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Abstract

Trends toward shared�memory programming paradigms�

large ����bit� address spaces� and memory�mapped �les have

led some to propose the use of a single virtual�address space�

shared by all processes and processors� Typical proposals re�

quire the single address space to contain all process�private

data� shared data� and stored �les� To simplify management

of an address space where stale pointers make it di�cult to

re�use addresses� some have claimed that a ���bit address

space is su�ciently large that there is no need to ever re�use

addresses� Unfortunately� there has been no data to either

support or refute these claims� or to aid in the design of ap�

propriate address�space management policies� In this paper�

we present the results of extensive kernel�level tracing of the

workstations in our department� and discuss the implications

for single�address�space operating systems� We found that

single�address�space systems will not outgrow the available

address space� but only if reasonable space�allocation poli�

cies are used� and only if the system can adapt as larger

address spaces become available�

� Introduction

Operating systems are evolving under the in�uence of

many architectural trends� One is the collection of
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many processors into a distributed or parallel system�

Another is the use of a shared�memory programming

model� even when the physical memory is distributed�

Another is the growing size of physical memories �due

to denser RAM chips� and of virtual memories �with

the advent of ���bit CPUs like the MIPS R���� 	
��

the HP PA�RISC 	��� and the DEC ALPHA 	
���� Fi�

nally� main memory and secondary storage are increas�

ingly uni�ed through the use of virtual memory and

�memory�mapped� �les�

These trends make it possible to reconsider some of

the basic assumptions in operating system design� Most

current operating systems provide a separate address

space for each process� which makes protection rather

easy but makes sharing memory rather awkward� Many

researchers propose to unify the memory hierarchy of

several machines and disk systems into a single� ��at�

virtual�address space 	�� �� �� 
��� �These systems are

often called �single�address�space� systems�� This uni�

�cation makes it easier to share data structures between
processes� even when the data may contain pointers or

be physically located on di�erent machines or disk sys�

tems� It also makes it easier to build persistent pointer�

based data structures� avoiding the cost of translating

to and from linear representations� Finally� it may im�

prove performance by avoiding message�packaging over�

head and some kernel traps�

One of the most convenient aspects of a single ad�

dress space� the universality of pointers� also makes

management of the address space especially di�cult�

Stale pointers� stored in persistent data structures�

make re�use of the address range of a deleted object

highly undesirable� Some claim that a ���bit address
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space is so large that re�use would never be necessary 	���

These claims are not based on any real data� and have

thus been the subject of much debate� In particular�

back�of�the�envelope calculations often ignore fragmen�

tation losses or growth in the rate of address�space con�

sumption over the years� In this paper we provide the

necessary data and analyze the prospects for single�

address�space operating systems� We found that single�

address�space systems will not outgrow the available ad�

dress space� but only if reasonable space�allocation poli�

cies are used� and only if the system can adapt as larger

address spaces become available�

In the next section we examine some of the previ�

ous work in single�address�space operating systems� fo�

cusing on their assumptions of address�space usage� In

Section �� we discuss our trace collection and the anal�

ysis of current usage patterns� In Section �� we show

how we used this data to predict the lifetime of single�

address�space operating systems� Finally� in Section 
�

we summarize�

� Background

There are many advantages and disadvantages of an

operating system with a single common address space�

which are summarized by Mullender 	�� pages ��
�����

and by Chase et al 	���

The MONADS�PC project 	
�� 

� was one of

the �rst systems to place all storage �all processes and

all �les� in a single� distributed� virtual�address space�

They use custom hardware that partitions the bits of

an address into two �elds� a ���bit address space num�

ber and a ���bit o�set� The address space numbers

are never re�used� A newer version of the system� the

MONADS�MM 	��� uses 
���bit addresses� extending

the address�space numbers to �� bits and the o�sets to

�� bits�
Hemlock 	�� proposes a single ���bit address space�

Files are mapped into contiguous regions in the address

space� requiring them to allocate a large address range

�� GB� for each �le to leave room for potential expan�

sion� This fragmentation may limit the e�ective size of

their ����bit� address space� Another characteristic of

their model is that they �reserve a ���bit portion of the

���bit virtual address space for private code and data��

This exception from the otherwise single address space

simpli�es some relocation issues and provides a limited

form of re�use� Hemlock dynamically links code at run

time to allow for di�erent instances of global data�

Opal 	�� uses other techniques to avoid Hemlock�s

�private� ���bit subspace and dynamic linking� For ex�

ample� all global variables are referenced as an o�set

from a base register� allowing separate storage for each

instance of the program� They concede that conserving

and re�using address space is probably necessary�

In contrast� Bartoli et al� believe that �if ten ma�

chines create objects at a rate of ten gigabytes a minute�

the 	���bit� address space will last ��� years� 	��� Using

their numbers� a collection of ��� machines would only

last 

 years� and larger collections would likely be out

of the question�

Patterson and Hennessy claim that memory require�

ments for a typical program have grown by a factor of


�
 to � every year� consuming 
���
 address bits per

year 	�� page 
��� At this rate� an expansion from ��

bits to �� bits would only last ����� years� and a single�

address�space operating system would run out sooner�

It is clear that there is not any real understanding of

the rate of address space consumption� and that some

data is needed� This problem was the motivation for

our work�

� Current usage

To provide a basis for our analysis of single�address�

space systems� we �rst measured address space usage in

current operating systems� Our goals were to determine

the rate that address space was used in our current oper�

ating systems� and to collect traces to use in trace�driven

simulations of future address�management policies� For

two servers and two workstation clusters on campus� we

traced the events that may consume address space in a

single�address�space system� In particular� we recorded

creations� expansions� and deletions of each process�s

data and stack segments� all �les� and all shared�data

segments�

The data we collected di�ers from most previous

studies in that it measures virtual rather than physi�

cal resources� We did not take into account the text�
segment size� assuming that it would allocated at com�

pile time�� Table 
 summarizes the traces we collected�

�With dynamic linking� as in Hemlock� the addresses allocated

for the text segment could likely be re�used�
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Table 
� Summary of the traces collected� Server � was used
as a general�purpose Unix compute server by many people on
campus� Server � was the primary �le� mail� and ftp server in

our computer science department� Cluster � includes general�use
workstations in the computer science department� most located

in faculty o�ces� Cluster � contains workstations used primar�
ily by a compute�intensive signal�processing research group� All

workstations are DECstation ����s running Ultrix 	�
� A small
fraction of records were lost in the collection process �see Sec�

tion 
�� for details��

��� Methods

To collect this data� we modi�ed the DEC Ultrix ���

kernel� to generate a trace record for all relevant activ�

ities� Our method was modeled after the Ultrix error�
logging facility� The kernel stored trace records in an

internal �� KB bu�er� which was accessible through a

new device driver that provided a �le�like interface to

the bu�er� A user�level trace daemon opened the de�

vice� and issued large read requests� When the internal

bu�er contained su�cient data �

 KB�� the kernel trig�

gered the device driver� which then copied the data to

the trace daemon�s bu�er� and woke the trace daemon�

The kernel bu�er was then available for new data� while

the trace daemon wrote its bu�er to a trace �le� The
activity of the trace daemon� and thus of the trace �les�

�DEC and Ultrix are trademarks of Digital Equipment Corpo�
ration� Ultrix 	�
 is a variant of Unix 	��BSD� Unix is a trademark

of X
Open�

was explicitly excluded from the trace by the kernel�

This bu�ering strategy decoupled trace generation from

disk writes so that no activity was ever signi�cantly de�

layed to write trace records to disk� and so that the over�

head was amortized across large groups of trace records�

While it is not a new technique� we highly recommend

this mechanism for other trace�collection e�orts�

To measure the performance overhead of our tracing

activity� we ran �
 trials of the Andrew benchmark 	
��

on the standard Ultrix ��� kernel and on our instru�
mented kernel� The Andrew benchmark exercises both
�les and processes� by creating� searching� and deleting

