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Abstract

Scientific applications are increasingly being implemented on massively parallel supercom-
puters. Many of these applications have intense I/O demands, as well as massive computational
requirements. This paper is essentially an annotated bibliography of papers and other sources
of information about scientific applications using parallel T/O. It will be updated periodically.

1 Introduction

Scientific applications are increasingly being implemented on massively parallel supercomputers.
Many of these applications have intense 1/O demands, as well as massive computational require-
ments.

In this paper, I list and describe many papers and web pages that describe scientific applications
that use parallel 1/O. While I do not go into depth about the characteristics of each application,
I hope that this paper helps researchers and application programmers to locate information that
will help them to better understand the issues behind parallel 1/0. See [Kot96] for a complete
bibliography of parallel 1/0.
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I intend to update this technical report periodically; check its web page for updated versions.!

At that page you can also find a link to an on-line copy of this bibliography, with links to many of
the cited papers.

Please feel free to send me additional references that you may find.

2 Papers about specific applications

These papers discuss specific applications, from the scientific point of view, but discuss their use
of parallel I/O at some point. I do not include papers about scientific kernels (LU factorization,

matrix multiplication, sorting, FFT, and so forth).

e [HLDS95] They discuss a weather code that runs on the CM-5. The code writes a history
file, dumping some data every timestep, and periodically a restart file. They found that CM-5
Fortran met their needs, although required huge buffers to get much scalability. They want to
see a single, shared file-system image from all processors, have the file format be independent
of processor count, use portable conventional interface, and have throughput scale with the

number of computation processors.

o [JKHO5] This paper is about a weather code. There’s a bit about the parallel I/O issues.
They periodically write a restart file, and they write out several types of data files. They
write out the data in any order, with a little mini-header in each chunk that describes the

chunk. I/O was not a significant percentage of their run time on either the CM5 or C90.
¢ [RHH95] weather simulation code

e [RW93, Rya91] A paper, and corresponding 1/O-template code, about aircraft simulation
and computational fluid dynamics (Navier-Stokes flowfields). They describe their
parallel implementation of the ARC3D code on the iPSC/860. A section of the paper considers
I/0, which is to write out a large multidimensional matrix at each timestep. They found that
it was actually faster to write to separate files because of congestion in the I/O nodes was
hurting performance. They never got more than 2 MB/s, even so, on a system that should
obtain 7-10 MB/s peak. The sample code tries to behave like a parallel ARC3D in terms of

its output. It writes two files, one containing three three-dimensional matrices X, Y, and 7,

"http://www.cs.dartmouth. edu/reports/abstracts/TR96-297 . html.



and the other containing the four-dimensional matrix Q. The matrices are spread over all the

nodes, and each file is written in parallel by the processors.

[CSWM95] They “discuss data production rates and their impact on the performance of scien-
tific applications using parallel computers.” They “present performance data for a biomolec-
ular simulation of the enzyme, acetylcholinesterase, which uses the parallel molecular dy-
namics program FulerGROMOS. The actual production rates are compared against a typical
time frame for results analysis where we show that the rate limiting step is the simulation,

and that to overcome this will require improved output rates.”

[FAJLT95] “Remotely sensed imagery has been used for developing and validating various
studies regarding land cover dynamics.” They “develop a parallel version of [their] algorithm
that is scalable in terms of both computation and 1/O. Experimental results obtained show
that a Thematic Mapper (TM) image (36 MB per band, 5 bands need to be corrected) can

be handled in less than 4.3 minutes on a 32-node CM-5 machine, including I/O time.”

[MPP195] They discuss “parallel processing of Synthetic Aperture Radar (SAR)
data...,” which is image data collected by satellite. They “parallelized the most compute-
intensive SAR correlator phase of the Spaceborne Shuttle Imaging Radar-C/X-Band SAR
(SIR-C/X-SAR) code, for the Intel Paragon.” They “describe the data decomposition, the
scalable high-performance 1/O model, and the node-level optimizations which enable us to

obtain efficient processing throughput.”

[OOVW96] This paper is about “imaging of complex, oil-bearing geologies, such as
overthrusts and salt domes.... ... highly accurate techniques involve the solution of the wave
equation and are characterized by large data sets and large computational demands. The
portable code, Salvo, performs a wave-equation-based, 3-D, prestack, depth imaging and
currently runs on the Intel Paragon, the Cray T3D and SGI Challenge series. It uses MPI
for portability, and has sustained 22 Mflops/sec/proc (compiled FORTRAN) on the Intel
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Paragon.” There are two pages about their I/O scheme, mostly regarding a calculation of

the optimal balance between compute nodes and 1/0O nodes to achieve perfect overlap.

