case,
A0 ∈ 2E.

An auth introduced at any set Aj is either an
Aset or an Alist. If it is an Aset, it is formed of
the union of other ai from Aj−1. By the induc-
tion hypothesis, each ai is a subset of E, and
hence their union is as well. If the new auth is
instead defined by Alist, it is composed of strings
( x1 . . . xn ) . Each xi belongs to E, either
by its requirement to belong to a subset ai of E,
or by its requirement to belong to E itself. By
rule E := ( L ) , we know that E includes any
list formed of other members of E, which ensures
that every such string ( x1 . . . xn ) is indeed
in E.

8.4 Closure of auths under intersec-
tion

The proof that A is closed under intersection is
constructive, and in fact leads directly to a con-
crete implementation of tag intersection. Put
another way, this proof provides direct intu-
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ition why the SPKI tag intersection procedure
is meaningful.

Given any two members ax, ay ∈ A, we wish
to exhibit az = ax ∩ ay, with az ∈ A. We know
that there exist ix and iy such that ax ∈ Aix and
ay ∈ Aiy ; let us assume we have the smallest
such ix and iy. We will show by induction over
max(ix, iy) that ax ∩ay ∈ A; that is, there exists
some positive integer j such that ax ∩ ay ∈ Aj.

The base case of the induction has
max(ix, iy) = 0; that is, ax ∈ A0 and ay ∈ A0.
We show in cases I, II, and III that ax∩ay ∈ A0;
all possibilities for the base case appear in the
italicized upper-left-hand corner of Figure 5.

The induction hypothesis assumes for all
ix, iy < n, there exists a j ′ such that ax ∩ ay ∈
Aj′ . Our task, given ax ∈ Aix and ay ∈ Aiy with
ix, iy ≤ n, is to exhibit j such that ax ∩ ay ∈ Aj .
We do so by constructing a set equal to the inter-
section using one of the five auth formulas Anull,
A∗, Abs(b), Aset, or Alist. Then we demonstrate
that the set given by the formula is in some Aj .
The choice of formula depends on how ax and
ay came to belong to Aix and Aiy . For example,
if ix (the smallest index for which ax ∈ Aix) is
zero, then we know either ax = Anull, ax = A∗,
or ax = Abs(b) for some bytestring b. Otherwise,
if ix > 0, then ax = Alist(. . . ) or ax = Aset(. . . ).
The same options are possible for ay. To con-
struct the intersection, we must consider all of
the pairwise possibilities. Figure 5 maps each
possibility to a proof case below. Notice we reuse
base cases I and II in the inductive step.

Case I. Either ax = Anull = ∅ or ay = Anull =
∅, so their intersection is empty, and can be rep-
resented by Anull. Anull = ∅ belongs to A0.

Case II. Assume without loss of generality
(WOLOG) that ax = A∗ = E (if instead it is
ay = A∗, the proof works symmetrically). Then
ax∩ay = ay. Since ay ∈ Ai, we have ax∩ay ∈ Ai.

Case III. Both ax and ay are singleton
bytestrings. If they contain the same bytestring
b, then their intersection is clearly ax ∩ ay =
Abs(b) = ax, which we know to be in Ai. Other-
wise, the bytestrings are different, the singleton
sets intersect to ∅, and we have ax ∩ ay = ∅ =
Anull ∈ A0.

Case IV. Assume WOLOG that ax =

Alist(. . . ) and ay = Abs(b). Then every mem-
ber of ax is a string beginning with the special
list delimiter ( , but the single member of ay

does not. Therefore their intersection is null, a
member of A0.

Case V. Let ax = Alist(c1 . . . cj), and ay =
Alist(d1 . . . dk). Assume WOLOG j ≤ k. By Def-
inition T6, the intersection ax ∩ ay =




( x1 x2 . . . xk · · · xn )
such that

xi ∈ ci ∀i, 1 ≤ i ≤ j
xi ∈ E ∀i, j < i

xi ∈ di ∀i, 1 ≤ i ≤ k
xi ∈ E ∀i, k < i




We can rewrite the conditions as:


( x1 x2 . . . xk · · · xn )
such that

xi ∈ ci ∩ di ∀i, 1 ≤ i ≤ j
xi ∈ E ∩ di ∀i, j < i ≤ k

xi ∈ E ∩E ∀i, k < i




Since ax, ay ∈ Ai, we know by Definition T7 that
c1 . . . cj ∈ Ai−1 and d1 . . .dk ∈ Ai−1. Let

ei =
{

ci ∩ di ∀i ≤ j
di ∀j < i ≤ k

The induction hypothesis gives us j ′ such that
ei ∈ Aj′ . I can now write the intersection as

ax ∩ ay = Alist(e1 . . . ek)

=




( x1 x2 . . . xk · · · xn )
such that

xi ∈ ei ∀i, 1 ≤ i ≤ k
xi ∈ E ∀i, k < i




Because ei ∈ Aj′ , we conclude that ax ∩ ay ∈
Aj′+1.

Case VI. Assume WOLOG ax =
Aset(a1 . . .ak). Let az = Aset(a1 ∩ ay, a2 ∩
ay, . . .ak ∩ ay). We know ai ∈ Axi−1 for i ≤ k,
since ax ∈ Axi . By the induction hypothe-
sis we know that there exist j1 . . . jk such that
am∩ay ∈ Ajm for m ≤ k. Let j = maxm(jm)+1.
Because Aj−1 contains every Ai for i ≤ j − 1,
we have am ∩ ay ∈ Aj−1 for all m ≤ k. By our
construction of az, az ∈ Aj .

21



ax

ay Anull A∗ Abs(b) Alist(. . . ) Aset(. . . )
Anull I I I I I

A∗ I II II II II
Abs(b) I II III IV VI

Alist(. . . ) I II IV V VI
Aset(. . . ) I II VI VI VI

Figure 5: Pairwise possibilities for set intersection. Roman numerals indicate the proof section that
handles the given case. The emphasized entries in the upper-left corner are the cases handled in
the base case of the inductive proof.

Having covered every possible combination of
ax and ay, we have shown the induction, and
hence that A is closed under intersection. Fur-
thermore, the cases above direct our implemen-
tation of tag intersection: given any two tags,
we know which constructor (such as Alist) was
used to create it, since tags are represented as
such constructions. We can immediately apply
the techniques in the preceding cases to discover
a tag construct that represents the intersection
of the input tags.

8.5 Tags

Tags in SPKI are approximately isomorphic with
auths. There are three caveats, related to null
tags, a special requirement on lists, and the spe-
cial range and prefix tags.

8.5.1 The null tag

The first caveat is that SPKI has no represen-
tation for the null tag (Anull). The result is
that the SPKI documentation must tread clum-
sily around the issue by saying that two autho-
rizations “fail to intersect,” rather than inter-
secting to a null set. By including the null set,
we promote “failure” to a first-class object rep-
resentable in the system.

8.5.2 Lists have an initial bytestring ele-
ment

The second caveat is that lists in SPKI tags must
always have at least one element, and the first el-
ement can only be a non-empty bytestring. One

can readily redefine B, E and Alist to satisfy this
constraint. The basic structure of A does not
change; I depend only on each Aj’s membership
in 2E.

