A Split-Phase Interface for Parallel File Systems

Sanjay Khanna
David Kotz
Department of Computer Science
Dartmouth College

6211 Sudikoff Laboratory

Hanover, NH 03755-3510
{kaun,dfk}0cs.dartmouth.edu

Technical Report PCS-TR97-312

March 20, 1997

Abstract

We describe the effects of a new user-level library for the Galley Parallel File System. This
library allows some pre-existing sequential programs to make use of the Galley Parallel File
System with minimal modification. It permits programs to efficiently use the parallel file system
because the user-level library groups accesses together. We examine the performance of our
library, and we show how code needs to be modified to use the library.

1 Introduction

Many parallel applications are limited by the performance of the I/O system, and the performance of
many [/O systems is currently limited by the file system. The Galley Parallel File System [NK97]
has demonstrated that it can provide parallel applications with high-throughput access to their
data files, if they use new file-system interfaces. Unfortunately, it is sometimes inconvenient for
programmers to rewrite their application code to fit the new interface. In this paper, we describe
a new user-level library that runs on top of Galley, that provides programmers with an interface

similar to the traditional interface, and with performance similar to Galley’s interfaces.

2 Background

Many scientific programs access large data structures (e.g., matrices) stored in files. To obtain the
necessary processing and I/O speed, parallel processes run the application on many processors, and

spread the data files across many disks. The Galley Parallel File System [NK97] was written both

This research was funded by NSF under grant number CCR-9404919, by NASA Ames under agreement numbers
NCC 2-849 and NAG 2-936, and by Sandia National Labs contract number AS-8500

Copyright 1997 by the authors

to provide a parallel file system that programmers may use, and to provide programmers with the
ability to choose how their files should be distributed across the disks. Nieuwejaar studied common
workloads [NKP196], and discovered that files were often accessed in a strided pattern. Strided
patterns occur when file accesses (reads or writes) are of a fixed size, and successive accesses are
separated by a fixed number of bytes. As a result, Galley provides an interface to read and write
files in strided patterns. Unfortunately, it is not always easy to convert legacy applications to use
the new interface, because the programmer must rewrite loops to build a Galley strided-access
specification.

Our user-level library is built on top of the Galley Parallel File System [NK97], which is described
in the next section. We attempt to enable programmers to adapt existing programs to the Galley
Parallel File System, resulting in a programming style similar to that of Split-C [CDGT93]. In
Split-C, programs communicate data between processors using split-phase get and put operations.
The process makes a series of asynchronous get and put requests, then blocks waiting for all gets
and puts to complete.

Our work may also be compared to the Vesta Parallel File System [CF96]. Vesta allows users
to distribute files on multiple 1/O nodes, similar to Galley. Galley requires the user to define the
number of subfiles (one per I/O node) used for a file at the time of its creation. Vesta requires
the user to define the basic striping unit (BSU) and the number of cells (sequential streams) of the
file at the time of its creation. The BSU is the smallest unit (in bytes) of a Vesta file that can be
accessed. One difference is that Vesta provides logical mappings to view BSUs striped across the
cells in a variety of ways, whereas Galley does not provide any such views to the user. (A user-level
library is required to provide anything other than the raw view of a Galley file; a Vesta interface
library exists, for example.) When a Vesta file is opened, it must be opened in a particular view,
which defines a two-dimensional stripe across the cells of the file. By defining the same view and
selecting different stripes, a multi-process program is able to ensure that no two parts are accessing

the same bytes of the file.

2.1 Galley Parallel File System

The Galley Parallel File System [NK97] is a parallel file system enabling processes to read and
write files that are distributed across several disks. The method of distribution of the files is left
to the user or to a user-level library on top of Galley. The files are stored on disks connected to
I/O processors (10Ps), and the user programs run on compute processors (CPs). Each disk is
connected to a separate IOP. A file is split into subfiles, each of which must reside on a single disk,

and no more than one subfile for a particular file may reside on the same disk. The number of

subfiles is determined when the file is created. Each subfile is split into named forks, which may
be created on an ad-hoc basis. Multiple forks with the same name may exist in multiple subfiles of
the same file. Each fork in a particular subfile is a sequential stream of data, and may be accessed
similar to a Unix file. Galley provides a few different primitives for accessing the forks, and these
are described in detail in the Galley paper [NK97]. Only the gfs_listio() primitive is used in the
GFS-GROUP library and elsewhere throughout this paper. The gfs_listio() function allows the

program to request a list of read or write transfers to a single fork, in one request.