[HRW*95] They discuss a climate modeling code, which does some out-of-core work to
communicate data between time steps. They also dump a ’history’ file every simulated day,

and periodic checkpoint files. They are flexible about the layout of the history file, assuming



postprocessing will clean it up. The 1/0 is not too much trouble on the Cray C90, where
they get 350 MBps to the SSD for the out-of-core data. The history I/O is no problem.
On distributed-memory machines with no SSD, out-of-core was impractical and the history
file was only written once per simulated month. “The most significant weakness in the

distributed-memory implementation is the treatment of I/O, [due to] file system maturity....”

e [BC93] A substantial part of this structural-analysis application was involved in I/0, mov-

ing substructures in and out of RAM.

e [Joh84] A paper about three-dimensional wave-equation computations in seismic
modeling. They describe their need for large memory and fast paging and 1/0O in out-of-
core solutions. They used 4-way parallel 1/O. They needed to transfer a 3-d matrix in and
out of memory by rows, columns, and vertical columns. Stored in block-structured form to

improve locality on the disk.

e [Die90] An out-of-core backpropagation application that reads large files, sequentially, on

CM?2 with DataVault.

3 Characterizations of specific applications

These papers are detailed characterizations of the I/O access pattern of one or more parallel appli-

cations.

e [AUBT96] They discuss four application programs from the areas of satellite-data process-

ing and linear algebra. They tune each one of them by restructuring the program.

e [CACR95] A detailed characterization of three applications: electron scattering, terrain
rendering, and quantum chemistry. They look at the volume of data moved, the timing
of I/0, and the periodic nature of I/O. They do a little bit with the access patterns of data
within each file. They found a huge variation in request sizes, amount of I/O, number of
files, and so forth. Their primary conclusion is thus that file systems should be adaptable to

different access patterns, preferably under control of the application.

e [SACRY6] They study two applications (electron scattering and computational fluid
dynamics) over several versions, using Pablo to capture the I/O activity. They thus watch

as application developers improve the applications use of I/O modes and request sizes. Both



applications move through three phases: initialization, computation (with out-of-core I/0O or
checkpointing 1/0), and output. They found it necessary to tune the I/O request sizes to
match the parameters of the I/O system. In the initial versions, the code used small read
and write requests, which were (according to the developers) the "easiest and most natural
implementation for their I/0.” They restructured the I/O to make bigger requests, which
better matched the capabilities of Intel PF'S. They conclude that asynchronous and collective
operations are imperative. They would like to see a file system that can adapt dynamically
to adjust its policies to the apparent access patterns. Automatic request aggregation of some

kind seems like a good idea; of course, that is one feature of a buffer cache.

[Are91] They use a genome-sequence comparison program to study the performance of
Intel CFS. The application reads in a huge file of records, each a genome sequence, and

compares each sequence against a given sequence.

[BW96] They characterize four parallel applications: sort, matrix multiply, seismic migra-
tion, and video server, in terms of their I/O activity. They found results that are consistent
with [KN95], in that they also found lots of small data requests, some large data requests,

significant file sharing and interprocess locality.

[Bel88] They describe a specialized database system for particle physics codes. The pa-
per is valuable for its description of access patterns and subsequent file access requirements.
Particle-in-cell codes iterate over timesteps, updating the position of each particle, and then
the characteristics of each cell in the grid. Particles may move from cell to cell. Each parti-
cle update needs itself and nearby gridcell data. The whole dataset is too big for memory,
and each timestep must be stored on disk for later analysis anyway. Regular file systems
are inadequate: a specialized DBMS is more appropriate. Characteristics are needed by
their application class: multidimensional access (by particle type or by location, i.e., multiple
views of the data), coordination between grid and particle data, coordination between pro-
cessors, coordinated access to meta-data, inverted files, horizontal clustering, large blocking
of data, asynchronous I/0, array data, complicated joins, and prefetching according to user-
prespecified order. Note that many of these things can be provided by a file system, but that
most are hard to come by in typical file systems, if not impossible. Many of these features

are generalizable to other applications.



e [CHKM93] They look at many parallel applications, although there is little mention of 1/0.
They average 1207 Bytes/MFlop. Some of the applications do I/O throughout their run
(2400 Bytes/MFlop avg.), while others only do I/O at the beginning or end (14 Bytes/MFlop
avg). But I/O is bursty, so larger bandwidths are suggested. The applications are parallel
programs running on Intel Delta, nCUBE/1, or nCUBE/2; and are in C, FORTRAN, or both.