8.5.3 Special tags cause havoc

The third caveat is that SPKI has special tags
range and prefix that define infinite subsets of
the set of bytestrings. Our auth structure A can
be readily extended by prefix, but with range
present, A is no longer closed under intersection.
Consider for example the SPKI tags:

(tag (* range numeric ge 0.5 le
0.5))

(tag (* prefix 000))

Their intersection is Arange(0.5,≤,≤, 0.5) ∩
Aprefix(000), which we know belongs to E. We
can see, however, that it does not belong to
A. The set contains an infinite number of
bytestrings. We cannot construct it with an
Aprefix, or we would end up with numeric val-
ues other than 0.5; we cannot construct it with
an Arange or we would have prefixes other than
000. The only other way to introduce bytestrings
is Abs, which introduces only one at a time.
We may union together any finite number of
bytestrings with each application of Aset, but by
no Aj will we have constructed the infinite set of
bytestrings necessary to describe the intersection
of the tags in the example.

Indeed, the trouble is concentrated in the
range form. The intersection of two ranges with
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different ordering specifications can be an infi-
nite set of bytestrings not representable with the
range or prefix form.

How can we escape the dilemma? We can
omit the range special form, but that would not
provide a satisfying model of SPKI. We could
introduce an intersection operator analogous to
the union operator Aset, but that would be a
hack. Since A is otherwise closed under inter-
section, an intersection operator should never
be used except when intersecting these curious
bytestring expressions, for it would only lead to
needlessly larger representations for auths. Fi-
nally, we may accept the incompleteness of tags.
Assume t3 = t1 ∩ t2, that is, the tag-intersection
procedure run on tags t1 and t2 produces tag t3.
Let A(t) be a function mapping a tag to the auth
it represents, a typically-infinite subset of E. If
tags are complete, then A(t3) = A(t1) ∩ A(t2).
If we must sacrifice the completeness of tags, we
still know that A(t3) ⊆ A(t1) ∩ A(t2). This pro-
vides assurance that the authorization procedure
is at least still sound: we will not conclude a
chained delegation confers powers that are not
conferred by both members of the chain.

Treating the intersection of a range with a
range or prefix as null should not be terribly
limiting in practice. When either form is used, it
is specifying a value for some field with a particu-
lar interpretation; it is likely that in a real system
any given field would only have one meaningful
mode of comparison.

8.5.4 Semantics of special tags

SPKI contains several special forms for tags: (*)
represents the auth A∗. (* set ...) repre-
sents the auth Aset(...). (* prefix ...) and
(* range ...) represent (possibly infinite) sets
of bytestrings. To model these tags, we need to

extend the base definition of A:

Aprefix(p) = {b | b = ps, s ∈ Σ} (Definition T8)
Arange(f) = {b | f(b) = true} (Definition T9)

A0 = Anull⋃
A∗⋃

b∈B Abs(b)⋃
p∈B Aprefix(p)⋃
b∈f Abs(b)

(Definition T10)

The function f : Σ∗ → {true, false} selects a
range of bytestrings, and is used here as an ab-
breviation to hide that complexity. The function
depends on the specified ordering (alpha, nu-
meric, time, binary, or date), the (optional) low
and high bounds, and bits specifying whether
each bound is exclusive or inclusive.

The matrix of intersection cases must now be
extended to support the new possibilities (see
Figure 6). This extension of course will no longer
show the completeness of A under intersection
(unless Arange is removed). But it is still useful
as a thorough guide to intersecting tags.

Case VII. In this case, assume ax = Abs(b) =
{b} and ay = Aprefix(p) or ay = Arange(f). This
case is very similar to case III: if b ∈ ay, then the
intersection is az = Abs(b) = ax; otherwise it is
∅ = Anull.

Case VIII. We have ax = Aprefix(px) and
ay = Aprefix(py). Assume WOLOG |px| > |py|
(px is a longer string). If py is a prefix of px

(that is, px = pys), then ax ∩ ay = ax: if b ∈ ax,
b = pxs′ = pyss

′, so b ∈ ay. Otherwise, when py

is not a prefix of px, the intersection is empty:
b ∈ ay implies b = pys, and we know py disagrees
at some symbol position with px, so b �∈ ax.

Case IX. Set ax is a range and set ay is a
range or a prefix. Often we will treat the in-
tersection as null (to preserve the soundness of
auths). In a specific circumstance, when both ax

and ay are ranges specified with the same order-
ing function, we can readily construct a range
equal to the intersection by taking the more re-
strictive of the bounds from each input range.

Case X. Assume WOLOG ax is a list and ay

is a range or prefix. In this case, every string in
ax begins with the list delimiter ( , and every
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ax

ay Anull A∗ Abs(b) Aprefix Arange Alist(. . . ) Aset(. . . )
Anull I I I I I I I

A∗ I II II II II II II
Abs(b) I II III VII VII IV VI
Aprefix I II VII VIII IX X VI
Arange I II VII IX IX X VI

Alist(. . . ) I II IV X X V VI
Aset(. . . ) I II VI VI VI VI VI

Figure 6: Pairwise possibilities for set intersection in the presence of the range and prefix auth
constructors. The emphasized entries are additions beyond Figure 5.

string in ay begins with a symbol in the octet
alphabet (Σ), so the intersection is null.

Notice that only case IX spoils the complete-
ness property; striking Arange from our definition
removes its row and column from the matrix,
eliminating any reference to case IX.

8.6 The meaning of intersection

The SPKI documentation describes the intersec-
tion of two authorization tags as having two pos-
sible outcomes: a new tag or a failure to inter-
sect. These results are meant to be interpreted
differently depending on whether the intersection
operation was between two delegations, or be-
tween a delegation and a specific request.

In the former case, the desire is that the tag
that is the product of the intersection represents
no more power than either argument tag dele-
gated by itself, and that if the intersection fails,
then the combination of the delegations is worth-
less.

In the latter case, the desired interpretation is
that should the intersection succeed at all, the re-
quest must be authorized by the delegation tag.
This interpretation makes sense if every request
is more specific than any delegated permission;
the only intersection possible is to return the re-
quest tag.

Our semantics lends a very concrete interpre-
tation in both cases. When intersecting dele-
gated permissions, it returns exactly the sub-
set of powers granted by both input tags (mod-
ulo the incompleteness introduced by the range

form, in which case it returns a subset of the
intersection of the powers). If the tags have a
null intersection, we treat that object just like
any other; however, because it is an empty set
of powers, it is “worthless” in the sense that no
request will be authorized by it.

When authorizing requests, we intersect the
delegation tag with the request tag, and test
whether the result equals the request tag. If so,
we can conclude that all of the (typically in-
finite) set of powers demanded by the request
are granted by the delegation. If not, we con-
clude that some smaller (possibly empty) set of
powers were granted; in any case, they are not
sufficient to justify granting the request. With
our semantics, it is not necessary for all requests
to be finer grained than all delegated permis-
sions. This property ensures that user-defined
tag structures can be readily extended without
confusing the meaning of the request authoriza-
tion test.

Set containment provides a concrete, mathe-
matically sound interpretation for specifying au-
thorizations in an infinitely-extensible fashion.

8.7 Order dependence

The semantics of SPKI tags specifically depend
on the order of elements in a list; intersection
of two lists involves pairwise intersection of each
list’s elements. Because lists are implicitly fol-
lowed by an arbitrarily-long supply of A∗s, lists
are extensible in that a new property can be de-
fined for the list and assigned to the next unused
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position in the list.
For example, imagine that one is defining a

tag format for delegating access to a database of
employee records. A first-cut tag format might
look like:

(employee
(id (*))
(salary (*))

)

Such a definition gives users of the system the
ability to delegate to others rights such as the
right to inspect only employee records with
a specific ID number (employee (id 01247)
(*)), or those of employees earning more
than $50,000 (employee (*) (salary (range
gt 50000))). Because tags are extensible, one
may later decide that the ability to select em-
ployees based on anniversary year is useful, so
the definition is extended to:

(employee
(id (*))
(salary (*))
(anniversary (*))

)

Because list tags are followed by implicit (*)
members, all existing delegation tags continue
to be meaningful even when the new format is
deployed.