�les� and compiling programs� We discarded the �rst

trial in each case� due to a cold �le cache� An unpaired

t�test showed the di�erence to be insigni�cant at the

��� con�dence level� implying that our tracing appar�

ently had no signi�cant e�ect on performance� This

matches our qualitative experience �no users perceived

any di�erence��

After collection� the raw trace �les were post�

processed to clean up the data� In particular� the raw

trace �les were missing a small percentage of the trace

records� This was caused by the trace bu�er occasion�

ally �lling up before the trace daemon could read it�

or� in one case� the trace disk running out of space� In

most cases� the e�ect of the missing records was simu�

lated� the data being inferred from subsequent events�

For example� a missing process�fork record was inferred

from a subsequent process�exec or process�exit record�

Fortunately� fewer than two percent of the records were

missing from any trace group� indicating that the ef�

fect on the usage rates should be quite small� perhaps

underestimating usage by 
����

��� Results

In Figure 
� we show the raw amount of address space

�in units of � KB pages� allocated over time� for each

of the four trace groups de�ned in Table 
� This �gure

is based on a running sum of the size of private�data

segments� stack segments� shared�data segments� and

�le creations or extensions� Clearly� most of the usage

was from data segments� with stack segments second�

Shared data was rarely used on our systems� Daily and

weekly rhythms are clearly visible� Server 
� heavily

used for timesharing� used four times as much space

in one third the time� Cluster �� used by a signal�

processing research group� occasionally saw large bursts
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Figure 
� Cumulative address�space usage for all workstations in each trace group� separated by category of memory usage� Curves

for Cluster � and Cluster � are scaled down by the number of machines in each cluster� for easier comparison� Shared Memory is
indistinguishable from zero� x�axis tic�marks represent midnight before the given day of the week�

of activity caused by applications with large data seg�

ments�

To discover the nature of the signi�cant address�

space users� we compiled a list of all programs by

address�space allocated� Most of the big users were

not huge user applications� but instead common pro�

grams like the shells sh and csh� which were run of�

ten for scripts� the gzip compression program� which

was run by nightly space�saving scripts� pieces of the C

compiler� and periodic background processes� Only two

programs in the top �� �a signal�processing application

and an image�processing application� were user�written

applications� all of the others were common applications

used by many users� Only one could be called a large

application �
�MB of address space consumed per in�

stance�� This data makes it clear that policies which

statically allocate �and never re�use� a large region to

every process would waste a lot of virtual�address space

on many small but common applications�

� Single�address�space systems

To be able to predict the lifetime of single�address�space

systems� we had to consider more than just the current

usage rate� First� we considered some space�allocation

policies that might be used in a single�address�space sys�

tem� to account for the costs of fragmentation in the us�

age rate� Then we considered appropriate methods to

extrapolate the current usage rate into the future� We

begin by describing our methods�
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��� Methods

����� Allocation policies

Clearly� systems that manage a single virtual�address

space by allocating virtual addresses to processes and

�les without ever reclaiming the addresses for re�use

will eventually run out of the �nite address space� Al�

location policies with signi�cant fragmentation would

shorten the expected lifetime� and allocation policies

that allow some re�use would extend the expected life�

time� We used trace�driven simulations to measure the
net rate of address�space usage under a variety of likely

allocation policies� Each trace event allocates or extends

a region of virtual�address space� in units of � KB pages�

called a segment�� We were concerned with the internal

fragmentation caused by allocating too many pages to

a segment� and the external fragmentation caused by

holes left from freed segments� but ignored the small in�

ternal fragmentation in the last � KB page of a segment�

Base allocation� For each processor in the dis�

tributed system� we allocated a conservative ���bit

�� GB� subspace to the kernel and its data structures��

We also allocate � GB for every machine�s initial col�

lection of �les� as a conservative estimate of what each

new machine would bring to the address space� Note

that this � GB was counted only once per machine�

Process allocation� Processes allocated four types

of virtual�memory segments� text �code�� shared data�

private data �heap�� and the stack� We assumed that

the text segment did not require the allocation of new

virtual memory� since it was either allocated at compile

time or was able to be re�used� A shared�data segment

could never be re�used� because pointers into a shared

data segment may have been stored in a private data

segment elsewhere� We also assumed that shared�data

segments were not extendible��

�We assume a �at �not segmented� address space� We use the
word �segment�� in the tradition of names like �text segment�

and �stack segment�� to mean a logical chunk of virtual address
space�

�The alternative was to use the same 
��bit �private� subspace
for all processors� This alternative� however� neither �ts the gen�
eral ideal of one common address space� nor allows kernels to

access the kernel data structures of other processors �which may
be considered useful by some designers��

�The actual policy choice made essentially no di�erence in our
simulations� because our trace data contained only a tiny amount

of shared data�

Private�data and stack segments have traditionally

been extendible �to a limit�� and thus an allocation pol�

icy in a single�address�space system may need to allo�

cate more than the initial request to account for growth�

Overestimates lead to fragmentation losses �memory al�

located but never used�� We examined several alter�

native policies� composed from two orthogonal charac�

teristics� The �rst characteristic contrasted exact�size
allocation� where each segment was allocated exactly

the maximum number of pages used by that segment

in the trace� and �xed�size allocation� where each pro�

cess was allocated a �� MB data segment and a � MB

stack segment� �Although the exact policy is unimple�

mentable� it was useful for comparison purposes�� The

second characteristic contrasted no re�use� where no

segment was ever re�used� with re�use� where all freed

private�data and stack segments were re�used for other

private�data or stack segments� Note that� of the four

possible combinations� the two re�use policies are sim�

ilar� in that neither cause any space to be lost from

external or internal fragmentation over the long term�

�Note that the ���bit subspace of 	�� is also similar to

the �xed re�use policy�� Thus� we measured only re�

use� exact no�reuse� and �xed no�reuse�

File allocation� A �le is traditionally an extendible

array of bytes� Newly created �les can grow from an

initial size of zero� so in a single�address�space system�

a new �le must be allocated space with room to grow�

These ��le segments� can never be re�used or moved�

because a pointer into a deleted �le�s segment may be

stored in another �le� or because the �le may be restored

from a backup tape� With this limitation in mind� we

considered several policies �note that a library� such as

stdio� could provide a conventional read�write �le ab�

straction on top of any of these �le�system policies���

exact� Each �le was allocated exactly as much space

as its own lifetime�maximum size �in pages�� This

unrealistic policy was useful for comparison�

�xed� A �xed � GB segment was allocated for each �le

when it was created� Any extraneous space was

never recovered�

chunked� Growing �les were allocated virtual�address

space in chunks� beginning with a one�page chunk

for a new �le� Once the latest chunk was full� a
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new chunk of twice the size was allocated� contigu�

ous to the previous chunk if possible� When the �le

was closed� any unused pages at the end of the last

chunk were reserved for future growth� This reser�

vation strategy limited the number of chunks� and

hence the amount of metadata needed to represent

a �le� by doubling the size of each chunk as the �le

grew� but did cause some fragmentation�

����� Extrapolating to the future

Any attempt to extrapolate computing trends by more

than a few years is naturally speculative� Previous

speculations have been crude at best� most of the

back�of�the�envelope calculations in Section � extrap�

olate address�space usage by assuming that the yearly

address�consumption rate remains constant� A constant

rate seems unlikely� given improving technology� the in�

creasing sophistication of software� the increasing usage

of computers� and the increasing number of computers�

A simple linear extrapolation based on the current usage

rate would overestimate the lifetime of single�address�

space systems�

On the other hand� it is not clear that we could ex�

trapolate based on the assumption that usage increases

directly in proportion to the technology� We found that

the address�space usage was not correlated with CPU

usage �correlation coe�cient �������� so a doubling of

CPU speed would not imply a doubling of address con�

sumption on a per�process basis� Instead� acceleration

in the rate of address�space consumption is likely to de�

pend signi�cantly on changing user habits �for example�

the advent of multimedia applications may encourage

larger processes and larger �les�� This phenomenon was

also noticed in a recent study of �le�system throughput

requirements 	
�� �The net result is an increase in com�

puting power per user by a factor of ��� to 
��� but

the throughput requirements only increased by about a

factor of �� to ��� ��� Users seem to have used their ad�
ditional computing resources to decrease the response

