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Abstract

We sketch the reasons for the I/O bottleneck in parallel and distributed systems, pointing
out that it can be viewed as a special case of a general bottleneck that arises at all levels of the
memory hierarchy. We argue that because of its severity, the I/O bottleneck deserves systematic
attention at all levels of system design. We then present a survey of the issues raised by the
I/O bottleneck in six key areas of parallel and distributed systems: applications, algorithms,
languages and compilers, run-time libraries, operating systems, and architecture.

1 Introduction

I/O for parallel and distributed computer systems has drawn increasing attention over the past

decade as it has become apparent that I/O performance, rather than CPU performance, may

be the key limiting factor in the performance of future systems. This has led to a growing and

systematic study of the I/O bottleneck in parallel and distributed systems.

The I/O bottleneck arises for three main reasons. First, while the speeds of CPUs have been

increasing dramatically in the past few decades, the speed of I/O devices, being limited by the

speed of mechanical components like disks and arms, has been increasing at a much slower rate.

For example, while CPU speeds have been increasing at 50-100% per year, magnetic disk access

time has decreased by only about one third in ten years [PH90], and these trends are likely to

remain qualitatively unchanged. Second, in parallel and distributed systems multiple CPUs are

An earlier version of this text appeared as Chapter 1 in I/O in Parallel and Distributed Systems, Kluwer Academic
Publishers, 1996.
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employed simultaneously, thus exacerbating this speed mismatch. Finally, new application domains,

such as multimedia, visualization, and Grand Challenge problems, are creating ever-increasing I/O

demands. Gibson [Gib92] provides a historical review of the I/O bottleneck, as well as a discussion

of the underlying technology trends.

While the I/O bottleneck remains a central concern for specialized application domains char-

acterized by highly I/O-intensive programs, since the late 1980s the concern has spread to general-

purpose supercomputers as well as lower-end machines [SHH90, Gib92, MK91, Cat92]. The in-

creasing concern is linked to the increasing importance of I/O to overall system performance, due

to the technological trends we discuss above. Indeed, some have argued that the performance of

a supercomputer system should be measured in terms of its data-transfer rates, both within the

system and across a network, instead of the peak floating-point computation rate [SHH90, Jor92].

It is also important to note that, to varying degrees, the I/O bottleneck exists at multiple

levels of the memory hierarchy. While most work on the impact of I/O on system performance

has focused on the widening gap between CPU and disk speeds, recently there has been renewed

interest in the speed increase mismatch at other levels of the memory hierarchy.

One such area of concern is at the cache-DRAM interface [WM95]. While cache memory speeds

are increasing rapidly (particularly for on-chip caches), the speed of DRAM is increasing much less

rapidly. Suppose that the cache access time equals one instruction cycle, that DRAM is currently

four times slower than cache, that the only cache misses are the compulsory ones where the data

being accessed has never been read before, and that the compulsory miss rate is 1%. Assuming

that on-chip cache speed is increasing at the same rate as CPU speed, i.e., 80% per year [Bas91],

while DRAM speed increases at 7% per year [PH90], a DRAM access will take 1.52 CPU cycles

in the year 2000, 8.25 cycles in 2005 and 98.8 cycles in 2010 [WM95]. In this scenario, system

performance is determined not by the CPU speed but by memory speed, i.e., it hits the “memory

wall”. Changing some of the assumptions of the scenario (e.g., the current DRAM/cache speed

ratio or the cache miss ratio) does not affect the overall trend as long as there is a mismatch in the

rate of growth of DRAM and cache speeds, and the miss ratio is non-zero.

We view the memory wall as another manifestation of the bottleneck created whenever, like I/O,

the rate of speed increase between two interfaced technologies is significantly mismatched, and it is

not feasible to use the faster technology alone. It is possible that fundamental technical changes will

take place, so that either the rate of growth of the faster technology decreases (e.g., by encountering

new constraints at the sub-atomic level), or that of the slower technology increases (e.g., a new
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secondary storage technology that is as cheap, fast, robust, dense, efficient, and relatively low

in heat production as magnetic disk but with much greater potential for performance growth).