What happens, however, if two independent
organizations want to extend the format inde-
pendently? In our example, perhaps one depart-
ment of the corporation wishes to add the an-
niversary extension (and does so for their inter-
nal applications), and another department adds
an extension representing hair color to the tag
format used in their applications. The result-
ing extensions do not necessarily compromise se-
curity (since each sublist is annotated with the
name of the attribute it refers to), but the ex-
tensions may never be used together: that third
spot in the employee list can only contain one
sublist.

There is an attractive solution. The seman-
tic definition of auths does not preclude assign-
ing elements to locations in lists with arbitrar-
ily high indices. Therefore, when assigning a

new extension such as anniversary, we could
simply assign it to the index of the employee
list given by the ordinal value of the bytestring
“anniversary.” This approach, however, is not
desirable with the current definition of tag repre-
sentations. A tag using the anniversary exten-
sion, for example, would contain some 1.2×1026

instances of (*) to place the (anniversary
...) sublist in the correct location.

To make the solution work, we propose a sim-
ple extension to SPKI’s special-form tags, the
named-attribute (named) form:

(* named (attribute-name ...))

An named-attribute tag expression always has a
single list argument. The first element of the list
is a bytestring (a requirement in SPKI), which
we call the attribute-name, and the remainder of
the list is the associated value. Let ord(b) be
the ordinal value of a bytestring b. A list con-
taining a (* named (attribute ...)) special
form would represent the list in which the ar-
gument of the special form appears at position
ord(attribute) in the list.

8.7.1 Handling non-bytestring attribute
names

Our general semantics does not require lists to
begin with a bytestring. We can easily define an
ordering over Σ′ rather than just Σ, and com-
pute the location of the attribute in the parent
list based on the ordinal value of the attribute
name, even when that “name” is itself a list.
This fix does not handle lists containing sets.
The use of sets as attribute names would re-
quire some canonical ordering of the members
in the set. Their use would also require a unique
representation for any auth containing a set. It
turns out that such a representation is indeed
possible, formed by bubbling every set operator
out of the inside of lists and joining them. This
canonical form makes small tags into large ones;
for example, (a (* set b c d) e) becomes (*
set (a b e) (a c e) (a d e)). Fortunately,
the ord() function is only a theoretical construct
used in the semantics; it would never be needed
in any implementation of auth intersection.
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8.7.2 Interference between ordered and
named attributes

With the definition given above, one might cause
an unexpected interaction between named at-
tributes and attributes specified by their order
when their positions in the list coincide. For
example, if ord(A) = 65, one might construct
a list with sixty-five attributes specified in or-
der, as well as a named attribute (* named (A
cat)). The named attribute and the sixty-fifth
ordered attribute would coincide, and so far we
have given no specification for how to map a list
tag to an Alist when the tag specifies multiple
auths for the same position in the list.

The semantic solution is simple: let the nth or-
dered attribute appear at location 2n − 1 in the
list, and let each named attributed appear at lo-
cation 2 · ord(attribute-name) in the list. There
are an infinite supply of odd and even list loca-
tions, and they do not interfere with one another.

What should an implementation do with a tag
that specifies the same named attribute twice? It
seems natural that the list location should con-
tain the intersection of the associated values.

8.7.3 Intersection of lists containing
named attributes

In any real implementation, of course, we cannot
expand a list containing named attributes into its
semantic form, since the length of the list grows
exponentially with the length of the names of the
attributes. We expect the lists to be sparse, so
a sparse representation of the lists should work
well. Store explicit position indices (attribute-
names where defined, and the list index other-
wise) alongside the corresponding values, with
the entire collection sorted by position. The in-
tersection routine walks the lists simultaneously
and invokes itself recursively whenever it encoun-
ters two values with the same attribute-name or
position index. As in the basic list intersection
routine, if only one list specifies a value for a
given position, the other list’s value is assumed
to be A∗, and the intersection is the explicitly
specified value.

8.7.4 Recommendations for the use of or-
dered and named attributes

In the SPKI RFC, the authors suggest that while
lists can be used to name attributes, one can
omit the names for compactness. In their exam-
ple,

(ftp (host ftp.clark.net) (dir
/pub/cme))

becomes:

(ftp ftp.clark.net /pub/cme)

The rationale is that attributes are position-
dependent, so there is no ambiguity when the
attribute names (host and dir) are dropped.

Indeed, any correct mechanical implementa-
tions can infer the meaning of the values by their
position in the list. It is likely, however, that a
human implementor may incorrectly infer the in-
tent of the values, perhaps because he only has
access to example attribute values but not the
names.

We recommend that attributes be supplied
with names whenever possible. Whether at-
tribute positions are specified by order or by a
named-attribute special form is immaterial; that
decision is one of expediency, and can be made
based on the likelihood that a given attribute will
be omitted from a tag specification. Providing
names that document the meanings of values,
however, helps avoid ambiguity, especially in a
structure that is intended to be extensible in the
future and by unknown parties. Our recommen-
dation is an example of principle 1 from [AN96]:
“Every message should say what it means.”

8.8 Analogy with Dedekind cuts

This perspective on SPKI auth tags has a pleas-
ant analogy to Dedekind’s construction of the
real numbers [BM91, pp. 15–17]. Each real num-
ber α is defined by an infinite set of rational num-
bers less than α; the result is continuity. The ra-
tionals are totally ordered. Every Dedekind cut
respects that ordering by containing every ratio-
nal less than any rational that appears in the
cut.
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In the construction of auths as sets of pow-
ers presented here, powers can be partially or-
dered, and auths respect that ordering by con-
taining every power less than any power that ap-
pears in the auth. The result is a kind of den-
sity corresponding to the continuity of the reals.
Any two unequal reals have another real between
them; by analogy, any list auth can be arbitrarily
subdivided into smaller auths along an arbitrary
number of dimensions. This limitless extensibil-
ity makes SPKI auth tags adaptable to changing
environments.

9 Modeling SPKI

The original Calculus for Access Control is use-
ful because its principals are general enough to
model several parts of a computing system, from
users to trusted servers to communications chan-
nels. To formally model SPKI with our extended
calculus, we first give a construction that models
the delegation-control bit.

9.1 Delegation control

The SPKI document gives the motivation for
including a delegation-control bit in SPKI cer-
tificates. We disagree with the argument and
fall in favor of no delegation control, and for
the same reasons as described in the document:
delegation control is futile, and its use tempts
users to divulge their keys or install signing or-
acles to subvert the restriction. Such subversion
not only nullifies delegation control, but forfeits
the benefits of auditability provided by requiring
proofs of authorization. In spite of our opinion,
we present a construction that models delegation
control.

To model the delegation-control feature we
wish to split the says modality into two separate
modalities: “utterance,” which represents a prin-
cipal actually making a statement, and is never
automatically inherited by other principals, and
“belief,” which is inherited transitively just as
says is. Not only is introducing a new logical
modality clumsy, but it would require us to sup-
port a dubious axiom, undermining the simplic-
ity of the semantics.