3 GFS-GROUP library

GFS-GROUP is a user-level library to aid the conversion of existing sequential C programs using
regular Unix-like I/O to use the Galley Parallel File System [NK97] with minor modifications. The
library that we provide accumulates the user’s requests and then submits them asynchronously to
Galley as a collection of requests, thereby reducing the overhead for each request. It keeps track of
handles for the requests. Because the requests are sent asynchronously, the user must ensure that
the request is complete before using the information from a read or reusing the buffer for a write.
Of course, if the original program was not written in this manner, then some significant additions
to the code may be necessary to implement a buffer. Many programs are already written to use a
large buffer, and are simply using numerous small I/O requests to access non-contiguous file data.
The location of the reads or writes need not be changed, and whenever a previously read value is
used or a write buffer needs to be overwritten, gfs_group_waitio() must be called to ensure that the
buffer is ready to be used. The main purpose of the library is to group the user’s requests together
before submitting them to Galley, thereby reducing the total number of Galley requests. Since each
Galley request becomes a separate message to the IOP, they can become quite expensive.

Because the GFS-GROUP library is a user-level library, and is meant to be portable, it cannot
gain control of the scheduler. Therefore, it is able to submit requests to the Galley Parallel File
system only when it has been called by a user program. The descriptions of the library functions

below also describe when the library submits a request to Galley.

3.1 The GFS-GROUP library functions

There are five function calls provided by the GFS-GROUP library, namely
int gfs_group_read(int kid, int offset, char *buf, int size)
int gfs_group_write(int kid, int offset, char *buf, int size)
void gfs_group_doneio()
int gfs_group_testio() and
void gfs_group_waitio()

These functions are described in the following sections.

3.1.1 int gfs_group_read(int kid, int offset, char *buf, int size)

This function submits a read request to the GFS-GROUP library. The arguments are as below:

int kid is the id of the fork to read from or write to. Similar to a file descriptor for regular Unix

files, a fork must be opened before it can be read or written.

int offset is the offset, from the beginning of the fork, where data should be read. Please note
that there are no seeks or accesses relative to the current position, because there is no notion

of “current position” or “file pointer.”
char *buf is the buffer that will receive what is read from disk.
int sizze is the number of bytes to read.

The return value is 0 if there are no errors, and -1 if there was an error. An error code is stored
in gfs_errno if there was an error. If this request is to access a fork different from the last fork
accessed, all the previous requests that have not yet been submitted to Galley are now submitted to
Galley. This effect results from our implementation, which gathers requests into lists for gfs_listio(),
and a gfs_listio() request cannot access two different forks. This function submits all the previous
requests in addition to the current request to Galley if the number of requests not submitted is
greater than a threshold (currently 1024), or the total size of all requests not submitted is greater
than a size threshold (currently 16MB). In addition, depending on a compile-time option, if it is not
waiting for Galley to complete any previous requests, it will also submit all the previous requests

including the current request to Galley (the intent is to keep Galley busy).

3.1.2 int gfs_group_write(int kid, int offset, char *buf, int size)

This function submits a write request to the GFS-GROUP library. The arguments are the same
as for a read request. Please note that once a read (write) request has been submitted, no write

(read) requests can be submitted until gfs_group_doneio() has been called.

3.1.3 void gfs_group_doneio()

This function tells the GFS-GROUP library that one group of 1/O requests has been completed,
forcing any remaining I/O requests to be submitted to Galley. Please note that reads and writes

may not be combined in the same group.