Until this occurs, however, we believe that the I/O bottleneck calls for an integrated response

from system designers and architects. We believe that the likely growth and severity of the I/O

bottleneck for parallel and distributed systems demands attention at all levels of the system design,

including applications, algorithms, compilers, operating systems, and architecture. These solutions

should be scalable, as the size of the systems and applications grow, and as technology changes.

Furthermore, the best solutions will likely be found in a comprehensive, system-wide approach to

the problem.

In the following section we briefly survey some of the issues raised and solutions developed in

recent years at several levels of system design, namely applications, algorithms, compilers, operating

systems and architecture. Finally, we summarize in section 3.

2 Survey of I/O issues

In the last few years, there has been a surge of interest in addressing the parallel I/O bottleneck

as different communities have discovered its effects. In this section we briefly discuss some of the

issues that have been raised and some of the solutions proposed.

2.1 Applications

There have been two major application domains where I/O in parallel computer systems has tra-

ditionally been found to be a bottleneck. One is scientific computing with massive datasets, such

as those found in seismic processing, climate modeling, and so forth [dC94, Kot96a]. The second

is databases [DG92, BDLJ85].

The I/O bottleneck continues to be a serious concern for scientific computing, particularly

Grand Challenge problems, where it is now commonly recognized as an obstacle [Sha95]. Many

scientific applications generate 1 GB of I/O per run [CHKM96, dC94, MK91], and applications

performing an order of magnitude more are not uncommon. Recent work by Acharya et al [AUB+96]

describes an earth-science application, called pathfinder, which moves 28 GB of data; applications

in computational physics and fluid dynamics are projected to require I/O on the order of 1 TB

[dC94]. It seems clear that these total I/O requirements will keep increasing as scientists continue

to study phenomena at larger space and time scales, and at finer space and time resolutions. Since

the response time that humans can tolerate for obtaining computational results— no matter how
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comprehensive and detailed— is always bounded, the I/O rates required will continue to increase

also. Thus while current applications require I/O rates of tens of MBps for secondary storage, in

the near future they will require I/O rates in the region of 1 GBps for secondary storage [dC94].

A similar trend can be seen in the area of databases, particularly for applications such as

data mining [DG92]. New applications, such as mapping the human genome, turn out to involve

large-scale database searches on gigabytes of data, and eventually terabytes of data.

Meanwhile, new classes of applications that are rapidly becoming ubiquitous are image visual-

ization [AL92, Spe94] and multimedia information processing [Spe91, Spe95]. It seems likely that

multimedia information will be found in many, if not all, computing environments in the future

[Spe93, Pas93]. Multimedia information systems not only impose much higher throughput demands

than traditional computer applications (e.g., 81 MBps for HDTV, or 100 MBps for 200 concurrent

0.5 MBps MPEG video streams from a video server) but also introduce additional constraints, such

as real-time and synchronized data transfers [GVK+95], not found in the traditional applications.

Studies of the I/O behavior of applications have shown that applications vary very widely in

their I/O characteristics. Looking at scientific applications alone, the I/O volume per MFLOP of

computation has been found to vary from zero bytes to 8 KB [CHKM96]. Detailed studies of three

scalable, I/O-intensive scientific applications (electron scattering, terrain rendering, and quantum

chemistry), show tremendous variations in I/O workload parameters such as I/O request sizes and

the total I/O volume [CACR95, SACR96].

It is clear that more work remains to be done in understanding the I/O characteristics of

applications. Some efforts, such as the CHARISMA project [KN95], studied production scientific-

application workloads. So far, however, there has been relatively little attention paid to the detailed

I/O characteristics of non-scientific applications (e.g., visualization and multimedia databases). In

any case, the study of existing I/O-intensive programs is difficult: since current parallel and dis-

tributed computer systems have limited I/O bandwidth, programmers write programs to circumvent

these limitations. For example, the REACT code for quantum chemical reaction dynamics simu-

lation encounters I/O bandwidth limits, so users recalculate rather than store and retrieve data

[CHKM96].