Instead, we resort to an equivalent construct:
we split each “real” principal A we wish to model
into subprincipals Au and Ab. Au shall say
only the things that A utters (statements that
are actually signed by A’s key; recall that all
certificate-issuing principals in SPKI are keys),
and Ab shall say all of the things that A be-
lieves. A may inherit her beliefs from other prin-
cipals (because she has delegated to other sub-
jects the authority to speak on her behalf), and
furthermore A should believe anything she ut-
ters. This last condition replaces the clumsy ax-
iom we wished to avoid; instead we enforce it by
explicitly assuming the following statement for
all principals A and statements s:

� Au says s �
�Ab sayss (Assumption E22)

Certificates issued by A are statements uttered
by A asserting things that A believes, so we
model them as statements about Ab said by Au.
The desirable outcome is that no principal can
delegate authority to make herself utter some-
thing (make Au say something); she may only
utter the statement directly (by signing it with
her key).

9.2 Restriction

Recall that a SPKI 5-tuple includes five fields:
issuer, subject, delegation-control bit, authoriza-
tion, and validity dates. Let I and S represent
the issuer and subject principals. Let TA repre-
sent the set of primitive permissions represented
by the authorization S-expression, and TV the
set of primitive permissions limited by the valid-
ity dates (assuming the effective-time encoding
of Section 6.2.3). The 5-tuple can be represented
this way if its delegation-control bit is set:

Iu saysSb
TA∩TV⇒ Ib

or this way if not:

Iu saysSu
TA∩TV⇒ Ib

A 4-tuple has a name field (N ) and no autho-
rization field or delegation-control bit. It would
be encoded:

Iu saysSb
TV⇒ Ib · N
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It seems natural that a delegation bit is mean-
ingless for a name binding, for in SPKI, a name
principal can never utter a statement directly,
only a key principal can. It surprised us, how-
ever, that SPKI name-binding certificates omit
the authorization field. Why not allow a princi-
pal to say the following?

Iu says (S2b
{shampoo}⇒ Ib · Nbarber)

As it turns out, our semantics does not support
such restricted name bindings (see Section ??).

9.3 Linked local namespaces

The subject principals in the keys above may be
either keys (each directly represented by a prim-
itive principal) or a string of names grounded
in a key. Hence namespaces are “local” in that
names are meaningless except relative to a glob-
ally unambiguous key; namespaces are “linked”
in that the naming operation may be repeated:
If K1 ·N1 resolves to K2, then K1 ·N1 ·N2 is the
same as K2 · N2, perhaps defined as some K3.

We gave a logic and semantics for linked local
namespaces in Section 7. We model the SPKI
name subject “george: (name fred sam)” with
the principal expression Kgeorge ·N“fred” ·N“sam”.
Substituting the principal expression for Sb, a
4-tuple takes on the general appearance:

Iu says ((KS · N1 · · ·Nk)
TV⇒ Ib · N0)

9.4 Threshold subjects

A threshold subject is a group of n principals
who are authorized by a certificate only when k
of the principals agree to the requested action.
Such certificates are really just an abbreviation
for a combinatorially-long (n

k ) list of conjunction
statements. For example, a certificate with a 2-
of-3 threshold subject naming principals P1, P2,
and P3 and an issuer A can be represented as:

P1 ∧ P2 ⇒ A

P1 ∧ P3 ⇒ A

P2 ∧ P3 ⇒ A

Hence the logic easily captures threshold sub-
jects, although any tractable implementation

would obviously want to work with them in their
unexpanded form.

9.5 Auth tags

The “auth tags” used in authorization fields
in SPKI represent sets of primitive statements.
Therefore, we simply model them using mathe-
matical sets.

9.6 Tuple reduction

The SPKI access-control decision procedure is
called “tuple reduction.” A request is granted if
it can be shown that a collection of certificates
reduce to authorize the request. The reduced
tuple’s subject must be the key that signed the
request; the tuple’s issuer must represent the
server providing the requested service; and the
specific request must belong to the authorization
tag of the reduced tuple.

It is clear that tuple reduction is sound with
respect to our extended logic. When 5- and
4-tuples are encoded in the logic as shown in
Sections 7 and 9.2, tuple-reduction simply con-
structs a proof from several applications of The-
orem E6 and Axiom E17.

9.7 Validity conditions

An optional validity condition, such as a certifi-
cate revocation list, a timed revalidation list, or a
one-time validation, can be encoded in the logic
using a conjunction. For example, a certificate
requiring a timed revalidation would be inter-
preted

A says (B ∧ (R|H1)) ⇒ A

to mean that principal R must verify that this
certificate (with hash H1) is valid. Principal R
signs a revalidation instrument I with a short
validity interval TV

R says I
TV⇒ R
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and a given revalidation instrument would agree
with all valid outstanding certificates:

I says 0 ⇒ I |H1

I says 0 ⇒ I |H2

...

The principal 0 has relation R(0) = ∅, so that
every principal speaks for 0. Using the logic, we
can reason that

0 ⇒ I |H1
TV⇒ R|H1

and since B = B ∧ 0, B
TV⇒ A. Notice the treat-

ment of a certificate’s hash as a principal. In the
logic, principals are general entities and can be
used to represent many objects and actors.

Negative certificate revocation lists can be
handled similarly; an implementation examining
a revocation list would conclude I says 0 ⇒ I |H1

for any H1 not present in the list.
One-time revalidations are meant to be inter-

preted as having a zero validity interval. A sys-
tem verifying a request s creates a nonce E, un-
derstanding E sayss, and sends it to the reval-
idator R. R replies with a statement meant to
be interpreted

R saysE
{s}⇒ R|H1

Now both B1 and E
{s}⇒ R|H1 say s, so A sayss.

Any future request of the same sort will require
another revalidation, for its s will have a different
effective time.

9.8 Safe extensions

Our semantics suggests that SPKI may be safely
extended to support a variety of principals other
than public keys. Channels protected by se-
cret keys or a trusted computing base, for ex-
ample, are easily modeled as principals in the
logic. Conjunct principals (A ∧ B) are not first-
class entities in SPKI, although they can appear
as threshold subjects; an extended SPKI might
exploit Theorem E20.

Quoting principals are also missing from
SPKI; Lampson et al. give nice examples show-
ing how quoting can help a multiplexed server

or communications channel differentiate when it
is working on behalf of one client versus an-
other [LABW92, Sections 4.3, 6.1, 6.2, and 7.1].
Without quoting, such a server has permission
to make statements for either client, so it must
perform an access-control check in advance of re-
laying a client’s statement. Quoting lets the mul-
tiplexed server defer the complete access-control
decision to the final resource server that verifies
the proof. The result is a smaller trusted com-
puting base and improved auditability.

9.9 Dangerous extensions

In this section, we argue that SPKI auth tags
should not be extended to represent logical nega-
tions. If B speaks for A regarding multiple re-
striction sets, the semantics suggest that B actu-
ally has some authority not explicitly mentioned
in either set. For example,

(B {σ,τ}→ A) �
�(B {σ∧τ}→ A) (Axiom E23)

means that a principal believed on a set of state-
ments is also believed on their conjuncts. This
conclusion seems fairly natural, but it is interest-
ing to note that a restriction set actually permits
more statements than it represents explicitly.

