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Abstract

Trends toward shared-memory programming paradigms,
large (64-bit) address spaces, and memory-mapped files have
led some to propose the use of a single virtual-address space,
shared by all processes and processors. Typical proposals re-
quire the single address space to contain all process-private
data, shared data, and stored files. To simplify management
of an address space where stale pointers make it difficult to
re-use addresses, some have claimed that a 64-bit address
space is sufficiently large that there is no need to ever re-use
addresses. Unfortunately, there has been no data to either
support or refute these claims, or to aid in the design of ap-
propriate address-space management policies. In this paper,
we present the results of extensive kernel-level tracing of the
workstations in our department, and discuss the implications
for single-address-space operating systems. We found that
single-address-space systems will not outgrow the available
address space, but only if reasonable space-allocation poli-
cies are used, and only if the system can adapt as larger

address spaces become available.

1 Introduction

Operating systems are evolving under the influence of

many architectural trends. Omne is the collection of
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many processors into a distributed or parallel system.
Another 1s the use of a shared-memory programming
model, even when the physical memory 1s distributed.
Another is the growing size of physical memories (due
to denser RAM chips) and of virtual memories (with
the advent of 64-bit CPUs like the MIPS R4000 [5],
the HP PA-RISC [7], and the DEC ALPHA [14]). Fi-
nally, main memory and secondary storage are increas-
ingly unified through the use of virtual memory and
“memory-mapped” files.

These trends make it possible to reconsider some of
the basic assumptions in operating system design. Most
current operating systems provide a separate address
space for each process, which makes protection rather
easy but makes sharing memory rather awkward. Many
researchers propose to unify the memory hierarchy of
several machines and disk systems into a single, “flat”
virtual-address space [2, 3, 4, 10]. (These systems are
often called “single-address-space” systems.) This uni-

fication makes it easier to share data structures between
processes, even when the data may contain pointers or

be physically located on different machines or disk sys-
tems. It also makes it easier to build persistent pointer-
based data structures, avoiding the cost of translating
to and from linear representations. Finally, it may im-
prove performance by avoiding message-packaging over-

head and some kernel traps.

One of the most convenient aspects of a single ad-
dress space, the universality of pointers, also makes
management of the address space especially difficult.
Stale pointers, stored in persistent data structures,
make re-use of the address range of a deleted object
highly undesirable. Some claim that a 64-bit address
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space is so large that re-use would never be necessary [2].
These claims are not based on any real data, and have
thus been the subject of much debate.
back-of-the-envelope calculations often ignore fragmen-

In particular,

tation losses or growth in the rate of address-space con-
sumption over the years. In this paper we provide the
necessary data and analyze the prospects for single-
address-space operating systems. We found that single-
address-space systems will not outgrow the available ad-
dress space, but only if reasonable space-allocation poli-
cies are used, and only if the system can adapt as larger
address spaces become available.

In the next section we examine some of the previ-
ous work in single-address-space operating systems, fo-
cusing on their assumptions of address-space usage. In
Section 3, we discuss our trace collection and the anal-
ysis of current usage patterns. In Section 4, we show
how we used this data to predict the lifetime of single-
address-space operating systems. Finally, in Section 5,

we summarize.

2 Background

There are many advantages and disadvantages of an
operating system with a single common address space,
which are summarized by Mullender [8, pages 391-392]
and by Chase et al [3].

The MONADS-PC project [10, 11] was one of
the first systems to place all storage (all processes and
all files) in a single, distributed, virtual-address space.
They use custom hardware that partitions the bits of
an address into two fields: a 32-bit address space num-
ber and a 28-bit offset.
are never re-used. A newer version of the system, the
MONADS-MM [6], uses 128-bit addresses, extending
the address-space numbers to 96 bits and the offsets to

32 bits.
Hemlock [4] proposes a single 64-bit address space.