3.1.4 int gfs_group_testio()

This function checks whether all the I/O submitted to the GFS-GROUP library so far has been
completed. It returns TRUE if it has, FALSE if it has not. This function also submits a request
to Galley if it is not waiting for Galley to complete previous requests. Thus, if the GFS-GROUP
library had submitted a large request to Galley, and then the user submitted a few small requests
to Galley and then called gfs_group_testio(), this function will not submit the remaining requests

to Galley if it is still waiting for Galley to complete the large request.

3.1.5 void gfs_group_wazitio()

This function will wait for all outstanding 1/O to complete, after submitting any unsubmitted
requests to Galley. Please note that I/O may be completed in any order. If one group with writes
was followed by gfs_group_doneio(), and then one group with reads, the writes may not have been
completed when the reads were performed unless g¢fs_group_waitio() was also called between the

two groups.

3.2 Using the GFS-GROUP library

The GFS-GROUP library uses the gfs_listio function call provided by the Galley Parallel File
System [NKO97]. This restricts each set of requests submitted to the Galley Parallel File System to
access the same fork in the same subfile, and also each set of requests must be either all reads or
all writes. Figure 1 is an example sequential program that accesses a regular Unix file. Figure 2 is
the program in Figure 1 converted to use the GFS-GROUP library. Figure 3 is the same program
converted to use Galley without the GFS-GROUP library.

4 Experiments and Results

We ran several experiments to evaluate the benefit of using the GFS-GROUP library. We compared
the times to read from and write to disk. All the programs used four IOPs and one CP. All the
machines were IBM RS6000s running AIX 4.1.3. The processors communicated via a 100 Mbps
FDDI network. Each program created one fork on each I0P, and wrote a matrix striped across the
10Ps by writing the first column to the first subfile, the next column to the next subfile, and so on.
The writes were verified by another program to ensure that they were correct. The time recorded
includes only the time taken to read or write the files. The timer was stopped after flushing the
Galley disk caches, but before closing the files. Each program wrote a large matrix to the file, and

then another program read it back. The synchronous program used a buffer large enough to store

main()
{
int i, j;
int matrix[10][10];
FILE *f;
f = fopen("myfil”, "w”);

for (i=0; i < 10; i++4) {
for (j=0; j < 10; j+4) {
matrix[i][j] =i * 100 + j;
}

fwrite(matrix[i], sizeof(int), 10, f);

}

fclose(f);
1

Figure 1: Example Sequential Program

main()

{
int i, j;
int matrix[10][10];
int fid, kid;

gfs_init(NULL); /* initialize Galley */
fid = gfs_open_file("myfil”);
kid = gfs_open_fork(fid, 1, "matrix”);

for (i=0; i < 10; i++4) {
for (j=0; j < 10; j+4) {
matrix[i][j] =i * 100 + j;
}

/* write row ¢ of matriz */
gfs_group_write(kid, i*10*sizeof(int), matrix[i], 10*sizeof(int));

}

gfs_group_doneio();
gfs_close_fork(kid);
gfs_close_file(fid);

Figure 2: Example Sequential Program converted to use GFS-GROUP

main()

{
int i, j;
int matrix[10][10];
gfs_handle my_handles[10];
int fid, kid;

gfs_init(NULL); /* initialize Galley */
fid = gfs_open_file("myfil”);
kid = gfs_open_fork(fid, 1, "matrix”);

for (i=0; i < 10; i++4) {
for (j=0; j < 10; j+4) {
matrix[i][j] =i * 100 + j;
}

/* write row ¢ of matriz */
my_handles[i] = gfs_new_handle();
gfs nb_write(my_handles[i], kid, i*10*sizeof(int), matrix[i], 10*sizeof(int));
}
for (i=0; i < 10; i++) {
gfs_wait(my_handles[i]); /* wait for 1/O to complete */

}

gfs_close_fork(kid);
gfs_close_file(fid);

Figure 3: Example Sequential Program converted to use Galley without GFS-GROUP

one column. The other programs used a buffer large enough to store four columns because we used
four IOPs. Fach program was run with two sets of arguments to compare the effectiveness of using
the GFS-GROUP library when writing small records as well as when writing large records. For
the first set of experiments, each program read or wrote a 4096x4096 matrix where each entry was
16 bytes. For the second set of experiments, each program read or wrote a 128x128 matrix where
each entry was 16384 bytes. Thus, all the matrices were 256 MB in size, or 64 MB per IOP. Each

program was run ten times with each set of arguments; we report the mean execution times.