With our projected version of Abadi’s speaks-
for semantics, not only does

(B {σ,τ}⇒ A) �
�(B {σ∧τ}⇒ A) (Axiom E24)

hold, but also:

(B {σ}⇒ A) �
�(B {¬σ}⇒ A) (Axiom E25)

This result implies that given authority on a set
of primitive statements, a principal also has au-
thority on any propositional formula constructed
from those statements. It is surprising, for even

if only B
{s}⇒ A is explicitly granted, B can also

cause A to say the negation of s.
Perhaps scarier still is that

B
{σ}⇒ A �

�B
{σ,¬σ}⇒ A

�
�(B says false) �

�(A says false)

The conclusion is the definition of Abadi’s �→
relation:
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“Intuitively, A �→ B means that there
is something that A can do (say false)
that yields an arbitrarily strong state-
ment by B (in fact, false). Thus, A �→
B means that A is at least as powerful
as B in practice.” [ABLP93, p. 713]

With these semantics, one might fear that
no restriction is actually meaningful. How
might we escape it? One option is to
abandon the K axiom (Abelievess ∧
Abelieves (s �

�t) �
�Abelieves t), so that

principals no longer believe every consequence
of their beliefs. This option is undesirable
because it cripples the logic to only operate
outside the scope of belief operators.

A second option is to both disallow negative
statements in restriction sets and to use the
weaker B

T→ A relation instead of B
T⇒ A to

model delegation.
A third option is to prevent principals from

making contradictory statements. This is dif-
ficult in general in a distributed system. One
approach is to prevent principals from making
negative statements at all. SPKI takes this ap-
proach. Its tags, which represent both restriction
sets and individual statements, cannot represent
both a statement and its logical negation. We
provide a formal treatment of tags in Section 8.

Another extension might be to allow SPKI
name bindings (4-tuples) to include authoriza-
tion restrictions. As mentioned in Section ??,
the semantics does not support this seemingly-
natural extension.

We conclude that in certain dimensions, SPKI
is as strong as it can be. Changing SPKI by
allowing principals to make negative statements
or by allowing negative statements in restriction
sets would push SPKI “over the edge,” making
its restrictions meaningless. Those proposing to
augment SPKI or other systems based on a logic
such as that presented here must be wary of this
hazard.

10 Summary

We extend the Calculus for Access Control and
its underlying possible-worlds semantics to sup-

port restricted delegation, delegation control,
and local namespaces. To define the semantics
of restricted delegation, we project a model to
a set of worlds distinguished only by statements
in the restriction set. The resulting system pro-
vides intuition and a formal framework in which
we reason about the current SPKI system and
possible extensions to SPKI.

One of the advantages our formal framework
is that it represents the many complicated fea-
tures of SPKI with three simple concepts: prin-
cipal, statement, and name. Features such as
threshold subjects and on-line validations can
be modeled with compound principals and id-
iomatic statements. The simplicity also suggests
that SPKI may be safely integrated with systems
with notions of “principal” other than SPKI’s
public keys; such principals are desirable because
they can exploit fast local or secret-key-protected
channels. We are applying our results in just this
way in a prototype system currently under im-
plementation.

Our formalism also warns of the danger of
apparently-harmless extensions. In our seman-
tics, allowing a principal to utter both a state-
ment and its negation or allowing restricted dele-
gation to a name binding would reduce restricted
delegation to meaninglessness. It would be im-
prudent to so extend SPKI without developing
an alternate semantics that gives the extension
meaning. One might also assume that delega-
tion over two sets of permissions should combine
to represent a delegation over the union of the
permissions, but Result E7 suggests that this is
not the case.
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A Proofs

A.1 Construction of φT

Definition Definition E12 presupposed the existence
of a projection function φT . We construct such a
function now, and show that it satisfies the definition.
Let W = 2T ; that is, worlds in M are subsets of T .
Define

φT (w) = w ∈ W

where (σ ∈ w) ≡ (w ∈ E(σ)) ∀σ ∈ T
(Definition E26)

Necessity. Given φT (w) = w = φT (w′), we know
∀σ ∈ T, σ ∈ w iff w ∈ E(σ), and likewise, ∀σ ∈
T, σ ∈ w iff w′ ∈ E(σ). Therefore ∀s ∈ T, w ∈
E(σ) iff w′ ∈ E(σ), and we conclude w ∼=T w′.

Sufficiency. From the definition of w ∼=T w′, we
know ∀σ ∈ T, w ∈ E(σ) iff w′ ∈ E(σ). Let w = {σ ∈
T |w ∈ E(σ)} and w′ = {σ ∈ T |w′ ∈ E(σ)}. From our
hypothesis we know that the conditions on w and w′

are the same, so φT (w) = w = w′ = φT (w′).

In the following proofs, we generally use a bar (w)
to indicate a member of an equivalence class con-
structed as shown here.

A.2 Equivalence of φR
T and φ+

T defini-

tions of
T⇒

We now justify our claim in Section 6.1 that Defini-
tion E14 and Definition E16 are equivalent.

Necessity. Assume B T⇒ A holds according to
Definition E14:

∀w′
0 (φw

T (R(A)(w′
0)) ⊆ φw

T (R(B)(w′
0)))
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For all 〈w0, w1〉,

〈w0, w1〉 ∈ R(A) �
�w1 ∈ R(A)(w0)
�
� w1 ∈ φw

T (R(A)(w0)),
w1 = φT (w1)

�
�w1 ∈ φw

T (R(B)(w0))

(using the assumption)
�
� ∃w′

1
∼=T w1,

〈w0, w
′
1〉 ∈ R(B)(w0)

�
�〈w0, w1〉 ∈ φ+

T (R(B))

Sufficiency. Assume B T⇒ A holds according to
Definition E16:

R(A) ⊆ φ+
T (R(B))

Given w0 and w1 ∈ φw
T (R(A)(w0)), we know that

there is some w1 ∈ R(A)(w0), with w1 = φT (w1). We
rewrite the statement 〈w0, w1〉 ∈ R(A), and invoke
the assumption to get 〈w0, w1〉 ∈ φ+

T (R(B)). Now we
know there exists 〈w0, w

′
1〉 ∈ R(B) with w′

1
∼=T w1.

Changing notation again, w′
1 ∈ R(B)(w0). Since

w′
1
∼=T w1, we know w1 = φT (w′

1), and we may con-
clude w1 ∈ φw

T (R(B)(w0)).
Together, the two implications show the equiva-

lence.

A.3 An undesirable semantics for
T⇒

Notice that φ+
T projects only the destination world

of each edge in a relation. Why do we not project
both ends of the relation? Such a definition actu-
ally does not preserve our most basic intuition, that
B

T⇒ A �
�B

T→ A. In the model in Figure 7, the dot-
ted ovals depict the equivalence classes under T ; pro-
jecting both ends of the edges in R(A) gives {〈T, ∅〉},
as does R(B). From world w0, however, B says s but
not A says s.

Given a relation 〈w0, w1〉, then, the reason we only
project w1 is this: w0 is affected by what statements
are true at w1; substituting other worlds equivalent
with respect to T does no harm. Substituting other
worlds for w0, on the other hand, changes what state-
ments we consider true at w0.

A.4 Proof of soundness

In this section, we show that our extension to Lamp-
son’s calculus is still a sound axiomatization of the
presented semantics. Like Lampson’s original logic,
ours is based on a conventional Kripke semantics of
modal logic. The conventional proofs of soundness

T

t

s
t

s
t

B A

B

s
t

s

Figure 7: In this example, T = {s}. Notice that
B � T→ A.

for Axiom S1, Rule S2, Axiom S3, and Rule S4 apply.
Our extensions define E for a new formula (B T⇒ A)
and R for a new principal (A·N), but do not perturb
Abadi’s original semantics for the calculus for access
control. Because those semantics do not depend on
any particular structure in E or R, the axioms of the
calculus remain sound in our extended calculus.