The address space numbers

Files are mapped into contiguous regions in the address
space, requiring them to allocate a large address range
(4 GB) for each file to leave room for potential expan-
sion. This fragmentation may limit the effective size of
their (64-bit) address space. Another characteristic of
their model is that they “reserve a 32-bit portion of the
64-bit virtual address space for private code and data.”
This exception from the otherwise single address space
simplifies some relocation issues and provides a limited
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form of re-use. Hemlock dynamically links code at run
time to allow for different instances of global data.

Opal [3] uses other techniques to avoid Hemlock’s
“private” 32-bit subspace and dynamic linking. For ex-
ample, all global variables are referenced as an offset
from a base register, allowing separate storage for each
instance of the program. They concede that conserving
and re-using address space is probably necessary.

In contrast, Bartoli et al. believe that “if ten ma-
chines create objects at a rate of ten gigabytes a minute,
the [64-bit] address space will last 300 years” [2]. Using
their numbers, a collection of 200 machines would only
last 15 years, and larger collections would likely be out
of the question.

Patterson and Hennessy claim that memory require-
ments for a typical program have grown by a factor of
1.5 to 2 every year, consuming 1/2-1 address bits per
year [9, page 16]. At this rate, an expansion from 32
bits to 64 bits would only last 32-64 years, and a single-
address-space operating system would run out sooner.

It is clear that there is not any real understanding of
the rate of address space consumption, and that some
data is needed. This problem was the motivation for
our work.

3 Current usage

To provide a basis for our analysis of single-address-
space systems, we first measured address space usage in
current operating systems. Our goals were to determine
the rate that address space was used in our current oper-
ating systems, and to collect traces to use in trace-driven
simulations of future address-management policies. For
two servers and two workstation clusters on campus, we
traced the events that may consume address space in a
single-address-space system. In particular, we recorded
creations, expansions, and deletions of each process’s
data and stack segments, all files, and all shared-data
segments.

The data we collected differs from most previous
studies in that 1t measures virtual rather than physi-

We did not take into account the text-
segment size, assuming that it would allocated at com-

cal resources.

pile time.! Table 1 summarizes the traces we collected.

1With dynamic linking, as in Hemlock, the addresses allocated
for the text segment could likely be re-used.



Group | Days Records Lost records
Server 1 7.8 11392000 2 (0.00%)
Server 2 25.3 6595110 61709 (0.94%)
22.9 915718 614 (0.07%)
22.9 3667000 6 (0.00%)
22.9 378430 1409 (0.37%)
22.9 3293680 19351 (0.59%)
22.9 417550 26 (0.01%)
Cluster 1 23.0 884393 2 (0.00%)
22.9 1402850 132692 (9.46%)
22.9 1343890 3180 (0.24%)
23.0 849289 5995 (0.71%)
22.1 601798 2100 (0.35%)
23.0 1850030 0 (0.00%)
22.9 605955 88 (0.02%)
Total 16210583 165463 (1.01%)
29.4 9792880 175785 (1.80%)
29.4 1082960 16144 (1.49%)
Cluster 2 29.4 610202 6051 (0.99%)
29.4 486763 5458 (1.12%)
Total 11972805 203438 (1.67%)

Table 1: Summary of the traces collected. Server 1 was used
as a general-purpose Unix compute server by many people on
campus. Server 2 was the primary file, mail, and ftp server in
our computer science department. Cluster 1 includes general-use
workstations in the computer science department, most located
in faculty offices. Cluster 2 contains workstations used primar-
ily by a compute-intensive signal-processing research group. All
workstations are DECstation 5000s running Ultrix 4.3. A small
fraction of records were lost in the collection process (see Sec-

tion 3.1 for details).

3.1 Methods
To collect this data, we modified the DEC Ultrix 4.3

kernel? to generate a trace record for all relevant activ-

Our method was modeled after the Ultrix error-
logging facility. The kernel stored trace records in an

itles.

internal 20 KB buffer, which was accessible through a
new device driver that provided a file-like interface to
the buffer.
vice, and issued large read requests. When the internal
buffer contained sufficient data (15 KB), the kernel trig-
gered the device driver, which then copied the data to

A user-level trace daemon opened the de-

the trace daemon’s buffer, and woke the trace daemon.
The kernel buffer was then available for new data, while

the trace daemon wrote its buffer to a trace file. The
activity of the trace daemon, and thus of the trace files,

2DEC and Ultrix are trademarks of Digital Equipment Corpo-
ration. Ultrix 4.3 is a variant of Unix 4.2BSD. Unix is a trademark

of X/Open.