time to access data more than they have used it to in�

crease the overall amount of data that they use�� These

uncertainties make it impossible to extrapolate with ac�

curacy� but we can nevertheless examine a range of sim�

ple acceleration models that bound the likely possibili�

ties�

Disks have been doubling in capacity every three

years� and DRAMs have been quadrupling in capacity

every three years� while per�process �physical� mem�

ory usage doubles about every one to two years 	��

pages 
��
��� It seems reasonable to expect the rate

of address�space consumption to grow exponentially as

well� though perhaps not as quickly� If r is the current

rate of address�space consumption �in bytes per year

per machine�� a is the acceleration factor per year �e�g��

a � � implies doubling the rate every year�� and n is

the number of machines� then the number of bytes con�

sumed in year y is

u�y� � nray �
�

and the total address�space usage after y years is

T �y� �

yX
i��

u�i� ���

� nr

yX
i��

ai ���

�

�
nr ay����

a�� if a �� 


nry if a � 

���

Note that a � 
 models linear growth� and that a �

� models an exponential growth exceeding even the

growth rate of disk capacity �a � 
���� or DRAM ca�

pacity �a � 
�
��� We extend this model by adding in

a k�byte allocation for each machine�s kernel and initial

�le set �which grows with n� but not with y� as we de�

scribe above in Section ��
�
�� We can further extend

this model by assuming that the number of machines�

n� is not constant but rather a function of y� Here� a lin�

ear function seems reasonable� For simplicity we choose

n�y� � my� i�e�� there are m machines added each year�

u�y� � n�y�ray �
�

T �y� � kmy �

yX
i��

u�i� ���

� kmy �mr

yX
i��

iai ���

�

�
kmy �mr

yay����y��	ay���a

�a��	� a �� 


kmy �mr
y�y��	

� a � 

���

In the next section we compare equation � to the

available address space� It is reasonable to assume that

the size of the address space will also increase with time�
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CPUs� and three curves �t to the data� The points represent the
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Siewiorek et al noticed that available virtual address
space has grown by about one bit per year 	
��� but their

conclusions are based on old data� In Figure �� we plot

the virtual�address�bit count of microprocessor chips

against the �rst year of introduction� for those chips

that set a new maximum virtual address space among

commercial� general�purpose microprocessors� We also

plot three possible growth curves� the original from 	
��

�one bit per year�� a linear regression �t ������ bits per

year� with correlation coe�cient �������� and a linear

regression �t to the logarithm of the address bit count

�leading to a doubling in address bits every eight years�

correlation coe�cient �����
�� The best �t is the linear

growth�

address bits�year� � ������ �year� 
����� �����

Address bits generally become available in increments�

every few years� rather than continuously� So� for incre�

ments of b bits� we use

available address bits�year� � b� b
address bits�year�

b
c�

��� Results

����� Allocation policies

Figure � shows the cumulative address space consumed

by hypothetical single�address�space operating systems

operating under each of the policies described above �ex�

cept the ��xed� policies� which used orders of magni�

tude more space� and hence are not shown�� for each

tracing group� Clearly� those that re�use data seg�

ments consume address space much more slowly� Also�

the �chunked� �le policy is remarkably close to the

�unattainable� �exact� �le policy�

To understand the burstiness of address�space us�

age� we computed each policy�s usage for each �ve�

minute interval on each machine� In the clusters� idle

intervals dominate the distributions� with ������ of

intervals consuming at most one page under the re�

use policies� Based on these results� we estimate the

yearly rate of address�space consumption for each pol�

icy� given the current workload� Table � shows two rates

for each tracing group� and for each policy� the �rst is

the mean consumption rate �representing the situation

where some machines are idle some of the time� as they

were in our trace�� and the second is the �
th percentile

consumption rate �representing the situation where all

machines are heavily used�� based on the busiest �ve�

minute intervals� The table makes it clear that both the
��xed� process policy and the ��xed� �le policy were�

as expected� consuming space extremely fast� The ta�

ble shows that re�using private�data and stack segments

cut about one to one and a half orders of magnitude o�

the consumption rate� and that there was little di�er�

ence between the �exact� and �chunked� �le policies�

Also� the �
th percentile rate was about one�half order

of magnitude larger than the mean rate� and Server 


was about an order of magnitude larger than the other

machines� due to its heavy multi�user load�

����� Extrapolating to the future

We can compare the growth of available address space

with the consumption of a single�address�space system

that began in 
���� by choosing reasonable values for

the parameters� For the acceleration a� we chose 
�


�
� 
��� 
��� �� and �� i�e�� ranging from linear growth

�a � 
� to tripling the rate every year �a � ��� Given

that DRAM capacity grows at a � 
�
�� we suspect that


�� is the highest realistic a� We chose m � 
��� as the

growth rate for the machine population� although we

found that there was little di�erence when varying m

from 
 to 
����� From Table �� we selected a range of

representative rates r �in bytes�year�machine�� as fol�

lows�


��
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Figure �� Cumulative address space consumed under di�erent management policies� for each tracing group� over the interval traced�

Curves for Cluster � and Cluster � are scaled down by the number of machines in each cluster� for easier comparison� x�axis tic�marks
represent midnight before the given day of the week� The ��xed� �le and process policies were so much worse that they are not shown