Our present task is to show that the axioms of our
extensions are sound.

Axiom E1. This axiom follows easily from Defi-
nition E14. For all w0,

φw
T (R(A)(w0)) ⊆ φw

T (R(B)(w0))
⊆ φw

T (R(C)(w0)) �

The following lemma shows that φ+
T preserves the

union operation. Let R1 and R2 be relations.

〈w0, w1〉 ∈ φ+
T (R1 ∪ R2)

≡ ∃ w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R1 ∪ R2

≡ ∃ w′
1
∼=T w1,

〈w0, w
′
1〉 ∈ R1 ∨ 〈w0, w

′
1〉 ∈ R2

≡ ∃ w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R1

∨ ∃ w′
1
∼=T w1, 〈w0, w

′
1〉 ∈ R2

≡〈w0, w1〉 ∈ φ+
T (R1) ∨ 〈w0, w1〉 ∈ φ+

T (R2)

≡〈w0, w1〉 ∈ φ+
T (R1) ∪ φ+

T (R2)

From this equivalence we conclude

φ+
T (R1 ∪ R2) = φ+

T (R1) ∪ φ+
T (R2) (Lemma E27)

Axiom E2. We assume the premise in terms of
Definition E14:

∀ w′
0 (φw

T (R(A)(w′
0)) ⊆ φw

T (R(B)(w′
0)))
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We can readily reason for all w0:

φw
T (R(A ∧ C)(w0))

= φw
T ((R(A) ∪R(C))(w0))

= φw
T (R(A)(w0) ∪R(C)(w0))

= φw
T (R(A)(w0)) ∪ φw

T (R(C)(w0))
⊆ φw

T (R(B)) ∪ φw
T (R(C))

= φw
T (R(B)(w0) ∪R(C)(w0))

= φw
T ((R(B) ∪R(C))(w0))

= φw
T (R(B ∧ C)(w0)) �

Axiom E3. This axiom has a symmetric conse-
quence, so we only show the first conjunct. For all
worlds w0,

φw
T (R(A)(w0)) ⊆ φR

T ((R(A) ∪R(B))(w0))
(Lemma E27)

⊆ φR
T (R(C)(w0)) (premise)

�

We digress to point out that we may discard “iden-
tical worlds” from a model without loss of general-
ity. That is, imagine we have a model M with two
worlds w1 and w2 where w1 ∈ E(σ) iff w2 ∈ E(σ)
for every formula σ ∈ Σ∗. The extra world w2 ap-
pears in every I(s) that w1 appears in. Any edge in
any relation ending in w1 has a related edge ending
in w2 (〈w, w1〉 ∈ J(A) ≡ 〈w, w2〉 ∈ J(A)); likewise
edges starting at w1 have a related edge starting at
w2 in every relation. The same holds for the rela-
tions in the name interpretation function K(A, N).
It is clear that the extension function R, and hence
E , have the same overlap with respect to w1 and w2,
so that w1 ∈ E(σ) ≡ w2 ∈ E(σ).

Given this definition, we can build a model M′ =
〈W ′, w′

0, I
′, J ′, K′〉 that discards w2:

W ′ = W − {w2}

w′
0 =

{
w1 if w0

w0 otherwise

I′(s) = I(s) − {w2}
J ′(A) = J(A) − {〈w, w′〉|w = w2 ∨ w′ = w2}

K′(A, N) = K(A, N)
− {〈w, w′〉|w = w2 ∨w′ = w2}

Happily, M′ preserves every consequence of M:
(M |= σ) ≡ (M′ |= σ). Why? Whenever w0 ∈ E(σ),
w′

0 ∈ E ′(σ), either for exactly the same reasons (when
w0 �= w2), or because w0 = w2, so w0 = w2 ∈ E(σ) ≡
w1 ∈ E(σ), and then w′

0 ∈ E ′(s) for the same reasons
that w1 ∈ E(s).

Convinced that duplicate worlds do not alter the
consequences of a model, we may now assume that

no models contain identical worlds, without damag-
ing our semantics. If we know w1 �= w2, we can as-
sume the existence of a formula σ with (w1 ∈ E(σ)) �≡
(w2 ∈ E(σ)), and conclude that w1 �∼=U w2 (by Defi-
nition E11). Therefore, φU is bijective:

w1 �= w2
�
�φU (w1) �= φU(w2)

By the definition of φ+
T it is obvious that any relation

R ∈ φ+
T (R). But when T = U , the converse is also

true:

〈w0, w1〉 ∈ φ+
U (R)

�
�∃ w′

1 such that 〈w0, w
′
1〉 ∈ R,

φU (w′
1) = φU (w1)

�
�w′

1 = w1

�
�〈w0, w1〉 ∈ R

Now we have φ+
U (R) = R.

Axiom E4. Expanding the definition of B
U⇒

A and applying the previous result gives R(A) ⊆
φ+
U (R(B)) = R(B), which satisfies the definition of

B ⇒ A. �
Justifying axiom Axiom E5 requires two lemmas

that relate representatives of equivalence classes un-
der different projections.

First, a representative of a projection due to a
small set has a “big brother” in any projection due to
a superset, and the structure of the brothers is closely
related:

w′
1 ∈ φw

T ′ (Sw), T ′ ⊆ T
�
�∃ w1 ∈ φw

T (Sw), w′
1 = w1 ∩ T ′ (Lemma E28)

Proof. By the first premise, there is a w1 ∈ Sw where
w′

1 = φT ′(w1). From Definition E26 we know

(σ ∈ w′
1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T ′ (1)

Let w1 = φT (w1); since w1 ∈ Sw, w1 ∈ φw
T (Sw).

Having exhibited w1, we need only show w1∩T = w′
1.

We again invoke Definition E26 to get

(σ ∈ w1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T (2)

First, σ ∈ w1 ∩ T ′ means both σ ∈ T ′, and because
T ′ ⊆ T , σ ∈ T . The latter allows us to use (2)
to write w1 ∈ E(σ), and then we invoke (1) to get
σ ∈ w′

1. Conversely, σ ∈ w′
1 means σ ∈ T ′ and hence

σ ∈ T . We apply (1) to get w1 ∈ E(σ), and apply (2)
to get σ ∈ w1. Now we have shown w1 ∩ T ′ = w′

1,
proving the lemma. �
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The second lemma is approximately the converse
of the first:

w1 ∈ φw
T (Sw), w′

1 = w1 ∩ T ′ T ′ ⊆ T
�
�w′

1 ∈ φw
T ′ (Sw) (Lemma E29)

Proof. The first premise, by Definition E13, implies
the existence of a w1 ∈ R, and Definition E26 lets us
write

(σ ∈ w1) ≡ (w1 ∈ E(σ)) ∀ σ ∈ T (1)

For every σ ∈ T ′, all of the following hold:

σ ∈ T (third premise)
(σ ∈ w1) ≡ (w1 ∈ E(σ)) (1)

(σ ∈ w1 ∪ T ′) ≡ (w1 ∈ E(σ))
(σ ∈ w′

1) ≡ (w1 ∈ E(σ)) (second premise)

This last result implies that w′
1 = φT ′(w1), which is

sufficient to prove the conclusion of the lemma. �
Axiom E5. We take as our hypothesis M |= B