163

was explicitly excluded from the trace by the kernel.
This buffering strategy decoupled trace generation from
disk writes so that no activity was ever significantly de-
layed to write trace records to disk, and so that the over-
head was amortized across large groups of trace records.
While it is not a new technique, we highly recommend
this mechanism for other trace-collection efforts.

To measure the performance overhead of our tracing
activity, we ran 25 trials of the Andrew benchmark [12]

on the standard Ultrix 4.3 kernel and on our instru-
mented kernel. The Andrew benchmark exercises both
files and processes; by creating, searching, and deleting

We discarded the first

trial in each case, due to a cold file cache. An unpaired

files, and compiling programs.

t-test showed the difference to be insignificant at the
99% confidence level, implying that our tracing appar-
This

matches our qualitative experience (no users perceived

ently had no significant effect on performance.

any difference).
After collection, the raw trace files were post-
processed to clean up the data. In particular, the raw
trace files were missing a small percentage of the trace
records. This was caused by the trace buffer occasion-
ally filling up before the trace daemon could read it,
or, in one case, the trace disk running out of space. In
most cases, the effect of the missing records was simu-
lated, the data being inferred from subsequent events.
For example, a missing process-fork record was inferred
from a subsequent process-exec or process-exit record.
Fortunately, fewer than two percent of the records were
missing from any trace group, indicating that the ef-
fect on the usage rates should be quite small, perhaps

underestimating usage by 1-2%.

3.2 Results

In Figure 1, we show the raw amount of address space
(in units of 4 KB pages) allocated over time, for each
of the four trace groups defined in Table 1. This figure
is based on a running sum of the size of private-data
segments, stack segments, shared-data segments, and
file creations or extensions. Clearly, most of the usage
was from data segments, with stack segments second.
Shared data was rarely used on our systems. Daily and
weekly rhythms are clearly visible. Server 1, heavily
used for timesharing, used four times as much space
in one third the time. Cluster 2, used by a signal-

processing research group, occasionally saw large bursts
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Figure 1: Cumulative address-space usage for all workstations in each trace group, separated by category of memory usage. Curves

for Cluster 1 and Cluster 2 are scaled down by the number of machines in each cluster, for easier comparison. Shared Memory is

indistinguishable from zero. z-axis tic-marks represent midnight before the given day of the week.

of activity caused by applications with large data seg-
ments.

To discover the nature of the significant address-
space users, we compiled a list of all programs by
address-space allocated. Most of the big users were
not huge user applications, but instead common pro-
grams like the shells sh and csh, which were run of-
ten for scripts, the gzip compression program, which
was run by nightly space-saving scripts, pieces of the C
compiler, and periodic background processes. Only two
programs in the top 30 (a signal-processing application
and an image-processing application) were user-written
applications; all of the others were common applications
used by many users. Only one could be called a large

application (56 MB of address space consumed per in-
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stance). This data makes it clear that policies which
statically allocate (and never re-use) a large region to
every process would waste a lot of virtual-address space

on many small but common applications.

4 Single-address-space systems

To be able to predict the lifetime of single-address-space
systems, we had to consider more than just the current
usage rate. First, we considered some space-allocation
policies that might be used in a single-address-space sys-
tem, to account for the costs of fragmentation in the us-
age rate. Then we considered appropriate methods to
extrapolate the current usage rate into the future. We
begin by describing our methods.



