
Copyright 1994 by the authors

A DAta�Parallel Programming Library for Education �DAPPLE�

David Kotz

Technical Report PCS�TR������
Department of Computer Science

Dartmouth College

Hanover� NH ����������

dfk�cs�dartmouth�edu

November �� �		


Abstract

In the context of our overall goal to bring the concepts of parallel computing into the under�
graduate curriculum� we set out to �nd a parallel�programming language for student use� To
make it accessible to students at all levels� and to be independent of any particular hardware
platform� we chose to design our own language� based on a data�parallel model and on C���
The result� DAPPLE� is a C�� class library designed to provide the illusion of a data�parallel
programming language on conventional hardware and with conventional compilers� DAPPLE
de�nes Vectors and Matrices as basic classes� with all the usual C�� operators overloaded
to provide elementwise arithmetic� In addition� DAPPLE provides typical data�parallel opera�
tions like scans� permutations� and reductions� Finally� DAPPLE provides a parallel if�then�else
statement to restrict the scope of the above operations to partial vectors or matrices�

� Introduction

Parallel computing� having been considered an advanced topic suitable only for graduate students�

is slowly migrating into the undergraduate curriculum �Mil���� We believe parallelism should be

introduced early in the curriculum� before the habits of sequential thinking are ingrained� Indeed�

we are preparing to teach it to freshmen in CS� �JKM���� We use a data�parallel programming

model� whose single thread of control allows students to explore issues in parallel algorithms without

the complexities of asynchrony� deadlock� and communication� �While these are important issues

in parallel computing� we feel that it is best to allow the students to focus on the underlying

parallelism �rst� and to postpone these other issues to a later course�	

We wanted a programming language that allowed students to experiment with parallel com


puting concepts without being distracted by the mechanics of parallel programming� In addition�

This research was supported under grant DUE�������� by the National Science Foundation ILI�LLD program�
A revised version of this report will appear in SIGCSE ����

�



we wanted a parallel programming language that was essentially the same as the language used

by students for their sequential programming �preferably C��	� was available on the computers

they use� was easy to learn by beginners� and was usable by students at all levels in many kinds

of courses� Although many data
parallel languages exist� including C
� Fortran��� NESL �Ble����

and HPF �Lov���� they are di�cult to use� are not similar to C��� or are not easily portable to

student computers�

We found many research projects designing parallel C�� variants� C

 �LRV��� is perhaps the

closest candidate� in that it supports a data
parallel model� but it requires a new compiler and is not

yet available� pC�� �BBG���� can also provide a data
parallel model� using only a preprocessor

and library� but its syntax is a little complicated for beginners� Other data
parallel options like

Presto�� �Kil��� and Compositional C�� �CK��� are also rather complex for beginners� Others�

like Mentat �Gri���� CHARM�� �KK���� and COOL �CGH���� are more task
parallel than data


parallel�

Finding no suitable existing language� we decided to design and implement our own language

as a set of macros and classes that extended C��� The result is DAPPLE� a DAta
Parallel

Programming Library for Education� DAPPLE gains its strength from its simplicity� portability�

and versatility� rather than from performance or ease of implementation on real parallel hardware�

In other words� DAPPLE was optimized for pedagogical use�

In this paper� after a quick review of the data
parallel programming model� we give an overview

of DAPPLE through three programming examples�

� Data�parallel programming

The data
parallel programming model gives the programmer a single thread of control� much as in

sequential programming languages� but allows certain operations to be applied to large collections

of data simultaneously� For example� the sum of two arrays may be assigned to a third array by

using many virtual processors in parallel� each responsible for computing one �scalar	 sum and

storing it in the appropriate element of the result array�

When the condition expression of an if�� statement refers to collections� the expression is

independently evaluated by every virtual processor� Those virtual processors where the condition

is true execute the �then� clause �simultaneously	� and those where the condition is false execute

the �else� clause �simultaneously	� Within each clause� only a subset of the processors are active�

and only active processors participate in operations on collections� In other words� a parallel if��

�



reduces the context of collection operations within each clause� Finally� there are other operations

on entire collections� such as reducing a collection to a scalar by summing all the elements� or

printing the collection�

� DAPPLE programming

DAPPLE adds data
parallel concepts to C�� programming� allowing the programmer to manipu


late collections of data �vectors and matrices	 as described above� To illustrate these concepts and

the language� we present three examples�

��� Pascal�s triangle

Pascal�s triangle is a set of rows� where the �rst row contains one ��� followed by an in�nite number

of ���s� Each entry in the next row is the sum of the entry above it and the entry above and to

the left� Inductively� row i has i non
zero entries� The result �one row per line� not showing the

zeros	 is

�

� �

� � �

� � � �

� � � � �

� � �� �� � �

and so forth� Here is part of a DAPPLE program to compute Pascal�s triangle�

const int N 	 �
 �� we will compute N rows of Pascal�s triangle

intVector arow�N�
 �� N elements
 uninitialized

The second statement de�nes an integer vector called arow� withN elements numbered �� �� � � � � N�

�� �DAPPLE supports new classes intVector� charVector
 floatVector
 doubleVector
 and

booleanVector	�� This vector will soon contain one row of the triangle� but for now the elements

are uninitialized� Vectors may also be initialized when de�ned� to a scalar� an array� another vector�

or a function of the index� For example�

extern int Identity�int i�
 �� defined by DAPPLE
 returns i

const intVector VP�N
 Identity�


�We chose not to use templates because current compilers vary in their ability to support templates	 and because
templates were not su
ciently expressive�

�



de�nes an N 
element integer vector called VP� initialized so that element i has value i� We next

use a parallel
if statement� ifp��� to initialize arow �for comparison� we present the equivalent

sequential code	�

�� DAPPLE �� Sequential equivalent

ifp �VP 		 �� � ��

arow 	 �
 �� arow��� 	 �


cout �� arow �� endl
 �� cout �� arow��� �� endl


� else �� for �int i 	 �
 i � N
 i���

arow 	 �
 �� arow�i� 	 �


The �then� clause executes only for those virtual processors where the condition �VP �� �	 is true�

in this case� only virtual processor �� Thus� it assigns and prints only arow���� This one element

is of course the entire �rst row of Pascal�s triangle� The �else� clause executes for the remaining

virtual processors� To compute and print N � � more rows� we loop�

�� DAPPLE �� Sequential equivalent

for �int i 	 �
 i � N
 i��� � �� for �int i 	 �
 i � N
 i��� �

�� for �int j 	 i
 j � �
 j���

arow �	 shift�arow
 ��
 �� arow�j� �	 arow�j���


ifp �VP �	 i� �� for �int j 	 �
 j � i
 j���

cout �� arow �� endl
 �� cout �� arow�j� �� ��t�


�� cout �� arow�i� �� endl


� �� �

Each time through the loop we compute a new row of the triangle� in parallel� by adding the

current row to itself� shifted one to the right �a zero is shifted in at the left side	�� Then� we print

out the vector� but only elements � through i� i�e�� the non
zero elements of this row�

��� Matrix�matrix multiply

In addition to vectors� DAPPLE supports a set of Matrix classes�� Figure � shows most of a

program to multiply two integer matrices�� Three matrices are de�ned as type intMatrix�r
c��

where integers r and c specify the number of rows and columns� Note that A and B are initialized

from user input using the standard iostream operator ��� overloaded by DAPPLE for matrix �or

vector	 input�

A nested loop computes each element of the result matrix C as an inner product �dot product	

of the appropriate row of A and the appropriate column of B� demonstrating DAPPLE�s capability

�Purists of object�oriented programming note that we chose a functional rather than object�oriented style for most
operations� The functional style makes it easier to compose operations	 e�g�	 B � shift�B��� � B � shift�B����	
than if shift�� modi�ed B� Recommended by the ARM �ES�
	 page ����	 the functional syntax shift�B��� makes
it clear that the operand B is not modi�ed	 while in B�shift��� it is not as clear� Similarly	 we believe that x �

�



�� we�ll multiply a PxQ matrix by a QxR matrix to get a PxR matrix

int P� Q� R�

cin �� P �� Q �� R�

�� we�ll compute C � A � B

intMatrix A�P�Q�� B�Q�R�� C�P�R��

�� load matrices� row	major order� whitespace	separated integers

cin �� A�

cin �� B�

�� loop through the result locations

for �int r � 
� r � P� r���

for �int c � 
� c � R� c���

C
r�
c� � inner�A
r�
��� B
��
c���

cout �� C�

intMatrix D�P�R�� �� D is what C should be

cin �� D�

if �any�C �� D��

cout �� �The answers are different�� �� endl�

else

cout �� �The answers are the same�� �� endl�

Figure �� A matrix
matrix multiplication program in DAPPLE�

�



to work with matrix slices �LRV���� Here� A�r���� is a row slice� representing row r of matrix A�

and B����c� is a column slice� representing column c of matrix B� Slices may be used anywhere

vectors may be used� including on the left
hand side of an assignment operator�

The function inner�v�
 v�� is provided by DAPPLE� but the same operation could also be

expressed as sum�v� � v��� using DAPPLE�s built
in reduction function called sum���

The �nal if�� statement demonstrates a handy reduction� any��� which returns �scalar	 true

if and only if some element of its vector or matrix argument is non
zero� Here� its argument is

the boolean matrix representing the condition �C �	 D�� so any�C �	 D� is true if there is any

position �i� j	 where Cij �� Dij �

��� Quicksort

To demonstrate DAPPLE�s ability to manipulate data within a vector� and in particular its ability

to dynamically narrow context to a subset of the virtual processors� we devised a simple recursive

implementation of quicksort �Figure �	�� The quicksort procedure recursively sorts the active

portion of its vector argument� �Initially� quicksort is called with all processors active�	 It begins

by using the reduction n active�� to �nd the size of the subvector it is to sort� Then� it dispenses

with two special cases� subvectors of size � or � are trivially sorted� and a subvector of size �

may require a swap� �We use reductions min value��
 max value��
 and first��� to compute

the minimum and maximum values and assign them to the appropriate element�	 Otherwise�

we partition and recurse� To partition� it chooses a splitter value �here� the value at the �rst

active processor	� builds a permutation subvector that speci�es the destination of every element in

the repartitioned subvector� and then permutes� It restricts the context to the left partition and

recurses� and then restricts the context to the right partition and recurses�

The quicksort example demonstrates one weakness of DAPPLE� its inability to support nested

data parallelism �Ble���� The two recursive calls to quicksort�	 must be done sequentially� each with

only a small subset of the virtual processors active� Given this model� other sorting algorithms

would be more appropriate� Exploring this issue would be a valuable lesson for students�

sum�A�B�C� is clearer than x � �A�B�C��sum���
�For consistency	 we decided that all overloaded operators would be elementwise operators	 so C�A�B for three

matrices A	 B	 and C does an elementwise multiplication and not a matrix multiplication�
�Of course	 there are better algorithms	 but this serves to demonstrate DAPPLE� Also	 there are more e
cient

ways to program quicksort in DAPPLE �not shown��
�In a classroom setting	 of course	 we ensure the students are familiar with sequential quicksort before exposing

them to parallel quicksort�

�



void quicksort�intVector� X� �� the sort is done in place� ie� X is updated

�

�� check the number of active processors �ie� size of our sublist�

int n � n�active�X�� �� how big is this sublist�

if �n �� �� � �� do nothing

else if �n �� �� � �� possibly swap them

int largest � max�value�X��

int smallest � min�value�X��

ifp �VP �� first�VP��

X � smallest� �� first one get smallest

else

X � largest� �� second one gets largest

� else � �� n �� �

intVector P�N�� �� permutation vector

const intVector ONE�N���� �� constant vector of all �s

int splitter� �� splitter value

int left� middle� right� �� first VP� in each subset

�� pick a splitter� I�ll just use the first value

splitter � first�X��

left � first�index�X�� �� which VP holds the splitter�

�� find the left half� those less than or equal to splitter

�� �except for that first one����

ifp �X �� splitter �� VP �� left� �

�� compute our destination in the result vector

P � left � plus�scan�ONE�� �� i�e�� left� left��� left�����

middle � left � n�active�X�� �� the rest will begin here

�

�� move the splitter into the middle

ifp �VP �� left� �

P � middle� �� route it there later

right � middle � �� �� the rest will begin here

�

�� do the right half� those greater than the splitter

ifp �X � splitter� �

�� compute our destination in the result vector

P � right � plus�scan�ONE�� �� i�e�� right� right��� right�����

�

X � permute�X� P�� �� partition the data

ifp �VP � middle�

quicksort�X�� �� sort the left half

ifp �VP � middle�

quicksort�X�� �� sort the right half

�

�

Figure �� A quicksort function in DAPPLE�

�



� Summary and status

The DAPPLE extensions to C�� are summarized in Table �� We are �ne
tuning the language and

implementation for use in a parallel
computing course later this year �JKM���� DAPPLE should

be useful beyond that course� however� in other courses and in other institutions�

DAPPLE currently runs on DECstation ���� workstations with Ultrix and the g�� compiler�

and we are porting it to other Unix workstations �Sun� SGI� and DEC Alpha	 and to the Macintosh