T⇒
A, that is:

φw
T (R(A)(w0)) ⊆ φw

T (R(B)(w0))

Given any world w0 and sets T ′ ⊆ T , we assume
w′

1 ∈ φw
T ′(R(A)(w0)) and set out to prove w′

1 ∈
φw

T ′(R(B)(w0)). By the assumption and Lemma E28,
we know

∃ w1 ∈ φw
T (R(A)(w0)), w′

1 = w1 ∩ T ′

The hypothesis gives w1 ∈ φw
T (R(B)(w0)), which sat-

isfies the premise for Lemma E29. Hence we know
w′

1 ∈ φw
T ′(R(B)(w0)), and we have proven that

∀ w0, (φw
T ′ (R(A)(w0)) ⊆ φw

T ′(R(B)(w0))) �

Theorem E6. Apply Axiom E5 twice to the
premises to get two relations restricted by S∪T , then
apply Axiom E1 to collapse them into the relation in
the conclusion. �

Result E7. Figure 8 gives a counterexample that
justifies the result. The diagram in the figure models
B

S⇒ A and B
T⇒ A. The statement B

S∪T⇒ , however,
fails. Projecting the model under S ∪ T gives the
original picture, since each world falls in a separate
equivalence class. Notice that B says ¬(s∧¬t): that
statement is true in both worlds B considers possible.
But A does not believe it, since A can see the lower-
left world, where the statement is false.

Why should this result be intuitive or desirable?
Recall from Section 9.9 that the strength of T⇒ means
that a delegation regarding T may imply a delegation

regarding a larger set T ∗ that includes formulas con-
structed from the members of T . In our example,
B speaks for A regarding formulas composed exclu-
sively with the primitive s or the primitive t, but not
regarding formulas combining the two. The closure
of the restriction set S ∪ T includes formulas such as
¬(s ∧ ¬t).

Axiom E8. Assume the premise in terms of Def-
inition E14:

∀ w′
0 (φw

T (R(A)(w′
0)) ⊆ φw

T (R(B)(w′
0)))

Let w belong to φw
T (R(C|A)(w0)). The semantics for

quoting gives w ∈ φw
T ((R(C) ◦ R(A))(w0)). An edge

only exists in a composition if we have w1 and w2 such
that 〈w0, w1〉 ∈ R(C) and 〈w1, w2〉 ∈ R(A); Defini-
tion E13 guarantees that we have such w1, w2 with
w = φT (w2).

Since w2 ∈ R(A)(w1), we can use the assump-
tion to show the existence of w′

2 ∈ R(B)(w1)
with φT (w′

2) = φT (w2) = w. That means that
w ∈ φw

T (R(B)(w1)), and hence w ∈ φw
T ((R(C) ◦

R(B))(w0)). By the definition of quoting, we arrive
at w ∈ φw

T (R(C|B)(w0)), which proves the conclusion.
�

Result E9. The model in Figure 9 is a counterex-
ample for T = {s} that shows the result. Notice that
B

T⇒ A: R(A)’s only edge goes from w0 to the equiv-
alence class of worlds where s is true, and R(B) also
has such an edge (the loop at w0). When we compose
the relations, however, we see that B|C says s, but
not A|C says s. The equivalence classes of {C says s}
are different than the equivalence classes of {s}.

s
t

s
t

A C

B

t

B
s

C

s
t

0w

Figure 9: A model that demonstrates Result E9.

Axiom E10. Inductively applying Axiom E25
and Axiom E24 shows as a theorem that B

T⇒ A im-
plies B

T∗⇒ A. Therefore, we may immediately replace

the premise of this axiom with B
((T∗)C)∗⇒ A, which

follows by the theorem from the original premise.
Herein we omit the parentheses for the postfix set
operators ∗ and C, and simply write T ∗C∗.
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BA

A

t

A
s

s

w0

In this model, A’s rela-
tion at w0 is not a sub-
set of B’s.

Projected under S =
{s}, however, the sub-
set relation holds . . .

. . . as it does under
T = {t}.

Figure 8: A counterexample showing why two delegations for sets S and T do not imply a delegation
for set S ∪ T (Result E7).

Hence we begin with the hypothesis that

R(A) ⊆ φ+
T∗C∗(R(B))

We are given some w0 ∈ W and the existence of
w2 ∈ φw

T (R(A|C)(w0)). The set can be rewritten
φw

T ((R(A) ◦ R(C))(w0)), so we know that there ex-
ist w1 and w2, where

〈w0, w1〉 ∈ R(A)
〈w1, w2〉 ∈ R(C)

w2 = φT∗C∗(w2)

The last expression means that for all σ ∈ T , σ ∈ w2

if and only if w1 ∈ E(σ).

Define the formula

τ2 =
∧

σ∈T

{
σ if σ ∈ w2

¬σ otherwise

Intuitively, τ2 is true at precisely those worlds that
map to w2 under φT . We have constructed τ2 such
that w2 ∈ E(τ2).

Since 〈w1, w2〉 ∈ R(C), we know R(C) �⊆ E(¬τ2),
and therefore w1 �∈ E(C says¬τ2), and finally w1 ∈
E(¬C says¬τ2). The propositional closure of T en-
sures that each conjunct of τ2, and thus τ2 itself
and ¬τ2, appear in T ∗. The modal closure over
“C says” ensures that (C says¬τ2) ∈ T ∗C, and there-
fore (¬C says¬τ2) ∈ T ∗C∗.

Now we may employ the hypothesis to show that
there exists a w′

1 ∈ R(B)(w0) with w′
1
∼=T∗C∗ w1. It

follows that:

w′
1 ∈ E(¬C says¬τ2)

= W − E(C says¬τ2)
= W − {w|R(C)(w) ⊆ E(¬τ2)}
= {w|R(C)(w) �⊆ E(¬τ2)}
= {w|∃w′

2 ∈ R(C)(w), w′
2 �∈ E(¬τ2)}

= {w|∃w′
2 ∈ R(C)(w), w′

2 ∈ E(τ2)}
That is, we know there is a w′

2 ∈ E(τ2), with
〈w′

1, w
′
2〉 ∈ R(C).

With both 〈w0, w
′
1〉 ∈ R(B) and 〈w′

1, w
′
2〉 ∈ R(C),

we have 〈w0, w
′
2〉 ∈ R(B)◦R(C) = R(B|C). From the

definition of τ2, we know that w′
2 is in E(σ) exactly

when σ ∈ w2 for all σ ∈ T , so w2 = φT (w′
2). We have

shown that w2 ∈ φw
T (R(B|C)(w0)), and therefore that

given the hypothesis, the model supports B|C T⇒ A|C.
�

Axiom E17. This axiom follows from our brute-
force semantics for names. Assume the premise:

R(A) ⊆ R(B)

We want to show that

R(A · N) ⊆ R(B · N),

which is of course trivial thanks to requirement I of
Definition E21.

Theorem E18. Since (A∧B) ⇒ A, (A∧B) ·N ⇒
A·N (by Axiom E17, with T = U). The same is true
for B, proving:

(A∧ B) · N ⇒ (A ·N) ∧ (B · N) �

Axiom E19. Requirement III of Definition E21
exists to support this axiom. It says:

R(A ∧ B) · N ⊆ R(A ·N) ∪R(B ·N)

35



The right-hand side, by the semantics for ∧, is equal
to R((A ·N) ∧ (B · N)), completing the proof.