4.1 Methods

4.1.1 Allocation policies

Clearly, systems that manage a single virtual-address
space by allocating virtual addresses to processes and
files without ever reclaiming the addresses for re-use
will eventually run out of the finite address space. Al-
location policies with significant fragmentation would
shorten the expected lifetime, and allocation policies
that allow some re-use would extend the expected life-

time. We used trace-driven simulations to measure the
net rate of address-space usage under a variety of likely

allocation policies. Each trace event allocates or extends
a region of virtual-address space, in units of 4 KB pages,
called a segment.®> We were concerned with the internal
fragmentation caused by allocating too many pages to
a segment, and the external fragmentation caused by
holes left from freed segments, but ignored the small in-

ternal fragmentation in the last 4 KB page of a segment.

Base allocation. For each processor in the dis-
tributed system, we allocated a conservative 32-bit
(4 GB) subspace to the kernel and its data structures.
We also allocate 4 GB for every machine’s initial col-
lection of files, as a conservative estimate of what each
new machine would bring to the address space. Note

that this 8 GB was counted only once per machine.

Process allocation. Processes allocated four types
of virtual-memory segments: text (code), shared data,
private data (heap), and the stack. We assumed that
the text segment did not require the allocation of new
virtual memory, since it was either allocated at compile
time or was able to be re-used. A shared-data segment
could never be re-used, because pointers into a shared
data segment may have been stored in a private data
segment elsewhere. We also assumed that shared-data

segments were not extendible.®

3 We assume a flat (not segmented) address space. We use the
word “segment”, in the tradition of names like “text segment”
and “stack segment”, to mean a logical chunk of virtual address
space.

4 The alternative was to use the same 32-bit (private) subspace
for all processors. This alternative, however, neither fits the gen-
eral ideal of one common address space, nor allows kernels to
access the kernel data structures of other processors (which may
be considered useful by some designers).

5The actual policy choice made essentially no difference in our
simulations, because our trace data contained only a tiny amount
of shared data.
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Private-data and stack segments have traditionally
been extendible (to a limit), and thus an allocation pol-
icy in a single-address-space system may need to allo-
cate more than the initial request to account for growth.
Overestimates lead to fragmentation losses (memory al-
located but never used). We examined several alter-
native policies, composed from two orthogonal charac-

teristics. The first characteristic contrasted exact-size
allocation, where each segment was allocated exactly

the maximum number of pages used by that segment
in the trace, and fixed-size allocation, where each pro-
cess was allocated a 64 MB data segment and a 2 MB
stack segment. (Although the ezact policy is unimple-
mentable, it was useful for comparison purposes.) The
second characteristic contrasted no re-use, where no
segment was ever re-used, with re-use, where all freed
private-data and stack segments were re-used for other
private-data or stack segments. Note that, of the four
possible combinations, the two re-use policies are sim-
ilar, in that neither cause any space to be lost from
external or internal fragmentation over the long term.
(Note that the 32-bit subspace of [4] is also similar to
the fixed re-use policy.) Thus, we measured only re-

use, exact no-reuse, and fixed no-reuse.

File allocation. A file is traditionally an extendible
array of bytes. Newly created files can grow from an
initial size of zero, so in a single-address-space system,
a new file must be allocated space with room to grow.
These “file segments” can never be re-used or moved,
because a pointer into a deleted file’s segment may be
stored in another file, or because the file may be restored
from a backup tape. With this limitation in mind, we
considered several policies (note that a library, such as
stdio, could provide a conventional read/write file ab-

straction on top of any of these file-system policies.):

exact: Each file was allocated exactly as much space
as its own lifetime-maximum size (in pages). This

unrealistic policy was useful for comparison.

fixed: A fixed 4 GB segment was allocated for each file
when it was created. Any extraneous space was

never recovered.

chunked: Growing files were allocated virtual-address
space in chunks, beginning with a one-page chunk

for a new file. Once the latest chunk was full, a



new chunk of twice the size was allocated, contigu-
ous to the previous chunk if possible. When the file
was closed, any unused pages at the end of the last
chunk were reserved for future growth. This reser-
vation strategy limited the number of chunks, and
hence the amount of metadata needed to represent
a file, by doubling the size of each chunk as the file
grew, but did cause some fragmentation.