We believe that parallel and distributed applications should be designed to deal directly with the

I/O bottleneck. Acharya et al [AUB+96] describe results from running four scientific applications

on a 16-processor IBM SP-2 machine with up to six fast disks attached to every processor. Although

the aggregate disk bandwidth was 768 MBps and the aggregate bus bandwidth was 480 MBps, it
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was found that application-level I/O bandwidth achieved when reading and writing files was only

about 15-24 MBps. After rewriting these applications to tune them to the system, application-

level I/O rates of over 100 MBps were achieved. These results illustrate the benefits of designing

applications for efficient I/O. Given the large variability observed in application I/O behavior,

however, automated tools to help designers in their task are desirable.

2.2 Algorithms

An important consideration for any solution that addresses the I/O bottleneck is that the funda-

mental algorithms used by applications be asymptotically efficient in terms of the I/O activity they

generate.

For sequential computers, the asymptotic efficiency of algorithms is considered in terms of the

RAM model of computation. The success of the RAM model is based on its ability to realistically

capture the fundamental characteristics of a wide range of sequential machines, while remaining

sufficiently abstract to be tractable in the design and analysis of algorithms. The model assumes,

however, that the data required by the computation is available in the main memory of the machine

before the computation begins. This assumption is reasonable if the memory is large enough to

hold the data, or the time required for I/O is small relative to the time required for computation. It

has long been recognized that for many applications and system architectures, neither assumption

holds, particularly as the size of data sets increases. Furthermore, the RAM model assumes that all

memory locations are accessible at equal cost, which is increasingly not true in today’s multi-level

cache-memory hierarchies. Nonetheless, the RAM model remains a good first approximation for

the analysis of many in-core algorithms on sequential machines.

When the application’s data do not fit in main memory, however, the situation is quite different.

The I/O time may dominate the performance of the application, so the RAM model is a relatively

useless tool for analyzing performance. In the following we discuss some models of I/O complexity

that have been developed; see Shriver and Nodine [SN96] for more details. We also discuss some

of the issues these models raise.

In the unrestricted parallel model [AV88] the computer system is modeled as a single CPU

connected to a main memory capable of holding M records, which in turn is connected to an

external memory (disk) capable of storing at least the N records that are the data set of the

algorithm. Any D blocks, each consisting of B contiguous records, can be transferred in a single

I/O operation, and it is assumed that 1 ≤ DB ≤ M ≤ N . The unrestricted parallel model is a
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two-level model of memory hierarchy, unlike the single level of memory in the RAM model, and

captures two different forms of parallelism in the data transfer: block transfer, since a single I/O

operation transfers B records simultaneously, and parallel disk transfer, since D blocks can be

transferred simultaneously. Block transfers are quite important in practice, since disk seek times

often dominate the total I/O time of a block. The model is termed unrestricted since any D blocks

can be transferred simultaneously.

The parallel disk model [VS90, VS94a, VS94b] extends the unrestricted parallel model by re-

quiring the D parallel block transfers to be from D separate disks, in which consecutive blocks

are stored on consecutive disks, and an I/O operation can transfer at most one block per disk.

The parallel disk model is clearly more realistic than the unrestricted parallel model, which allows

the algorithm designer to ignore the critical issue of partitioning and allocating a large data set

across multiple disk drives so as to balance disk loads. Numerous algorithms have been developed

using the parallel disk model (PDM), from sorting and permutation primitives to computational

geometry [SN96, AVV97].

Nonetheless, the parallel disk model still seems limited in that it does not model the use of

caching. Several models have been developed for dealing with multi-level memory hierarchies. One

is the Uniform Memory Hierarchy (UMH) model [VN93]. The model can be adjusted using two

integer parameters, α and ρ (α, ρ ≥ 2). The memory consists of multiple levels, where the lth

memory level consists of αρl blocks, each of size ρl, and is connected via buses to levels l + 1 and

l − 1, where the bandwidth of the bus between level l and l + 1 is given by some function b(l).

Any block at any level l can be randomly accessed and transferred to or from level l + 1 in time

ρl/b(l). The CPU resides at level 0. While the UMH model seems more realistic than the parallel

disk model, it is harder to analyze algorithms in this framework.