Theorem E20. Theorem E18 and Axiom E19
together show equality. �

Axiom E23. Assume R(B) ⊆ E(σ′) �
�R(A) ⊆

E(σ′) for σ′ ∈ {σ, τ}. Further, assume that R(B) ⊆
E(σ ∧ τ ). Using the semantics of ∧, we can write
R(B) ⊆ E(σ) ∩ E(τ ), and hence R(B) ⊆ E(σ) and
R(B) ⊆ E(τ ). By the first assumption, we can replace
B in both statements with A, use the definition of ∩
and the semantics of ∧, and conclude that R(A) ⊆
E(σ ∧ τ ), justifying the axiom. �

Axiom E24. Let T = {σ, τ} and T ′ = {σ ∧ τ}.
Assume first that:

φw
T (R(A)(w′

0)) ⊆ φw
T (R(B)(w′

0)) ∀ w′
0 ∈ W

Second, assume we are given w0 and w′
1 such that

w′
1 ∈ φw

T ′(R(A)(w0)). We have the existence of a
w1 ∈ R(A)(w0) with w′

1 = φT ′(w1).
Let w1 = φT (w1). By our first assumption, w1 ∈

φw
T (R(B)(w0)), so there is a w′

1 ∈ R(B)(w0) with
w1 = φT (w′

1). We claim that φT ′(w′
1) = w′

1, a claim
supported by leaning on the definition of φT :

σ ∧ τ ∈ φT ′ (w′
1) ≡ w′

1 ∈ E(σ ∧ τ )
≡ w′

1 ∈ E(σ) ∧ w′
1 ∈ E(τ )

≡ σ ∈ w1 ∧ τ ∈ w1

≡ w1 ∈ E(σ) ∧ w1 ∈ E(τ )
≡ w1 ∈ E(σ ∧ τ )
≡ σ ∧ τ ∈ w′

1

Since w′
1 is either T = {σ∧τ} or ∅, we have shown the

equality, and that w′
1 ∈ φw

T ′(R(B)(w0)). Therefore

the model supports B
{σ∧τ}⇒ A. �

Axiom E25. The structure of this proof parallels
that of Axiom E24. Let T = {σ} and T ′ = {¬σ}.
Assume first that:

φw
T (R(A)(w′

0)) ⊆ φw
T (R(B)(w′

0)) ∀ w′
0 ∈ W

Second, assume we are given w0 and w′
1 such that

w′
1 ∈ φw

T ′(R(A)(w0)). That implies the existence of
a w1 ∈ R(A)(w0), with w′

1 = φT ′(w1). By the def-
inition of φT ′ we know w1 ∈ E(¬σ) if and only if
¬σ ∈ w′

1. Using the semantics of ¬, we can rewrite
that expression as

w1 ∈ E(σ) iff ¬σ �∈ w′
1

Define

w1 =
{

T if w′
1 = ∅

∅ otherwise (w′
1 = T ′)

Clearly σ ∈ w1 if and only if ¬σ �∈ w′
1. Now we can

write

w1 ∈ E(σ) iff σ ∈ w1

This expression satisfies the definition of φT , so we
have φT (w1) = w1. Because w1 ∈ R(A)(w0), we
know w1 ∈ φw

T (R(A)(w0)).
Using the first assumption, we have w1 ∈

φw
T (R(B)(w0)). Using arguments analogous to those

above, we have the existence of a w′
1 ∈ R(B)(w0),

and by the definition of φT , we can show that w′
1 is in

φw
T (R(B)(w0)) as well. The model supports B ¬σ⇒ A.
�

A.5 Relationships among the re-
stricted relations

In each of the examples below, assume T = {s}.
T
� is not stronger than T⇒. The subset relation

in the projected model M of T⇒ holds with the possi-
ble exception of the single world wT = T that repre-
sents the equivalence class of worlds in M in which all
statements in T hold. Clearly φT takes every member
of ∩σ∈TE(σ) to that representative. The counterex-
ample illustrated in Figure 10 highlights this excep-
tion.

T⇒ is not stronger than
T
�. Although just

showed that
T
� is not quite stronger than T⇒, it cer-

tainly seems almost so. Indeed, it is very easy to con-
struct an example that shows that the mighty relation
does not follow from the basic speaks-for-regarding
relation. See Figure 11.

T⇒ implies T→. Assume R(A) ⊆ φ+
T (R(B)). We

will prove by contradiction that B
T→ A. To es-

tablish a contradiction, we assume there is a state-
ment σ ∈ T and a world w0 where B saysσ but
not A says σ. That is, R(B)(w0) ⊆ E(σ) but
R(A)(w0) �⊆ E(σ). The latter means that there is
a world w1 ∈ R(A)(w0), but w1 �∈ E(σ).

We can push 〈w0, w1〉 through our original assump-
tion to find a w′

1 such that 〈w0, w
′
1〉 ∈ R(B) and

w′
1
∼=T w1. Definition E11 tells us that w′

1 �∈ E(σ),
which means R(B)(w0) �⊆ E(σ), which contradicts
our second assumption. We may conclude that for
all w0 ∈ W and σ ∈ T , R(B)(w0) ⊆ E(σ) implies
R(A)(w0) ⊆ E(σ). �

T
� implies T→. We assume

R(A)(w0) −
⋂
τ∈T

E(τ ) ⊆ R(B)(w0)
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The set ∩s∈T E(s) is the left pair of worlds (where s is
true); the only edge belonging to R(A) terminates
in one of those worlds. Therefore, in this model,
R(A)(w) − ∩s∈T E(s) ⊆ R(B)(w), and we conclude

that B
T
� A.

s

B
A

s

w

The mapping φT that reduces the worlds above to
equivalence classes modulo statements in T will make
this model M′. φR

T (R(A)) includes an edge to the
equivalence class labeled s, but φR

T (R(B)(w)) does

not. Therefore, B � T⇒ A.

Figure 10: A counterexample that shows B
T
� A does not imply B

T⇒ A.
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s
t

s
t

A
w

Here is a model in which from w, A considers possible

a world neither in R(B)(w) nor ∩s∈T E(s). So B � T� A.

A

ss
B

w Projecting the model onto T , however, shows that
φR

T (R(A)) and φR
T (R(B)) completely agree on matters

related to s; that is, B
T⇒ A.

Figure 11: A counterexample that shows B
T⇒ A does not imply B

T
� A.

and that R(B)(w0) ⊆ E(σ). From the first assump-
tion, any world w1 ∈ R(A)(w0) is either in E(σ)
(let τ = σ) or in R(B)(w0). The former case triv-
ially guarantees w1 ∈ E(σ), and the latter case does
so by the second assumption. We conclude that
R(A)(w0) ⊆ E(σ). �

T→ is weaker than T⇒ and T→ is weaker than
T
�. See Figure 12 for counterexamples that illustrate
these relationships.
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w (a)

The statement (R(B)(w) ⊆ E(s)) �
�(R(A)(w) ⊆

E(s)) has a false premise, making it vacuously true
in this model. Hence this model satisfies B

T→ A.
The model is its own projection onto T , however,
and it is clear that B � T⇒ A.

A

s
t

s
t

s
t

s
t

B
w

(b) This model satisfies B
T→ A for the same reason as

the model in part (a). The single edge terminating
at R(A)(w), however, is in neither R(B)(w) nor

∩s∈T E(s), so B � T� A.

Figure 12: Examples that show why the relation T→ is weaker than T⇒ and
T
�.
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