4.1.2 Extrapolating to the future

Any attempt to extrapolate computing trends by more
than a few years is naturally speculative. Previous
speculations have been crude at best: most of the
back-of-the-envelope calculations in Section 2 extrap-
olate address-space usage by assuming that the yearly
address-consumption rate remains constant. A constant
rate seems unlikely, given improving technology, the in-
creasing sophistication of software, the increasing usage
of computers, and the increasing number of computers.
A simple linear extrapolation based on the current usage
rate would overestimate the lifetime of single-address-
space systems.

On the other hand, it is not clear that we could ex-
trapolate based on the assumption that usage increases
directly in proportion to the technology. We found that
the address-space usage was not correlated with CPU
usage (correlation coefficient 0.0238), so a doubling of
CPU speed would not imply a doubling of address con-
sumption on a per-process basis. Instead, acceleration
in the rate of address-space consumption is likely to de-
pend significantly on changing user habits (for example,
the advent of multimedia applications may encourage
larger processes and larger files). This phenomenon was
also noticed in a recent study of file-system throughput
requirements [1]: “The net result is an increase in com-
puting power per user by a factor of 200 to 500, but
the throughput requirements only increased by about a

factor of 20 to 30. ... Users seem to have used their ad-
ditional computing resources to decrease the response

time to access data more than they have used it to in-
crease the overall amount of data that they use.” These
uncertainties make it impossible to extrapolate with ac-
curacy, but we can nevertheless examine a range of sim-
ple acceleration models that bound the likely possibili-
ties.

Disks have been doubling in capacity every three
years, and DRAMs have been quadrupling in capacity

every three years, while per-process (physical) mem-
ory usage doubles about every one to two years [9,
pages 16—17]. It seems reasonable to expect the rate
of address-space consumption to grow exponentially as
well, though perhaps not as quickly. If r is the current
rate of address-space consumption (in bytes per year
per machine), a is the acceleration factor per year (e.g.,
a = 2 implies doubling the rate every year), and n is
the number of machines, then the number of bytes con-

sumed in year y is
wly) = nra? (1)

and the total address-space usage after y years is

y

T(y) = > uli) (2)

0

o

y
= nrz (3)
. { nray:_ll_l ifa#1 (4)
N nry ifa=1

Note that @ = 1 models linear growth, and that a =
2 models an exponential growth exceeding even the
growth rate of disk capacity (a = 1.26) or DRAM ca-
pacity (¢ = 1.59). We extend this model by adding in
a k-byte allocation for each machine’s kernel and initial
file set (which grows with n, but not with y, as we de-
scribe above in Section 4.1.1). We can further extend
this model by assuming that the number of machines,
n, 18 not constant but rather a function of y. Here, a lin-
ear function seems reasonable. For simplicity we choose

n(y) = my, i.e., there are m machines added each year.
u(ly) = n(y)ra? (5)

T(y) = kmy+ Z u(1) (6)

Y

= kmy+mr Z ial (7)
i=0
_ kmy + mryay+2_((ay_-|-11))2ay+1+a a 3& 1 (8)
kmy + mrﬂyzi12 a=1

In the next section we compare equation 8 to the
available address space. It is reasonable to assume that
the size of the address space will also increase with time.
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MIPS R-4000 and HP 9000/700 (64 bits). The data come from
[13, page 5], [15, page 27], and [5].

Siewiorek et al noticed that available virtual address
space has grown by about one bit per year [13], but their

conclusions are based on old data. In Figure 2, we plot
the virtual-address-bit count of microprocessor chips
against the first year of introduction, for those chips
that set a new maximum virtual address space among
commercial, general-purpose microprocessors. We also
plot three possible growth curves: the original from [13]
(one bit per year), a linear regression fit (2.676 bits per
year, with correlation coefficient 0.9824), and a linear
regression fit to the logarithm of the address bit count
(leading to a doubling in address bits every eight years;
correlation coefficient 0.9781). The best fit is the linear
growth:

address bits(year) = 2.676 x (year — 1967) — 2.048

Address bits generally become available in increments,
every few years, rather than continuously. So, for incre-

ments of b bits, we use

address bits(year)

b i

available address bits(year) = b x |

4.2 Results
4.2.1 Allocation policies

Figure 3 shows the cumulative address space consumed
by hypothetical single-address-space operating systems

operating under each of the policies described above (ex-
cept the “fixed” policies, which used orders of magni-
tude more space, and hence are not shown), for each
tracing group. Clearly, those that re-use data seg-
ments consume address space much more slowly. Also,
the “chunked” file policy is remarkably close to the
(unattainable) “exact” file policy.