4.1 Programs used to evaluate GFS-GROUP

We used four programs to evaluate the effectiveness of GFS-GROUP.

4.1.1 group-send

This program used the GFS-GROUP library. The program submitted one request to the GFS-
GROUP library for each matrix entry, and after every four columns it waited for the requests to
complete so that the buffer could be filled with data for the next four columns. The GFS-GROUP
library submitted a request to Galley whenever it was called, if it was not waiting for a previous
request to complete. It also submitted a request whenever it received data for a new column because

it could not submit data for different columns (forks) in the same gfs_listio() request.

4.1.2 group-nosend

This was the same program as group-send except that the GFS-GROUP library was compiled
differently. This made the GFS-GROUP library wait until a new column (fork) was used before
submitting a request to Galley.

4.1.3 asynchronous

This program was written to measure the overhead of the GFS-GROUP library. It submits requests
similar to the group-nosend program, except that it does not use the GFS-GROUP library.
Rather, the overhead necessary for manipulating asynchronous reads and writes is included in the

same program. Any additional time required by group-nosend was thus the overhead of the

GFS-GROUP library.

4.1.4 synchronous

This program submits synchronous gfs_listio() requests to the Galley Parallel File System. Each

request contains one column, and there is no overlap of writing to the separate disks because it

Write Timings (256 MB)

4096x4096 matrix || 128x128 matrix
Program mean ‘ std dev mean ‘ std dev
synchronous 148.9 3.79 103.4 6.14
asynchronous || 139.5 3.36 66.9 7.97
group-nosend || 144.2 2.47 65.3 9.19
group-send 171.3 4.39 63.0 6.98

Read Timings (256 MB)

4096x4096 matrix || 128x128 matrix
Program mean ‘ std dev mean ‘ std dev
synchronous 204.7 3.71 126.5 | 20.73
asynchronous || 175.2 4.32 70.3 6.88
group-nosend || 192.9 8.31 78.5 9.71
group-send 206.2 7.26 77.2 4.38

Table 1: Timings of Experiments. Each IOP has a file system using 16K striping across
two 1 GB disks.

waits for each request to complete before submitting the next one.

The timings of the experiments are shown in Table 1. We used an unpaired-observations ¢-test
to decide whether the differences are significant at the 95% confidence level. We show the results
in Table 2. The approximate speedups of the programs are given in Table 3. We regard programs
to have the same speed if there was no significant difference between the timings of the programs.

Looking at the write timings for the large (4096x4096) matrix with small elements, we see
that the group-nosend and synchronous programs perform about the same, the asynchronous
program is faster, and the group-send program is slower. Clearly asynchronous is faster than
synchronous because it can overlap 1/O time on all four IOPs, and overlap I/O with computing
the next column to be written. The overhead of the GFS-GROUP library makes group-nosend
about the same time as the synchronous program. Allowing GFS-GROUP to submit requests
whenever it is not waiting for Galley (group-send) was not worthwile because the requests were
so small that it was always worth waiting so multiple requests could be grouped.

Reading was slower because reads cannot complete until the physical 1/O is complete, while
writes can complete once the data reaches Galley’s IOP cache (we include the time to flush the
cache at the end but meanwhile there is some extra concurrency available at the CPs). As a result,
the synchronous program slows to about the same as group-send.

On the other hand, from the write timings for the small (128x128) matrix with large elements, we
see that all but the synchronous programs were equivalent and much faster than the synchronous

program, because synchronous had no overlap between I/0 on one IOP and another.

