
Appeared in SIGCSE ’95, pages 76-81.  doi:10.1145/199688.199730
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION.
Copyright 1995 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that new copies bear this notice and the full citation on the
first page.  Copyrights for components of this work owned by others
than ACM must be honored.  Abtracting with credit is permitted.  To
copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.  Request
permissions from Publications Dept., ACM Inc., fax +1(212)869-0481,
or <permissions@acm.org>.

A DATA-PARALLEL PROGRAMMING LIBRARY FOR EDUCATION (DAPPLE)

David Kotz

Department of Computer Science
Dartmouth College

Hanover, NH 03755-3510
dfk@cs.dartmouth.edu

Abstract
In the context of our overall goal to bring the concepts of
parallel computing into the undergraduate curriculum, we set
out to find a parallel-programming language for student use.
To make it accessible to students at all levels, and to be in-
dependent of any particular hardware platform, we chose to
design our own language, based on a data-parallel model and
on C++. The result, DAPPLE, is a C++ class library de-
signed to provide the illusion of a data-parallel programming
language on conventional hardware and with conventional
compilers. DAPPLE defines Vectors and Matrices as basic
classes, with all the usual C++ operators overloaded to pro-
vide elementwise arithmetic. In addition, DAPPLE provides
typical data-parallel operations like scans, permutations, and
reductions. Finally, DAPPLE provides a parallel if-then-else
statement to restrict the scope of the above operations to
partial vectors or matrices.

1 INTRODUCTION

Parallel computing, having been considered an advanced
topic suitable only for graduate students, is slowly migrating
into the undergraduate curriculum [Mil94]. We believe par-
allelism should be introduced early in the curriculum, before
the habits of sequential thinking are ingrained. Indeed, we
are preparing to teach it to freshmen in CS2 [JKM94]. We
use a data-parallel programming model, whose single thread
of control allows students to explore issues in parallel algo-
rithms without the complexities of asynchrony, deadlock, and
communication. (While these are important issues in parallel
computing, we feel that it is best to allow the students to fo-
cus on the underlying parallelism first, and to postpone these
other issues to a later course.)

This research was supported under grant DUE-9352796by the National
Science Foundation ILI-LLD program.

We wanted a programming language that allowed students
to experiment with parallel computing concepts without be-
ing distracted by the mechanics of parallel programming. In
addition, we wanted a parallel programming language that
was essentially the same as the language used by students for
their sequential programming (preferably C++), was avail-
able on the computers they use, was easy to learn by begin-
ners, and was usable by students at all levels in many kinds
of courses. Although many data-parallel languages exist,
including C*, Fortran90, NESL [Ble93], and HPF [Lov93],
they are difficult to use, are not similar to C++, or are not
easily portable to student computers.

We found many research projects designing parallel C++
variants. C** [LRV92] is perhaps the closest candidate, in
that it supports a data-parallel model, but it requires a new
compiler and is not yet available. pC++ [BBG�93] can also
provide a data-parallel model, using only a preprocessor and
library, but its syntax is a little complicated for beginners.
Other data-parallel options like Presto++ [Kil92] and Com-
positional C++ [CK92] are also rather complex for begin-
ners. Others, like Mentat [Gri93], CHARM++ [KK93], and
COOL [CGH94], are more task-parallel than data-parallel.

Finding no suitable existing language, we decided to de-
sign and implement our own language as a set of macros and
classes that extended C++. The result is DAPPLE, a DAta-
Parallel Programming Library for Education. DAPPLE gains
its strength from its simplicity, portability, and versatility,
rather than from performance or ease of implementation on
real parallel hardware. In other words, DAPPLE was opti-
mized for pedagogical use.

In this paper, after a quick review of the data-parallel pro-
gramming model, we give an overview of DAPPLE through
three programming examples.

2 DATA-PARALLEL PROGRAMMING

The data-parallel programming model gives the programmer
a single thread of control, much as in sequential programming
languages, but allows certain operations to be applied to large
collections of data simultaneously. For example, the sum of
two arrays may be assigned to a third array by using many



virtual processors in parallel, each responsible for computing
one (scalar) sum and storing it in the appropriate element of
the result array.

When the condition expression of an if() statement
refers to collections, the expression is independently eval-
uated by every virtual processor. Those virtual processors
where the condition is true execute the “then” clause (simul-
taneously), and those where the condition is false execute the
“else” clause (simultaneously). Within each clause, only a
subset of the processors are active, and only active proces-
sors participate in operations on collections. In other words,
a parallel if() reduces the context of collection operations
within each clause. Finally, there are other operations on
entire collections, such as reducing a collection to a scalar by
summing all the elements, or printing the collection.