An important factor not captured by I/O complexity models is the ability to overlap I/O with

computation. Several techniques have been developed that attempt to obtain this overlap, such

as the use of write-behind caching policies, log-structured file systems, user-level data prefetching

hints [PGG+95], and language and compiler techniques [RBC91].

The development of these techniques, as well as the observation of the usefulness of such overlap

in practice [WGWR93], underlines the importance of validating the theoretical models of I/O com-

plexity against careful experiments. As noted by Shriver and Nodine [SN96], despite the numerous

algorithms that have been developed for these models, researchers have only recently attempted

experimental validation of the model or algorithms. Vengroff developed a programmer’s library
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based on the PDM, called TPIE, and implemented several algorithms [Ven96]. In Cormen’s exper-

iments involving permutations on out-of-core data [CH97], he found that many applications built

using the parallel disk model (PDM) are not I/O bound and thus performance does not necessarily

track the PDM parameters, particularly D and B. It was found to be particularly important to

overlap I/O and computation.

Furthermore, the performance of applications running on parallel computers is often dependent

on parameters ignored by the PDM, particularly inter-processor communication time. For example,

Womble and others [WGWR93] found that the total time taken by their LU factorization algorithm

on the nCUBE 2 did increase as the amount of main memory available decreased, as predicted by the

parallel disk model. This increase was almost entirely due to the fact that the computation’s grain

size decreased, however, resulting in increased interprocessor communication costs, rather than an

increase in I/O. More recently, Cormen and others [CWN97] implemented and measured several

methods to perform out-of-core Fast-Fourier-Transform (FFT) computations. They developed new

approaches to computing the FFT that are based on PDM algorithms for out-of-core permutations.

In their experiments they found that inter-process communication was a significant component of

overall performance, often the determining factor in comparisons between different algorithms.

These results indicate the importance of further experimental work to validate the underlying

I/O models and discover the regimes where they are most useful in practice. Hopefully, this

experimental work will help to define a new, tractable model that permits I/O, computation, and

communication to be considered at the same time, and allow development of algorithms that balance

the time taken by these three basic activities. Perhaps a model that allows representation of these

different activities to different degrees of precision, to match the characteristics of the problem and

the architecture under consideration, would overcome this difficulty.

2.3 Language and compiler support

In addition to developing specialized I/O-efficient algorithms for fundamental operations such as

sorting, it is important to extend parallel compiler technology to automatically generate I/O-

efficient code for important classes of applications.

Reddy et al have argued [RBC91] that without significant advances in I/O compilation tech-

niques, the parallel I/O hardware offered by many commercial architectures may be of little use

in reducing the total execution times of individual programs. Several system-wide techniques for

improving I/O speeds have been designed, such as reducing I/O due to paging, and prefetching
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pages and cache lines [MDK96]. Although these techniques are helpful, they cannot exploit the

domain-specific characteristics of individual programs. Unless programmers are provided higher-

level language constructs for specifying the I/O requirements and access patterns of their programs,

however, it is difficult and tedious to manually optimize program I/O to take advantage of domain-

specific information.

There have been several efforts at extending existing languages to provide constructs that allow

a compiler to attempt to optimize the I/O of individual programs. Typically these languages, like

HPF [Hig93], Fortran D [FHK+90] and ViC* [CC94] assume a data-parallel programming model, in

which the same sequence of operations is to be applied to all the elements of a large data structure

(e.g., an array or vector). The data-parallel programming model is well suited to many types of

regular scientific computations.

In data-parallel languages like HPF, the user can issue compiler directives that specify how data

arrays are to be partitioned for parallel access by multiple processors. The directives include con-

structs for specifying common data alignment and access methods (e.g., block, cyclic, block-cyclic).

The compiler uses these directives to partition the computation and to generate the appropriate

communication and synchronization code for permitting parallel data access. Bordawekar and

Choudhary [BC96] provide further details on issues in compiling I/O-intensive problems expressed

in data parallel languages.

