
Copyright 1995 by the authors

Expanding the Potential for Disk�Directed I�O

David Kotz

Technical Report PCS�TR������

Department of Computer Science

Dartmouth College

Hanover� NH ����������

dfk�cs�dartmouth�edu

March ��� �		�

Abstract

As parallel computers are increasingly used to run scienti�c applications with large data
sets� and as processor speeds continue to increase� it becomes more important to provide fast�
e�ective parallel �le systems for data storage and for temporary �les� In an earlier work we
demonstrated that a technique we call disk�directed I�O has the potential to provide consistent
high performance for large� collective� structured I�O requests� In this paper we expand on this
potential by demonstrating the ability of a disk�directed I�O system to read irregular subsets
of data from a �le� and to �lter and distribute incoming data according to data�dependent
functions�

� Introduction

Despite dramatic improvements in processor technology� parallel�computer architecture� parallel

languages and compilers� programming environments� and parallel algorithms� many programmers

of scienti�c applications for massively parallel processors discover that their application�s perfor�

mance is limited by the rudimentary data�storage systems available on today�s multiprocessors�

When they �nd a multiprocessor that is con�gured with su�cient parallel�I�O hardware �unfor�

tunately� many are not� they often discover that the �le system software is not designed to meet

their needs 	CK
�� KN
�� PEK�

�� or has poor performance 	Nit
�� KR
�� FBD
���

As a result� there are several proposals for new interfaces� run�time libraries� compilers� lan�

guages� and �le systems to support parallel applications on parallel computers� The focus of this

paper is on a �le�system technique called disk�directed I�O� which can dramatically improve the

performance of reading and writing a large� regular data structure �like a matrix� between memory
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that is distributed across many processors and a �le that is distributed across many disks 	Kot
���

We explore the potential for disk�directed I�O in three other situations� data�dependent distribution

�Section ��� data�dependent �ltering �Section ��� and working with irregular subsets �Section 
��

We present conclusions and a look toward the future in Section ��

� Background

There are many di�erent parallel �le systems 	DSE��� Pie�
� Dib
�� DdR
�� Mas
�� FPD
��

LIN�
�� Roy
�� CF
�� Kri
�� MS
�� HdC

� HER�

�� Most are based on a fairly traditional

Unix�like interface� in which individual processes make a request to the �le system for each piece of

the �le they read or write� Increasingly common� however� are specialized interfaces to support mul�

tidimensional matrices 	GL
�� Mas
�� BdC
�� CFPB
�� GGL
�� BBS�
�� SW
��� and interfaces

that support collective I�O 	Mas
�� BdC
�� GGL
�� BBS�
�� CFH�

�� With a collective�I�O

interface� all processes make a single joint request to the �le system� rather than numerous inde�

pendent requests�

In this paper we assume that the multiprocessor has an architecture like that in Figure ��

in which there are two types of processor nodes� those without disks� which are called compute

processors �CPs�� and those with disks� which are dedicated to the �le system and which are called

I�O processors �IOPs�� Most� though not all� of the above parallel �le systems are designed for

machines with an architecture of this type�

There are several database machines that can �lter tuples from blocks of data as they are

read o� disk� forwarding only those of interest on to the computational nodes �e�g�� Tandem Non�

Stop 	EGKS
���� The Super Database Computer 	KHH�
�� has disk controllers that continuously

produce tasks from the input data set� which are consumed and processed by CPs as they become

available� Thus they have a load�dependent data�distribution mechanism� The Bridge �PIFS� �le

system 	DSE��� tried to distribute data among memories to improve access locality�

The PASSION library can read submatrices that can be represented as a large contiguous region

with some �holes� of unwanted data� by reading the full region of data and then �sieving� out the

undesired data 	TBC�
��� This sieve is not data�dependent� and is used to allow the library to

make larger� more e�cient requests to the �le system�

Disk�directed I�O� Disk�directed I�O is a technique for optimizing data transfer given a high�

level� collective interface 	Kot
��� In this scheme� the complete high�level� collective request is passed
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Figure �� An architecture with two types of processor nodes� compute processors and I�O pro�
cessors� The latter have attached disks and are dedicated to �le�system service�
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to the I�O processors� which examine the request� make a list of disk blocks to be transferred� sort

the list� and then use double�bu�ering and special remote�memory �get� and �put� messages to

pipeline the transfer of data between compute�processor memories and the disks� Compared to a

traditional system with caches at the I�O processors� this strategy optimizes the disk accesses� uses

less memory �no cache at the I�O processors�� and has less CPU and message�passing overhead�

In experiments with reading and writing one� and two�dimensional matrices� disk�directed I�O

was as much as �� times faster than traditional caching in some access patterns� and was never

slower 	Kot
���

An interesting application� Karpovich et al� 	KFG
�� describe the problem of storing and

retrieving radio�astronomy data sets� The read�mostly data set is large and multi�dimensional� each

data point represents an astronomical reading at some time at some frequency on some instrument

pointed at some region of the sky� Needless to say the data set is extremely sparse� They store the

data set by partitioning into buckets along a few of the dimensions� and sorting within a bucket

along other dimensions� Applications rarely read the entire data set� instead� they request a subset

of the data by specifying ranges for the time� frequency� and region� Using an index of buckets�

only the necessary buckets must be read into memory� The buckets are then �ltered to extract the

items of interest� and �in a parallel application� distributed among memories of the multiprocessor

according to the application�s needs�

Clearly this application has very di�erent I�O needs from those imagined for the disk�directed�

I�O system in 	Kot
��� It reads an irregular� discontiguous subset of data from the �le� It �lters

out and discards some of the data it reads� after examining the data� Finally� it distributes the

data among the memories in a data�dependent manner� In the remainder of the paper� we show

how the concept of disk�directed I�O can also include these unusual requirements�

� Data�dependent distributions

In the disk�directed I�O system described in 	Kot
��� matrices could be read from the �le� dis�

tributing records among the memories in many di�erent distributions� As each block was read

from disk �in whatever order was convenient for the disk�� the records within that block were

sent to the appropriate location in the appropriate memory� based on the distribution function� In

	Kot
�� the distribution function was independent of the data� of course� a di�erent� data�dependent

distribution function could easily be used for the same purpose�
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A traditional �le system� however� is quite di�erent� With a data�independent distribution�

each processor independently computes the locations of the records it requires from the �le� and

reads those records� With a data�dependent distribution� however� there is no way for processors

to request their own set of data� A reasonable solution is similar to two�phase I�O 	dBC
��� each

processor reads some convenient subset of data from the �le� examines each record to compute the

distribution function� and then sends the data to the appropriate processor�

In both cases we assume that the distribution function can only decide to which processor each

record belongs� and send the record to that processor� Once there� the processor appends the record

to its bu�er for later processing�

��� Experiments

To gauge the impact of data�dependent distribution on performance� we devised an experiment

to compare our disk�directed I�O and traditional�caching �le systems� Of course� for the purpose

of this experiment it matters little what distribution function we actually use � even a data�

independent function would do� We used a cyclic distribution �rc in 	Kot
���� Thus� the disk�

directed system needed no change for this experiment� In the traditional caching system� the

compute processors each looped reading blocks from the �le� and for each record within each block�

sent the record on to the appropriate destination processor� Logically� it made no di�erence which

blocks were read by which processor� since most records would be redistributed anyway� For best

performance on contiguous layouts 	Kot
��� we chose to have compute processors read the blocks

in a cyclic distribution�

We ran these experiments on our simulator from 	Kot
�� called STARFISH� STARFISH ran on

top of the Proteus parallel�architecture simulator 	BDCW
��� which in turn ran on a DEC�
���

workstation� We con�gured Proteus as in 	Kot
��� as shown in Table �� In all cases a �� Mbyte �le

was striped across disks� block by block� using one of two layouts within each disk� contiguous or

random� Blocks were � Kbytes�

We repeated each experiment in this paper �ve times and report the mean value of each measure

here� The largest coe�cient of variation of any data point was ����� so the trials were extremely

consistent�

��� Results
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Figure �� Results of data�dependent distribution experiments� Each graph is normalized against the
�best� value for that measure� TC is traditional caching� and DDIO is disk�directed I�O� �contig�
is a contiguous disk layout� and �random� is a random disk layout� Both ��� and ��
��byte records
were used�
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Table �� Parameters for simulator�

MIMD� distributed�memory �� processors
Compute processors �CPs� ��
I�O processors �IOPs� ��
CPU speed� type 
� MHz� RISC