�see Table ���

r Cluster roughly representing

��
 all ��xed� �le policy

��� all ��xed� process policy

��� Server 
 �exact� no re�use� process policy

��� others �exact� no re�use� process policy

��� Server 
 �re�use� process policy

��� others �re�use� process policy

Note that these rates are dependent on the nature

of our workload�workstations in a computer science

department� We speculate that the rate of a di�er�

ent workload� such as scienti�c computing or object�

oriented databases� may di�er by perhaps ��� orders

of magnitude� and have a similar growth rate� If so�

our conclusions would be qualitatively similar for these

other workloads�

Figures ��� display the models� using a logarithmic

scale to compare address bits rather than address�space

size� Note that we plot the available address space as

growing in increments of 
� ��� or �� bits �see ��
����

Figure � examines the simple case of a � 
� where

the yearly consumption remains constant at current lev�

els� We see that a ���bit address space is su�cient �that

is� the �address bits needed� curve remains below the

�address bits available� curve� only if the ��xed� poli�

cies were avoided� or if a ���bit address space were avail�

able soon� If the current consumption rate� r� acceler�

ated especially fast �Figures 
���� the re�use policies

were de�nitely necessary�


��



Process File bytes�year�machine
Policy Policy Mean �	th 
ile

exact chunked S
 ����
��� 
���
���

no re�use S� 
���
��� 
���
���

C
 ��
�
��� 
���
���

C� ����
��� ����
���

exact exact S
 ��
�
��� 
���
���

no re�use S� 
���
��� 
���
���

C
 ����
��� 
���
���

C� ����
��� ����
���

reuse chunked S
 ����
��� 
�
�
���

S� ����
��� 
�
�
���

C
 
���
��� 
���
���

C� 
���
��� ����
���

reuse exact S
 ����
��� ����
���

S� ����
��� ��
�
���

C
 
�
�
��� ����
���

C� ��
�
��� ����
���

reuse �xed S
 ����
��
 
���
���

S� ����
��� 
���
��


C
 
�
�
��� 
���
���

C� ����
��� ��
�
���

�xed exact S
 
���
��� ����
���

no re�use S� 
�
�
��� ��
�
���

C
 ��
�
��� 
�
�
���

C� 
���
��� 
�
�
���

Table �� Address�space consumption rate of various policies�
given the current workload� in bytes per year per machine� We

include both the mean rate� across all times on all machines in
each group� and the ��th percentile rate� across all ��minute in�

tervals on all machines in each group� The other ��xed��policy
combinations� not shown� had worse usage than anything shown�

and were not considered further�

Although the acceleration factor a of course has the

most profound e�ect on address consumption� in the

long term address�space growth should outpace even

a � �� and in the short term reasonable allocation poli�

cies can keep the consumption rate low enough to last

until the available address�space doubles again to 
��

bits� Nevertheless� an intermediate jump to �� bits

would accommodate the most aggressive growth trends�

� Summary

We traced several campus workstation clusters to gain

an understanding of the current rate of address�space

consumption� and the behavior of several likely policies

under the current workload� Most of the current usage
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Figure �� Comparison of available address bits with the con�

sumption of address space for a variety of current rates� r� assum�
ing no acceleration �a � �� and m � ���� The available address
bits grow in increments of �� 
�� or �	 bits�
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Figure 
� Comparison of available address bits with the con�

sumption of address space for a variety of current rates� r� but
with an acceleration factor of a � ���� m � ����

is from private�data and stack segments� with �les using

more than an order of magnitude less space� and shared

data an essentially negligible amount� Fortunately� we

found realizable allocation policies ��chunked� �le allo�

cation and ��xed� re�use� process allocation� that al�

lowed re�use of the private�data and stack segments�

leading to yearly consumption rates of 
� to 
�� giga�

bytes per machine per year� Because of their simplicity�

and low overhead� we recommend these policies�

Using an extrapolation model that assumed an ex�

ponential acceleration of the usage rate� linear growth

in the number of machines involved� and linear growth
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Figure �� Comparison of available address bits with the con�

sumption of address space for a variety of acceleration factors� a�
Other parameters were r � ���� and m � ����

in the number of virtual�address bits� we show that

a single�address�space system would not outgrow the

available address space� However� to accomplish this

feat� any single�address�space system must re�use the

private�data segments of processes� limit �le�segment

fragmentation� and adapt gracefully to larger addresses

�e�g�� �� or 
�� bits� as they become available� We em�

phasize that our results necessarily depend on specula�

tion about trends in technology and user behavior� and

may or may not apply to workloads di�erent from the

typical o�ce�workstation environment�
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