To understand the burstiness of address-space us-
age, we computed each policy’s usage for each five-
minute interval on each machine. In the clusters, idle
intervals dominate the distributions, with 69-84% of
intervals consuming at most one page under the re-
use policies. Based on these results, we estimate the
yearly rate of address-space consumption for each pol-
icy, given the current workload. Table 2 shows two rates
for each tracing group, and for each policy: the first is
the mean consumption rate (representing the situation
where some machines are idle some of the time, as they
were in our trace), and the second is the 95th percentile
consumption rate (representing the situation where all
machines are heavily used), based on the busiest five-
minute intervals. The table makes it clear that both the
“fixed” process policy and the “fixed” file policy were,
as expected, consuming space extremely fast. The ta-
ble shows that re-using private-data and stack segments
cut about one to one and a half orders of magnitude off
the consumption rate, and that there was little differ-
ence between the “exact” and “chunked” file policies.
Also, the 95th percentile rate was about one-half order
of magnitude larger than the mean rate, and Server 1
was about an order of magnitude larger than the other
machines, due to its heavy multi-user load.

4.2.2 Extrapolating to the future

We can compare the growth of available address space
with the consumption of a single-address-space system
that began in 1994, by choosing reasonable values for
the parameters. For the acceleration a, we chose 1,
1.1, 1.2, 1.6, 2, and 3, i.e., ranging from linear growth
(a = 1) to tripling the rate every year (a = 3). Given
that DRAM capacity grows at a = 1.59, we suspect that
1.6 is the highest realistic a. We chose m = 100, as the
growth rate for the machine population, although we
found that there was little difference when varying m
from 1 to 10000. From Table 2, we selected a range of
representative rates r (in bytes/year/machine), as fol-

lows:
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Figure 3: Cumulative address space consumed under different management policies, for each tracing group, over the interval traced.
Curves for Cluster 1 and Cluster 2 are scaled down by the number of machines in each cluster, for easier comparison. z-axis tic-marks

represent midnight before the given day of the week. The “fixed” file and process policies were so much worse that they are not shown

(see Table 2).

r Cluster  roughly representing
1016 all “fixed” file policy
1014 all “fixed” process policy
10'3 | Server 1  “exact, no re-use” process policy
10'? | others “exact, no re-use” process policy
101 | Server 1  “re-use” process policy
1019 | others “re-use” process policy

Note that these rates are dependent on the nature
of our workload—workstations in a computer science
We speculate that the rate of a differ-
ent workload, such as scientific computing or object-

department.

oriented databases, may differ by perhaps 2-3 orders
If so,

our conclusions would be qualitatively similar for these

of magnitude, and have a similar growth rate.

other workloads.
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Figures 4-6 display the models, using a logarithmic
scale to compare address bits rather than address-space
size. Note that we plot the available address space as

growing in increments of 1, 32, or 64 bits (see 4.1.2).

Figure 4 examines the simple case of a = 1, where
the yearly consumption remains constant at current lev-
els. We see that a 64-bit address space is sufficient (that
is, the “address bits needed” curve remains below the
“address bits available” curve) only if the “fixed” poli-
cies were avoided, or if a 96-bit address space were avail-
able soon. If the current consumption rate, r, acceler-
ated especially fast (Figures 5-6), the re-use policies

were definitely necessary.