Disks ��
Disk type HP 
�
��
Disk capacity ��� GB
Disk peak transfer rate ���� Mbytes�s
File�system block size � KB
I�O buses �one per IOP� ��
I�O bus type SCSI
I�O bus peak bandwidth �� Mbytes�s

Interconnect topology �� � torus
Interconnect bandwidth ���� ��� bytes�s

bidirectional
Interconnect latency �� ns per router
Routing wormhole

Figure � shows the results of these experiments� These charts plot the execution time for the

experiment� the number of bytes sent through the interconnect as messages� and the number of

messages� each normalized against the best possible value for that measure� In all cases a smaller

number is better� with ��� being the best� For execution time� the best possible value is computed

from the amount of data read o� disk and the peak throughput of the disk drives� Clearly� that

execution time was only possible with no overhead and a contiguous layout� For message bytes� the

best possible value is obtained when only the data itself is sent from the I�O nodes directly to the

appropriate compute nodes� For message count� the best possible value is the number of records�

since in our system each record is sent to its destination as a separate message� STARFISH often

uses protocols with an acknowledgement sent for each message� so the normalized message count

is usually greater than ��

Each chart compares two disk layouts �contiguous and random�� two record sizes ��� bytes

and ��
� bytes�� and two �le systems �traditional caching �TC� and disk�directed I�O �DDIO���

For comparison� we add �TC� no redirect�� in which each processor directly requested the data

it needed� this would be impossible with a truly data�dependent distribution� but provides an

interesting comparison�

Consider �rst the ��
��byte records� On the contiguous layout� all three systems performed
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similarly �which is why we chose this distribution pattern�� but using traditional caching to fetch

and then redirect the data pushed all of the data through the network twice� The number of

messages exploded as each block needed four messages� I�O request� I�O reply� send to another

node� and acknowledgement from the other node� On the random layout� disk�directed I�O was

faster because it could schedule the I�Os for better disk performance� Disk�directed I�O used

slightly more messages here� these were startup overhead and would be negligible with a larger

number of records� as can be seen in the bars for ���byte records�

Consider the ���byte records� which present an interesting picture� Despite nearly doubling the

amount of message tra�c� traditional caching with data�dependent redistribution was faster than

the direct�access version� Here we were essentially using a pipelined form of two�phase I�O 	dBC
���

Compute processors requested whole blocks from the I�O nodes� rather than small records� The

larger requests reduced the overhead bottleneck experienced at I�O nodes� which in this case more

than o�set the extra work at the compute nodes and in the network� Disk�directed I�O was always

better� however� because it could not only avoid the extra messages� but had less overhead and

could optimize the disk tra�c�

In our experiments the network was fast enough to not be a bottleneck� Thus� redistributing

the data from the compute nodes was not a performance problem� Of course� systems with slower

networks� or with networks being shared by other applications� may �nd disk�directed I�O to be

even more valuable for its ability to avoid doubling the network tra�c� An important example is

a workstation cluster being used as a parallel computer�

� Data�dependent �ltering

If the disk�directed �le system can make distribution decisions based on the data in the record� it

is easy to see how it could �lter out records according to some function of the data in the record�

�Again� we assume that we do not send the data to a speci�c location within the destination

processor� instead� the destination appends newly arriving records to its current bu�er�� The same

amount of I�O is needed� but there may be substantial savings on network tra�c�

In a traditional system� each compute processor reads its data in chunks� �ltering and com�

pacting each chunk before reading more from the �le system� The same amount of I�O is needed�

and the same amount of network tra�c is needed� as without �ltering� Thus� traditional caching

is essentially una�ected by �ltering�

�



��� Experiments

We again used the cyclic �rc� distribution pattern� We �ltered out either �� or 
�� of the records�

according to a random �ltration function �since again it does not matter speci�cally what function

we use�� Other system parameters are the same�

��� Results

Figure � shows the results of these experiments with two disk layouts �contiguous and random��

two record sizes ��� bytes and ��
� bytes�� two �le systems �traditional caching and disk�directed

I�O�� and two �ltration ratios ��� and 
���� Since we used a trivial �ltration function� traditional

caching has the same performance regardless of the �ltration ratio� On random layouts disk�directed