o [KGF93, KFG94] They store a sparse, multidimensional radio-astronomy data set as a set
of tagged data values, i.e., as a set of tuples, each with several keys and a data value. They
use a “PLOP” format to partition each dimension into slices, so that each intersection of the
slices forms a bucket. They decide on the splits based on a preliminary statistical survey
of the data. Bucket overflow is handled by chaining. Then, they evaluate various kinds of
queries, i.e., multidimensional range queries, for their performance. In this workload queries

(reads) are much more common than updates (writes).

e [RB90] Using five applications from the Perfect benchmark suite, they studied both im-
plicit (paging) and explicit (file) I/O activity. They found that the paging activity was
relatively small and that sequential access to VM was common. All access to files was se-
quential, though this may be due to the programmer’s belief that the file system is sequential.
Buffered 1/O would help to make transfers bigger and more efficient, but there wasn’t enough

rereferencing to make caching useful.

e [TLGY5] They describe an astrophysics application, which “focuses on the study of the
highly turbulent convective layers of late-type stars, like the sun, in which turbulent mixing
plays a fundamental role in the redistribution of many physical ingredients of the star....” Its
I/0 usage is straightforward: it just writes its matrices every few timesteps. The application
writes whole matrices; the OS sees request sizes that are more a factor of the Chameleon
library than of the application. Most of the 1/0 itself is not implemented in parallel, because
they used UniTree on the SP, and because the Chameleon library sequentializes this kind of
I/O through one node.

e [TGL96a, TGLI96b] They use an astrophysics application, which simulates the gravitational
collapse of self-gravitating gaseous clouds, to compare the file systems of the Intel Paragon

and the IBM SP-2.



e [Wo093] This paper is interesting for its impressive usage of RAIDs and parallel networks to
support scientific visualization. In particular, the proposed Gigawall (a 10-foot by 6-foot
gigapixel-per-second display) is run by 24 SGI processors and 32 9-disk RAIDs, connected to
an MPP of some kind through an ATM switch. They propose 512 GBytes of storage, playable

at 450 MBytes per second, for 19 minutes of animation.

4 Characterizations of the workload

These papers characterize the /O workload of a production parallel computer, but do not discuss
specific applications.
The CHARISMA project? traced the workload of two parallel machines running production

scientific applications, and then characterized the workload in detail.
o [KN94a, KN94b, KN95] Intel iPSC/860 at NASA Ames
e [PEKT94, PEK*95] Thinking Machines CM-5 at NCSA

o [NKP*95, NKP+96] both

5 Other surveys of applications using parallel I/0

There are a few other papers that have an extensive survey of several parallel scientific applications

using parallel 1/0.

e [dC94] A nice summary of grand-challenge and other applications, and their I/O needs.

e [Po094] This paper from the Scalable I/O Initiative describes several applications and their
I/0 needs. They focus on four categories of I/O needs: input, output, checkpoint, and virtual
memory (“out-of-core” scratch space). Not all types are significant in all applications. (Two
groups mention databases and the need to perform computationally complex queries.) Large
input is typically raw data (seismic soundings, astronomical observations, satellite remote
sensing, weather information). Sometimes there are real-time constraints. Output is often
periodic, e.g., the state of the system every few timesteps; typically the volume would increase
along with I/O capacity and bandwidth. Checkpointing is a common request; preferably

allowing application to choose what and when to checkpoint, and definitely including the

Zhttp://www.cs.dartmouth.edu/research/charisma.html.



state of files. Many kinds of out-of-core: 1) temp files between passes (often written and

read sequentially), 2) regular patterns like FIF'T, matrix transpose, solvers, and single-pass

read/compute/write, 3) random access, e.g., to precomputed tables of integrals. Distinct

differences in the ways people choose to divide data into files; sometimes all in one huge file,

sometimes many “small” files (e.g., one per processor, one per timestep, one per region, etc.).

Important: overlap of computation and 1/0, independent access by individual processors.

Not always important: ordering of records read or written by different processors, exposing

the I/O model to the application writer. Units of I/O seem to be either (sub)matrices (1-5

dimensions) or items in a collection of objects (100-10000 bytes each). Data set sizes varied

up to 1 TB; bandwidth needs varied up to 1 GB/s.

[GGLI3] They give a useful overview of the I/O requirements of many applications codes, in

terms of input, output, scratch files, debugging, and checkpointing.

[Mo0095] They briefly describe the I/O requirements for four production oceanography pro-

grams running at Oregon State University. The applications all rely exclusively on array-

oriented, sequential file operations. Persistent files are used for checkpointing and movie

making, while temporary files are used to store out-of-core data.

I have collected a few anecdotes.?

I have collected several example codes.*
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