While the data-parallel paradigm is undoubtedly important and widespread, many parallel

applications do not have a regular structure. There has been a lot of activity in designing compu-

tational techniques for irregular parallel computations, particularly in scientific applications such

as computational fluid dynamics. So far there has been little attention paid to developing compiler

support for the I/O behavior of irregular parallel computations. Similarly, high-level parallel lan-

guages and programming environments often do not contain support for specifying the I/O activities

of the program, although the recent incorporation of I/O constructs into the MPI message-passing

standard is promising [MPI97].

2.4 Run-time libraries

Perhaps one of the most active areas of software development in parallel-I/O research has been

in run-time libraries. Run-time libraries are the quickest way to provide I/O support to a wide

range of applications on a wide range of platforms, avoiding the need to modify compilers or

operating systems. Several libraries have been developed to support applications wishing to encode
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algorithms from the parallel disk model, particularly TPIE [Ven96]. Some are designed to support a

compiler, such as ViC* [CC94, CH97] or PASSION [TCB+96]. Others are oriented toward scientific

applications in general [TG96, SW96]. Still others are designed for specific application domains,

such as computational chemistry [NFK98]. Although few attempt to be standards, except MPI-2

[MPI97], these libraries allow the application programmer to take advantage of carefully tuned

algorithms and proven techniques.

2.5 Operating systems

The operating system of a parallel or distributed computer has to strike a delicate balance when it

comes to I/O. On one hand, it must provide the programmer facilities that ease the programming

task and hide the details and complexities of coordinating and efficiently utilizing the underlying

I/O hardware and devices; on the other hand, it must allow the programmer sufficient control to

efficiently use the rich resources of the system.

Since I/O performance is an increasingly important component of overall application perfor-

mance, and since a large number of I/O-optimal algorithms for fundamental operations have been

developed, it is important that the operating system allow these algorithms to be utilized. Cormen

and Kotz [CK93] argue that to allow the use of I/O-optimal algorithms, the parallel computer sys-

tem must have the following capabilities: it must allow the algorithm to control the declustering of

files, query about the system configuration, perform independent parallel disk I/O, turn off parity

(for systems such as RAID [PGK88]), and turn off caching and prefetching. Until very recently,

most current operating systems did not provide the programmer with these capabilities.1

There has been a recent surge of activity in parallel file systems [CF96, KS97, NK97, MK97,

HER+95] and parallel I/O interfaces [MPI97, CPD+96] that address some of these requirements.

One common feature of many parallel file interfaces is that the programmer to specify the access

pattern for each file. Typically, this access pattern is specified with one or more parameters (some-

times called modes, filetypes [MPI97], or templates [PUSS97]). Then, when the usual file read and

write operations are invoked by multiple processors, the semantics of the operation (and the actual

set of file bytes to read and write) are determined by the declared file mode. The most common

modes can be classified as [CFF+96]
1Note that it is possible to use RAIDs with I/O-optimal algorithms. In a situation where there are multiple RAIDs

attached to the parallel computer, each RAID can be considered to be a single, high-performance disk from the point
of view of the algorithm. In that case, each RAID performs parity and synchronized, fully-striped I/O internally, at
a level not visible to the algorithm. While this technique works, it does not expose the parallelism of the system to
the application, possibly limiting performance.
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• Broadcast-reduce, where all processes collectively access the same data,

• Scatter-gather, where all processes collectively access a sequence of data blocks, in order,

• Shared offset, where all processes operate independently but share a common file pointer, and

• Independent, where the programmer is allowed complete freedom to specify access.

Other studies show that most common parallel file-access patterns can be captured in terms of

simple file partitioning schemes and access modes [NK96, NKP+96]. Determining the right set of

abstractions is still an issue, however. Some file systems like Vesta [CF96] and Panda [SW96] allow

the programmer to choose parameters that determine the mapping of file data to disks, and file

accesses to file data. HFS takes a different approach, allowing the programmer to construct a file

abstraction from object-oriented components, such as a distribution component and a replication

component [KS97]. The Galley file system [NK97] and the SIO interface [CPD+96] choose a low-

level philosophy, in which the file system provides only a low-level interface with highly flexible

primitives. Other interfaces and abstractions, such as MPI-2, Vesta, Panda, or HFS, can be built

on top of these lower-level interfaces. Some believe that even more flexibility should provide still

more control to the library programmer [KN96].