Write Results (256 MB each)

4096x4096 matrix 128x128 matrix
Program synch ‘ asynch ‘ nosend ‘ send || synch ‘ asynch ‘ nosend ‘ send
synchronous — yes yes yes — yes yes yes
asynchronous yes — yes yes yes — no no
group-nosend yes yes — yes yes no — no
group-send yes yes yes — yes no no —

Read Results (256 MB each)

4096x4096 matrix 128x128 matrix
Program synch | asynch ‘ nosend ‘ send || synch ‘ asynch | nosend | send
synchronous — yes yes no — yes yes yes
asynchronous yes — yes yes yes — yes yes
group-nosend yes yes — yes yes yes — no
group-send no yes yes — yes yes no —

Table 2: Results of 95% significance t-tests: “yes” means that the different performance was
significantly different at the 95% confidence level. Each IOP has a file system using 16K striping
across two 1 GB disks.

When reading the small (128x128) matrix with large elements, the asynchronous program
was fastest, followed by the two (equivalently fast) group programs, and synchronous was again
slowest. The two group programs were slower than asynchronous due to library overhead, which
appears to be about 9-10%. Group-send was not slower than group-nosend because there was
rarely an opportunity to submit a request when Galley was not busy. It was not faster probably
because there was little delay in our programs between the GFS-GROUP calls, so Galley was rarely
idle.

5 Conclusions

The GFS-GROUP library provides an easier way to convert some sequential I/O loops into parallel
than to use pure Galley routines. It appears to have acceptable overhead for large requests, but
somewhat disappointing overhead for tiny requests. We found it unhelpful to use an aggressive

(group-send) approach, at least in our experiments.

6 Future Work

When using the GFS-GROUP library, it would be nice to be able to select at runtime whether to
submit requests to Galley only if there are too many requests on hand (as in group-nosend) or

to submit them immediately if the library is not waiting for Galley to complete a previous request

10

Write Results (256 MB each)

4096x4096 matrix 128x128 matrix
Base Program — | synch ‘ asynch ‘ nosend ‘ send || synch ‘ asynch ‘ nosend ‘ send
synchronous 1.00 0.94 0.97 1.15 1.00 0.65 0.63 0.61
asynchronous 1.07 1.00 1.03 1.23 1.55 1.00 0.98 0.9/
group-nosend 1.03 0.97 1.00 | 1.19 || 1.58 1.02 1.00 | 0.96
group-send 0.87 0.81 0.84 1.00 || 1.64 1.06 1.04 1.00

Read Results (256 MB each)

4096x4096 matrix 128x128 matrix
Base Program — || synch | asynch ‘ nosend ‘ send || synch ‘ asynch | nosend | send
synchronous 1.00 0.86 0.94 1.01 1.00 0.56 0.62 0.61
asynchronous 1.17 1.00 1.10 1.18 1.80 1.00 1.12 1.10
group-nosend 1.06 0.91 1.00 | 1.07 || 1.61 0.90 1.00 | 0.98
group-send 0.99 0.85 0.94 1.00 || 1.64 0.91 1.02 1.00

Table 3: Approximate Speedups of programs. If the number is in italics, then there is no significant
difference between the base program and the program being compared.

(as in group-send). Currently, the library must be compiled with the appropriate option.

We could also perform more experiments to be able to better analyze the effects of using the
GFS-GROUP library on different kinds of file system accesses. The current experiments have
focused only on simple file reading and writing, but other possibilities include writing data to

existing files, and accessing files in a non-sequential order.

References

[CDGT93] David E. Culler, Andrea Drusseau, Seth Copen Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel programming
in Split-C. In Proceedings of Supercomputing 93, pages 262-283, Portland, OR, 1993.
IEEE Computer Society Press.

[CF96] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM Transac-
tions on Computer Systems, 14(3):225-264, August 1996.

[NK97] Nils Nieuwejaar and David Kotz. The Galley parallel file system. Parallel Computing,
23(4), 1997. To appear.

[NKP196] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and Michael
Best. File-access characteristics of parallel scientific workloads. IFEE Transactions on

Parallel and Distributed Systems, 7(10):1075-1089, October 1996.

11