Process File bytes/year /machine
Policy Policy Mean 95th %ile
exact chunked | S1 | 8.2x101? 1.7x1013
no re-use S2 | 5.9x1011 1.8x10%2
Cl | 4.5x1011 1.0x10%2
C2 | 4.4x1011 8.3x 10!
exact exact S1 | 8.1x10%2 1.6x1013
no re-use S2 | 5.8x101 1.7x10%2
Cl | 4.6x1011 1.0x10%2
C2 | 4.3x10 7.6x10M1
reuse chunked | S1 | 3.8x10'! 1.1x10%
S2 | 3.7x10%° 1.1x 10
Cl | 1.8x10%° 5.3x1010
C2 | 1.2x10% 3.7x1010
reuse exact S1 | 2.4x101T 6.7x 1011
S2 | 2.4x10% 6.1x101°
Cl | 1.1x10% 3.6x1010
C2 | 6.1x10% 2.3x1010
reuse fixed S1 | 7.7x10° 1.8x10%7
S2 | 6.7x10%5 1.9%10%
Cl | 1.5x10%® 5.9x101®
C2 | 8.9x10™ 4.1x10'®
fixed exact S1 | 1.7x10%® 3.3x101°
no re-use 52 | 1.1x10* 3.1x104
Cl | 7.5x10'3 1.5x 1014
C2 | 1.2x10* 1.1x10%™

Table 2: Address-space consumption rate of various policies,
given the current workload, in bytes per year per machine. We
include both the mean rate, across all times on all machines in
each group, and the 95th percentile rate, across all 5-minute in-
tervals on all machines in each group. The other “fixed”-policy
combinations, not shown, had worse usage than anything shown,
and were not considered further.

Although the acceleration factor a of course has the
most profound effect on address consumption, in the
long term address-space growth should outpace even
a = 2, and in the short term reasonable allocation poli-
cies can keep the consumption rate low enough to last
until the available address-space doubles again to 128
bits.

would accommodate the most aggressive growth trends.

Nevertheless, an intermediate jump to 96 bits

5 Summary

We traced several campus workstation clusters to gain
an understanding of the current rate of address-space
consumption, and the behavior of several likely policies
under the current workload. Most of the current usage
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Growth rates; m=100, a=1, various r
256 T T T

Available address bits
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Address bits needed/available
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Year (y = Year - 1994)

Figure 4: Comparison of available address bits with the con-
sumption of address space for a variety of current rates, r, assum-
ing no acceleration (¢ = 1) and m = 100. The available address
bits grow in increments of 1, 32, or 64 bits.

Growth rates; m=100, a=1.6, various r
256 T T T

Available address bits
128

Address bits needed/available

32 1 1 1 1 1

2000 2010 2030 2040

2020
Year (y = Year - 1994)

Figure 5: Comparison of available address bits with the con-
sumption of address space for a variety of current rates, r, but
with an acceleration factor of ¢ = 1.6. m = 100.

is from private-data and stack segments, with files using
more than an order of magnitude less space, and shared
data an essentially negligible amount. Fortunately, we
found realizable allocation policies (“chunked” file allo-
cation and “fixed, re-use” process allocation) that al-
lowed re-use of the private-data and stack segments,
leading to yearly consumption rates of 10 to 100 giga-
bytes per machine per year. Because of their simplicity,
and low overhead, we recommend these policies.

Using an extrapolation model that assumed an ex-
ponential acceleration of the usage rate, linear growth
in the number of machines involved, and linear growth



Growth rates; m=100, r=1e11, various a
256 T T T

Available address bits | :
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Figure 6: Comparison of available address bits with the con-
sumption of address space for a variety of acceleration factors, a.
Other parameters were 7 = 10'! and m = 100.

in the number of virtual-address bits, we show that
a single-address-space system would not outgrow the
available address space. However, to accomplish this
feat, any single-address-space system must re-use the
private-data segments of processes, limit file-segment
fragmentation, and adapt gracefully to larger addresses
(e.g., 96 or 128 bits) as they become available. We em-
phasize that our results necessarily depend on specula-
tion about trends in technology and user behavior, and
may or may not apply to workloads different from the
typical office-workstation environment.
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