Underneath the interface, much of the research in parallel file systems involves techniques

for high-performance implementations. Techniques like disk-directed I/O [Kot97], caching and

prefetching [ACR95, KTP+96, KE93, MDK96], and access-pattern classification [MR97]. These

techniques can often lead to orders of magnitude better performance.

Much of the work on parallel file systems has been oriented towards the traditional staple of

parallel computing, namely scientific applications. On the other hand, some features of parallel

computer operating systems may not be well-suited to support high data-rate applications such

as multimedia information systems. One such feature is the large amount of data copying that

takes place to perform data transfers [FP93, PAM94, Ste94, KSU94]. Thus it is not unusual for

a single transfer from an I/O device to an application process to involve a copy from the device

to the device I/O buffer, another copy from the device buffer to a kernel buffer, and a third copy

to a user process buffer; the sequence of copies may be repeated in reverse for a process-to-device

copy. While the nominal bandwidths for most workstation buses are 100 MBps or more, measured

bandwidths for copying un-cached data are almost an order of magnitude less. Repeated data

copying further reduces the effective bus throughputs and severely impacts the response times for
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applications such as digital video and audio (DVA). Bypassing some of this copying can produce

significant performance improvements.

Separating the data from the control information about the data (or “meta-data”) can help

bypass some copying and reduce CPU involvement by allowing some transfers to be done by DMA

[Pas92, Pas93, CW93].

Separating data from control information is also highly desirable to perform effective data-

transfer scheduling. Jain and others have developed centralized and distributed scheduling algo-

rithms that can take advantage of such control information [JWBS92, Jai93, JSWB92, JSWB97,

DJT96]. These algorithms are operating system-level, parallel-I/O scheduling algorithms, i.e., they

are intended for use in an operating system that handles I/O requests for multiple applications,

in systems where multiple I/O transfers can take place simultaneously. Thus they differ from tra-

ditional disk-scheduling algorithms (which schedule disk arm movements at the level of individual

disks) and the application-specific I/O-scheduling algorithms (which schedule I/O operations of

individual programs, e.g., for out-of-core sorting [VS90, VS94a, VS94b]). Parallel-I/O scheduling is

required because even if each individual disk schedules I/Os to minimize arm movement, and each

individual application issues a minimal number of I/O requests, the simultaneous I/O requests of

multiple applications for data residing on multiple disks can result in conflicts that, unless properly

resolved via scheduling, can result in long delays and inefficiencies. We expect that as parallelism in

the I/O subsystem becomes more common, and multiple applications running on multiprocessors

become the norm, parallel-I/O scheduling will become increasingly important.

2.6 Architecture

Possibly the area that has received the most attention in terms of the I/O bottleneck has been the

disk subsystem architecture. The use of low-level parallelism in the service of I/O in schemes such

as disk interleaving, striping, RAID, RADD, etc., is well known [Kim86, PGK88, Gib92, SS90] and

is briefly reviewed by Kotz [Kot96b]. The gains provided by the low-level schemes can be over-

whelmed, however, unless scalable algorithms, smart compilers and appropriate operating systems

mechanisms are used to increase the I/O parallelism at higher levels of the system; these higher-level

techniques in turn lead to additional requirements upon the architecture. For instance, the use of

I/O-optimal algorithms for sorting and matrix multiplication imposes architectural requirements,

such as the ability to perform independent parallel disk accesses and to turn off parity, that are

typically not supported by architectures employing such low-level schemes [CK93]. In particular,
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if disk striping is used, where the read/write heads of all the disk drives move synchronously, the

I/O complexity of the optimal algorithms increases by more than a constant factor [VN93].