I�O can optimize the disk schedule� and on small records it has lower overhead� so it had better

performance in those cases than did traditional caching� This chart shows that adding �ltration

does not a�ect performance� which is no surprise� but that it dramatically reduces the network

tra�c� Thus� �ltering at the I�O processor rather than at the compute processor will have less

impact on other applications� or on other simultaneous communication in the same application�

and would perform better in systems where the network may be a bottleneck� e�g�� workstation

clusters�

� Irregular subsets

While many applications may be able to specify an I�O transfer as a large� contiguous portion

of a �le� or perhaps as a regular pattern of smaller pieces of the �le 	NK

�� there are some ap�

plications that need to request an irregular� discontiguous subset of a �le� One example is the

radio�astronomy data set described above� Another class of such applications includes computa�

tional quantum chemistry applications� which retrieve precomputed integrals from a table stored

in a large �le 	Ken

�� Finally� many applications use sparse matrices� non�uniform mesh decompo�

sitions� or other irregular out�of�core data structures� How might disk�directed I�O support these

kinds of applications�

��� Experiments

We simulate applications that request an irregular subset of blocks from the �le� although we do

assume that they could specify the entire subset up front in a list �e�g�� in a batch request 	NK

���

The list was in logical sorted order� In the disk�directed I�O system� each compute processor sent
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Figure �� Results of data�dependent �ltration experiments� Traditional caching is unchanged by
�ltering� We compare normal DDIO with a DDIO that �ltered 
�� of all records� The message
metrics are normalized against the amount of tra�c necessary with no �ltration�
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its list of requests to the appropriate I�O processors� The I�O processors converted the logical

o�sets to a list of physical block numbers� sorted the list for the best schedule� and processed the

blocks much as before� In the traditional�caching system� each compute processor requested one

block at a time� according to the list�

We used a ��� Mbyte �le and selected an irregular subset of about ��� of the �le blocks� of

that subset� each processor requested those blocks that would also be distributed to it if the whole

�le were distributed cyclically� block by block� to all processors� Thus� this pattern was a subset of

the rc pattern� The subset was arranged so that each processor received about the same number

of blocks� and each disk received about the same number of read requests�

��� Results

Figure � displays the results of these experiments� Traditional caching is presented both with and

without the prefetching it normally uses� It is clear that in the random layout the prefetching

made performance dramatically worse� by prefetching useless blocks on the mistaken assumption

of sequential access� whereas in the contiguous layout those mistakes made little di�erence because

those prefetches were quickly completed by the drive�s own prefetching� A production system would

need to include smarter prefetching policies 	KE
�� PG
���

Disk�directed I�O was faster than traditional caching� and obtained its usual bene�t on a random

layout due to sorting� It is no better or worse in terms of message tra�c� The main point here is

that disk�directed I�O need not be restricted to regular access patterns� as long as the request can

be formed as a reasonably compact list of records to transfer� it works �ne�

� Conclusions

While our earlier work demonstrated the value of disk�directed I�O for large� collective requests� the

examples were limited to regular structures with a data�independent distribution 	Kot
��� In this

paper we show that disk�directed I�O could accommodate irregularly structured requests� data�

dependent distributions� and data�dependent �ltering� with no loss in performance� Traditional

caching� on the other hand� had costly prefetch mistakes on the irregular access pattern� doubled

the network tra�c when doing a data�dependent distribution function� and was not able to reduce

the network tra�c when doing data�dependent �ltering� Although the di�erence in network tra�c

did not a�ect the execution time in our experiments� because we used a very fast network� it may

a�ect performance on systems where the network is slower or shared �as in a workstation cluster��
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Figure �� Normalized measures for experiments requesting an irregular subset of the �le� Best exe�
cution time is computed from the peak disk bandwidth and the actual amount of data transferred�
Best message count and message bytes are computed assuming that only the requested blocks will
�ow through the network�
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Given that disk�directed I�O has the potential for all of these capabilities� the crucial remaining

question is how to make these capabilities available to the programmer� In particular� how does

the user �or compiler� tell the I�O processor about its distribution function� �ltration function�

and which �le data to read� We are beginning to study this issue� We have proposed a new

interface 	NK

� that may play a role in specifying the desired subset of �le data� and perhaps in

data�independent distributions� but much more work remains to be done�

Availability

STARFISH is available at http���www�cs�dartmouth�edu�research�starfish� or by ftp to

ftp�cs�dartmouth�edu in pub�pario�STARFISH��

Many of these papers can be found via the URL http���www�cs�dartmouth�edu�pario�html�
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