3 DAPPLE PROGRAMMING

DAPPLE adds data-parallel concepts to C++ programming,
allowing the programmer to manipulate collections of data
(vectors and matrices) as described above. To illustrate these
concepts and the language, we present three examples.

3.1 PASCAL’S TRIANGLE

Pascal’s triangle is a set of rows, where the first row contains
one “1” followed by an infinite number of “0”s. Each entry
in the next row is the sum of the entry above it and the
entry above and to the left. Inductively, row i has i non-zero
entries. The result (one row per line, not showing the zeros)
is

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

and so forth. Figure 1 shows part of a DAPPLE pro-
gram to compute Pascal’s triangle. The second state-
ment defines an integer vector called arow, with N ele-
ments numbered 0� 1� � � � � N � 1. (DAPPLE supports new
classes intVector, charVector, floatVector,
doubleVector, and booleanVector).1 This vector
will soon contain one row of the triangle, but for now the
elements are uninitialized. Vectors may also be initialized
when defined, to a scalar, an array, another vector, or a func-
tion of the index. The third and fourth statements of Figure 1
define an N -element integer vector called VP, initialized so
that element i has value i.

Figure 1 uses a parallel-if statement, ifp(), to initialize
arow (for comparison, it also presents the equivalent se-
quential code). The “then” clause executes only for those

1We chose not to use templates because current compilers vary in their
ability to support templates, and because templates were not sufficiently
expressive.

virtual processors where the condition (VP == 0) is true, in
this case, only virtual processor 0. Thus, it assigns and prints
only arow[0]. This one element is of course the entire first
row of Pascal’s triangle. The “else” clause executes for the
remaining virtual processors.

The for loop of Figure 1 computes and printsN �1 more
rows. Each time through the loop we compute a new row of
the triangle, in parallel, by adding the current row to itself,
shifted one to the right (a zero is shifted in at the left side).2

Then, we print out the vector, but only elements 0 through i,
i.e., the non-zero elements of this row.

3.2 MATRIX-MATRIX MULTIPLY

In addition to vectors, DAPPLE supports a set of Matrix
classes. Figure 2 shows most of a program to multiply
two integer matrices.3 Three matrices are defined as type
intMatrix(r,c), where integers r and c specify the num-
ber of rows and columns. Note that A and B are initialized
from user input using the standard iostream operator >>,
overloaded by DAPPLE for matrix (or vector) input.

A nested loop computes each element of the result ma-
trix C as an inner product (dot product) of the appropriate
row of A and the appropriate column of B, demonstrating
DAPPLE’s capability to work with matrix slices [LRV92].
Here, A[r][_] is a row slice, representing row r of matrix
A, and B[_][c] is a column slice, representing column c of
matrix B. Slices may be used anywhere vectors may be used,
including on the left-hand side of an assignment operator.

The function inner(v1, v2) is provided by DAPPLE,
but the same operation could also be expressed as sum(v1
* v2), using DAPPLE’s built-in reduction function called
sum().

The final if() statement demonstrates a handy reduction,
any(), which returns (scalar) true if and only if some el-
ement of its vector or matrix argument is non-zero. Here,
its argument is the boolean matrix representing the condi-
tion (C != D), so any(C != D) is true if there is any
position �i� j� where Cij �� Dij . Although one might be
tempted to write ifp(C != D) instead, that would have
a different effect: the first message would be printed once
for every virtual processor where Cij �� Dij , and the second
message would be printed once for every virtual processor
where Cij � Dij.

2Purists of object-oriented programming note that we chose a functional
rather than object-oriented style for most operations. The functional style
makes it easier to compose operations, e.g., B = shift(B,1) + B
+ shift(B,-1), than if shift() modified B. Recommended by the
ARM [ES90, page 249], the functional syntax shift(B,1) makes it clear
that the operand B is not modified, while in B.shift(1) it is not as
clear. Similarly, we believe that x = sum(A*B+C) is clearer than x =
(A*B+C).sum().

3Of course, there are better algorithms, but this serves to demonstrate
DAPPLE. For consistency, we decided that all overloaded operators would
be elementwise operators, so C=A*B for three matrices A, B, and C does an
elementwise multiplication and not a matrix multiplication.



const int N = 6; // we compute N rows of the triangle
intVector arow(N); // N elements, uninitialized

extern int Identity(int i); // defined by DAPPLE; returns i
const intVector VP(N, Identity);

// first row // Sequential equivalent
ifp (VP == 0) f //

arow = 1; // arow[0] = 1;
cout << arow << endl; // cout << arow[0] << endl;

g else // for (int i = 1; i < N; i++)
arow = 0; // arow[i] = 0;

// N-1 remaining rows
for (int i = 1; i < N; i++) f // for (int i = 1; i < N; i++) f

// for (int j = i; j > 0; j--)
arow += shift(arow, 1); // arow[j] += arow[j-1];
ifp (VP <= i) // for (int j = 0; j < i; j++)

cout << arow << endl; // cout << arow[j] << ’nt’;
// cout << arow[i] << endl;

g // g

Figure 1: A DAPPLE program to compute Pascal’s triangle.

// we’ll multiply a PxQ matrix by a QxR matrix to get a PxR matrix
int P, Q, R;
cin >> P >> Q >> R;

// we’ll compute C = A * B
intMatrix A(P,Q), B(Q,R), C(P,R);

// load matrices; row-major order, whitespace-separated integers
cin >> A;
cin >> B;

// loop through the result locations
for (int r = 0; r < P; r++)

for (int c = 0; c < R; c++)
C[r][c] = inner(A[r][_], B[_][c]);

cout << C;

intMatrix D(P,R); // D is what C should be
cin >> D;

if (any(C != D))
cout << "The answers are different!" << endl;

else
cout << "The answers are the same." << endl;

Figure 2: A matrix-matrix multiplication program in DAPPLE.



3.3 QUICKSORT

To demonstrate DAPPLE’s ability to manipulate data within
a vector, and in particular its ability to dynamically narrow
context to a subset of the virtual processors, we devised a
simple recursive implementation of quicksort (Figure 3).4

The quicksort procedure recursively sorts the active por-
tion of its vector argument. (Initially, quicksort is called
with all processors active.) It begins by using the reduc-
tion n active() to find the size of the subvector it is to
sort. Then, it dispenses with two special cases: subvectors
of size 0 or 1 are trivially sorted, and a subvector of size 2
may require a swap. (We use reductions min value(),
max value(), and first(), to compute the minimum
and maximum values and assign them to the appropriate el-
ement.) Otherwise, we partition and recurse. To partition,
it chooses a splitter value (here, the value at the first active
processor), builds a permutation subvector that specifies the
destination of every element in the repartitioned subvector,
and then permutes. It restricts the context to the left parti-
tion and recurses, and then restricts the context to the right
partition and recurses.

The quicksort example demonstrates one weakness of
DAPPLE, its inability to support nested data paral-
lelism [Ble93]. The two recursive calls to quicksort() must
be done sequentially, each with only a small subset of the
virtual processors active. Given this model, other sorting
algorithms would be more appropriate. Exploring this issue
would be a valuable lesson for students.

4 SUMMARY AND STATUS

The DAPPLE extensions to C++ are summarized in Table 1.
We are fine-tuning the language and implementation for
use in a parallel-computing course later this year [JKM94].
DAPPLE should be useful beyond that course, however, in
other courses and in other institutions.

DAPPLE currently runs on DECstation 5000 worksta-
tions with Ultrix and the g++ compiler, and we are port-
ing it to other Unix workstations (Sun, SGI, and DEC Al-
pha) and to the Macintosh (using Symantec C++). DAPPLE
is not yet publically available, but the complete package
(code, documentation, tutorial, and examples) will be avail-
able by ftp and WWW before SIGCSE. Watch the URL
http://www.cs.dartmouth.edu/ILI/dapple/.

ACKNOWLEDGEMENTS

Many thanks to all of those who made suggestions about the
language or this paper, or helped with subtle points of C++
technique, including Owen Astrachan, Tom Cormen, Fillia
Makedon, Takis Metaxas, Nils Nieuwejaar, Sam Rebelsky,
Scott Silver, and Cliff Stein.

4In a classroom setting, of course, we ensure the students are familiar
with sequential quicksort before exposing them to parallel quicksort. Also,
there are more efficient ways to program quicksort in DAPPLE (not shown).

References

[BBG�93] François Bodin, Peter Beckman, Denis Gannon,
Srinivas Narayana, and Shelby X. Yang. Dis-
tributed pC++: basic ideas for an object paral-
lel language. Scientific Programming, 2(3), Fall
1993.

[Ble93] Guy E. Blelloch. NESL: a nested data-parallel
language. Technical Report CMU-CS-93-129,
Carnegie Mellon University, April 1993.

[CGH94] Rohit Chandra, Anoop Gupta, and John L. Hen-
nessey. COOL: an object-based language for par-
allel programming. IEEE Computer, 27(8):14–
26, August 1994.

[CK92] K. Mani Chandy and Carl Kesselman. Compo-
sitional C++: Compositional parallel program-
ming. Technical Report CS-TR-92-13, Califor-
nia Institute of Technology, 1992.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The
Annotated C++ Reference Manual. Addison-
Wesley, 1990. Ninth printing.

[Gri93] Andrew S. Grimshaw. Easy-to-use object-
oriented parallel processing with Mentat. IEEE
Computer, 26(5):39–51, May 1993.

[JKM94] Donald Johnson, David Kotz, and Fillia Make-
don. Teaching parallel computing to freshmen.
In Conference on Parallel Computing for Un-
dergraduates. Colgate University, June 1994.

[Kil92] Michael F. Kilian. Parallel Sets: An Object-
oriented Methodology for Massively Parallel
Programming. PhD thesis, Harvard University,
1992.

[KK93] L.V. Kale and Sanjeev Krishnan. CHARM++: A
portable concurrent object oriented system based
on C++. In Proceedings of the Conference on Ob-
ject Oriented Programming Systems, Languages
and Applications, 1993.

[Lov93] David B. Loveman. High Performance For-
tran. IEEE Parallel and Distributed Technology,
1(1):25–42, February 1993.

[LRV92] James R. Larus, Brad Richards,
and Guhan Viswanathan. C**: A large-grain,
object-oriented, data-parallel programming lan-
guage. Technical Report #1126, University of
Wisconsin-Madison, November 1992.

[Mil94] Russ Miller. The status of parallel processing ed-
ucation. IEEE Computer, pages 40–43, August
1994.



void quicksort(intVector& X) // the sort is done in place, ie, X is updated
{

// check the number of active processors (ie, size of our sublist)
int n = n_active(X); // how big is this sublist?
if (n <= 1) ; // do nothing
else if (n == 2) { // possibly swap them

int largest = max_value(X);
int smallest = min_value(X);

ifp (VP == first(VP))
X = smallest; // first one get smallest

else
X = largest; // second one gets largest

} else { // n >= 3
intVector P(N); // permutation vector
const intVector ONE(N,1); // constant vector of all 1s
int splitter; // splitter value
int left, middle, right; // first VP# in each subset

// pick a splitter; I’ll just use the first value
splitter = first(X);
left = first_index(X); // which VP holds the splitter?

// find the left half, those less than or equal to splitter
// (except for that first one)...
ifp (X <= splitter && VP != left) {

// compute our destination in the result vector
P = left + plus_scan(ONE); // i.e., left, left+1, left+2...
middle = left + n_active(X); // the rest will begin here

}

// move the splitter into the middle
ifp (VP == left) {

P = middle; // route it there later
right = middle + 1; // the rest will begin here

}

// do the right half, those greater than the splitter
ifp (X > splitter) {

// compute our destination in the result vector
P = right + plus_scan(ONE); // i.e., right, right+1, right+2...

}

X = permute(X, P); // partition the data
ifp (VP < middle)

quicksort(X); // sort the left half
ifp (VP > middle)

quicksort(X); // sort the right half
}

}

Figure 3: A quicksort function in DAPPLE.



Table 1: Summary of DAPPLE extensions to C++.

Vectors Matrices
Types int, char, float, double, boolean same
Initializations (none), scalar, array, function same

another vector another matrix
Subscripting V[i] M[i][j], M[i][ ], M[ ][j]
Vector products scalar = inner(VA,VB)

matrix = outer(VA,VB)
Elementwise:
Arithmetic operators + - * / % same
Relational operators < <= == != >= > same
Boolean operators && || ! same
Assignment operators = += -= *= /= %= ++ -- same
Function application apply(function, vector) apply(function, matrix)
Reductions:
sum x = sum(V); same
are any nonzero? b = any(V); same
are all nonzero? b = all(V); same
number of nonzeros n = n nonzeros(V); same
number active n = n active(V); same
value of first active x = first(V); N/A
index of first active n = first index(V); N/A
maximum value x = max value(V); same
minimum value x = min value(V); same
index of max n = max index(V); N/A
index of min n = min index(V); N/A
Scans: VA = plus scan(VB); plus scan rows, plus scan cols

VA = max scan(VB); max scan rows, max scan cols
VA = min scan(VB); min scan rows, min scan cols
VA = or scan(VB); or scan rows, or scan cols
VA = and scan(VB); and scan rows, and scan cols

Moving data: VA = shift(VB, distance); MA = shift(MB, rows, cols);
MA = shift rows(MB, distance per row);
MA = shift cols(MB, distance per column);

VA = rotate(VB, distance); MA = rotate(MB, rows, cols);
MA = rotate rows(MB, distance per row);
MA = rotate cols(MB, distance per column);

VA = pack(VB); N/A
VA = permute(VB, P); N/A
VA = permute(VB, function); N/A

Input and output:
input cin >> V; same
output cout << V; same

cerr << V; same
Parallel if statement:
ifp() ... else ...