The continued bottleneck in I/O performance despite the use of these low-level schemes has

led to proposals that closer attention be paid to the I/O interconnection architecture [GGD93,

YM96, and references therein]. Several hypercube parallel computer system designs rely upon

I/O nodes embedded at selected nodes of the hypercube. Ghosh and others [GGD93] note that

the interprocessor communication links are used for both I/O and interprocessor traffic, and that

overlapping the two traffic types can reduce performance due to congestion. They propose that a

separate network be used for interconnecting the I/O nodes; simulations show that not only can

response times and latencies be improved, but the performance can be made relatively insensitive

to data locality.

The emergence of multimedia applications such as digital video and audio (DVA) also motivates

further architectural requirements. Pasquale [Pas93] argues that the high data rates and timing

constraints of DVA necessitate better control over low-level timing of I/O transfers. In particular,

system I/O channels should be interruptable and it should be possible to schedule the data transfers

across the channels. It should also be possible to perform DMA to and from all devices and memory,

using all addresses (i.e., not just word-aligned or block-aligned addresses). Although some buses like

the IBM Microchannel do have this capability, they are typically not used in this fashion. Device

controllers should be capable of large-grained burst-mode transfers, and should have relatively large

memory buffers to help smooth out the jitter between different media streams [Pas93, Ste90].

3 Summary

We sketch the reasons for the I/O bottleneck in parallel and distributed systems, pointing out that

it can be viewed as a special case of a general bottleneck that arises at all levels of the memory

hierarchy. We argue that because of its severity, the I/O bottleneck deserves systematic attention at

all levels of system design. We then survey the issues raised by the I/O bottleneck in six key areas

of parallel and distributed systems: applications, algorithms, compilers and languages, run-time

libraries, operating systems, and architecture. We summarize these below.

We observe that the I/O bottleneck continues to be a serious concern for scientific computing

and database applications, and that the emerging areas of multimedia and visualization bring new

I/O challenges. The I/O behavior of all application types needs to be studied in more detail, and

more attention paid to designing applications to directly deal with the I/O bottleneck.
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In the area of algorithms, we summarize the models of I/O complexity being used to develop

I/O-efficient algorithms for important functions, such as sorting and FFT. The I/O models currently

being used suffer from the drawback that they may not be realistic or representative of the I/O

behavior of important applications on real machines. More work needs to be done to validate the

I/O complexity models to determine the machine classes or operational regimes where they are

appropriate. In addition, it is desirable to have models that capture computation, communication,

and I/O in an integrated fashion, yet remain tractable.

Several efforts extend existing languages to provide constructs that allow a compiler to optimize

the I/O of individual programs. Typically these efforts have focused on languages that assume a

data-parallel programming model, which has been particularly useful for scientific computations. It

would be useful to extend language and compiler support for the I/O performed by non-regular com-

putations, or non-scientific applications, and to provide this support in higher-level (e.g., graphical)

programming languages and environments.

There has been a recent surge of activity in parallel file systems and parallel-I/O interfaces for

operating systems. Once again, much of this work has focused on support for scientific applications.

There has been a growing awareness of the operating-system overheads of moving data, especially

in terms of repeated copying of data as it is moved among various system and user buffers. Another

important issue is to separate data from the control information about the data (‘metadata’) to

allow better control and coordination of I/O activities, e.g., via scheduling.

Architectural solutions to the I/O bottleneck have enjoyed tremendous acceptance, particularly

in the use of RAID and parallelism within the I/O subsystem. Given the persistence of the I/O

bottleneck despite these solutions, the scope of architecture investigations needs to be broadened.

There has been some work on alternative I/O interconnection architectures as well as the possibil-

ities offered by the growing capabilities of individual subsystem components like disk controllers.

There remains much exciting research in the field of I/O for parallel and distributed systems.

A forward-looking survey of the problems and prospects for research in the area was completed in

1996 [GVW96], and may be a useful starting point for researchers entering the field.

In this short overview of I/O in parallel and distributed systems we have necessarily omitted

mention of many interesting research projects and papers. For more information, including pointers

to many research projects, software packages, events, and related papers from the scientific litera-

ture, visit the parallel-I/O web page2 and attend the Workshop on I/O in Parallel and Distributed
2http://www.cs.dartmouth.edu/pario/.
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Systems (IOPADS3), held every 18 months.
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