�using Symantec C��	� DAPPLE is not yet publically available� but the complete package �code�

documentation� tutorial� and examples	 will be available by ftp and WWW before SIGCSE� Watch

the URL http���www�cs�dartmouth�edu�ILI�dapple��

Acknowledgements

Many thanks to all of those who made suggestions about the language or this paper� or helped with

subtle points of C�� technique� including Owen Astrachan� Tom Cormen� Fillia Makedon� Takis

Metaxas� Nils Nieuwejaar� Sam Rebelsky� Scott Silver� and Cli� Stein�

References

�BBG���� Fran	cois Bodin� Peter Beckman� Denis Gannon� Srinivas Narayana� and Shelby X� Yang� Dis�
tributed pC��
 basic ideas for an object parallel language� Scienti�c Programming� ���
� Fall
�����

�Ble��� Guy E� Blelloch� NESL
 a nested data�parallel language� Technical Report CMU�CS��������
Carnegie Mellon University� April �����

�CGH��� Rohit Chandra� Anoop Gupta� and John L� Hennessey� COOL
 an object�based language for
parallel programming� IEEE Computer� ����

������ August �����

�CK��� K� Mani Chandy and Carl Kesselman� Compositional C��
 Compositional parallel program�
ming� Technical Report CS�TR������� California Institute of Technology� �����

�ES��� Margaret A� Ellis and Bjarne Stroustrup� The Annotated C�� Reference Manual� Addison�
Wesley� ����� Ninth printing�

�Gri��� Andrew S� Grimshaw� Easy�to�use object�oriented parallel processing with Mentat� IEEE Com�

puter� ����

������ May �����

�JKM��� Donald Johnson� David Kotz� and Fillia Makedon� Teaching parallel computing to freshmen� In
Conference on Parallel Computing for Undergraduates� Colgate University� June �����

�Kil��� Michael F� Kilian� Parallel Sets� An Object�oriented Methodology for Massively Parallel Pro�

gramming� PhD thesis� Harvard University� �����

�KK��� L�V� Kale and Sanjeev Krishnan� CHARM��
 A portable concurrent object oriented system
based on C��� In Proceedings of the Conference on Object Oriented Programming Systems�

Languages and Applications� �����

�Lov��� David B� Loveman� High Performance Fortran� IEEE Parallel and Distributed Technology�
���

������ February �����

�



Table �� Summary of DAPPLE extensions to C���

Vectors Matrices

Types int� char� �oat� double� boolean same
Initializations �none
� scalar� array� function same

another vector another matrix
Subscripting V
i� M
i�
j�� M
i�
 �� M
 �
j�

Vector products scalar � inner�VA�VB�

matrix � outer�VA�VB�

Elementwise�

Arithmetic operators � 	 � � � same
Relational operators � �� �� �� �� � same
Boolean operators �� �� � same
Assignment operators � �� 	� �� �� �� �� 		 same
Function application apply�function� vector� apply�function� matrix�

Reductions�

sum x � sum�V
� same
are any nonzero� b � any�V
� same
are all nonzero� b � all�V
� same
number of nonzeros n � n nonzeros�V
� same
number active n � n active�V
� same
value of �rst active x � �rst�V
� N�A
index of �rst active n � �rst index�V
� N�A
maximum value x � max value�V
� same
minimum value x � min value�V
� same
index of max n � max index�V
� N�A
index of min n � min index�V
� N�A
Scans� VA � plus scan�VB
� plus scan rows� plus scan cols

VA � max scan�VB
� max scan rows� max scan cols
VA � min scan�VB
� min scan rows� min scan cols
VA � or scan�VB
� or scan rows� or scan cols
VA � and scan�VB
� and scan rows� and scan cols

Moving data� VA � shift�VB� distance
� MA � shift�MB� rows� cols
�
MA � shift rows�MB� distance per row
�
MA � shift cols�MB� distance per column
�

VA � rotate�VB� distance
� MA � rotate�MB� rows� cols
�
MA � rotate rows�MB� distance per row
�
MA � rotate cols�MB� distance per column
�

VA � pack�VB
� N�A
VA � permute�VB� P
� N�A
VA � permute�VB� function
� N�A

Input and output�

input cin �� V� same
output cout �� V� same

cerr �� V� same
Parallel if statement�

ifp�� ��� else ���

�



�LRV��� James R� Larus� Brad Richards� and Guhan Viswanathan� C��
 A large�grain� object�oriented�
data�parallel programming language� Technical Report ������ University of Wisconsin�Madison�
November �����

�Mil��� Russ Miller� The status of parallel processing education� IEEE Computer� pages ������ August
�����

��


