
Copyright 1995 by the authors

Expanding the Potential for Disk�Directed I�O

David Kotz

Technical Report PCS�TR������

Department of Computer Science

Dartmouth College

Hanover� NH ����������

dfk�cs�dartmouth�edu

March ��� �		�

Abstract

As parallel computers are increasingly used to run scienti�c applications with large data
sets� and as processor speeds continue to increase� it becomes more important to provide fast�
e�ective parallel �le systems for data storage and for temporary �les� In an earlier work we
demonstrated that a technique we call disk�directed I�O has the potential to provide consistent
high performance for large� collective� structured I�O requests� In this paper we expand on this
potential by demonstrating the ability of a disk�directed I�O system to read irregular subsets
of data from a �le� and to �lter and distribute incoming data according to data�dependent
functions�

� Introduction

Despite dramatic improvements in processor technology� parallel�computer architecture� parallel

languages and compilers� programming environments� and parallel algorithms� many programmers

of scienti�c applications for massively parallel processors discover that their application�s perfor�

mance is limited by the rudimentary data�storage systems available on today�s multiprocessors�

When they �nd a multiprocessor that is con�gured with su�cient parallel�I�O hardware �unfor�

tunately� many are not� they often discover that the �le system software is not designed to meet

their needs 	CK
�� KN
�� PEK�

�� or has poor performance 	Nit
�� KR
�� FBD
���

As a result� there are several proposals for new interfaces� run�time libraries� compilers� lan�

guages� and �le systems to support parallel applications on parallel computers� The focus of this

paper is on a �le�system technique called disk�directed I�O� which can dramatically improve the

performance of reading and writing a large� regular data structure �like a matrix� between memory

This research was funded by NSF under grant number CCR��������� and by NASA Ames under agreement

number NCC ������ The work was performed while the author was on sabbatical at Syracuse University�

�



that is distributed across many processors and a �le that is distributed across many disks 	Kot
���

We explore the potential for disk�directed I�O in three other situations� data�dependent distribution

�Section ��� data�dependent �ltering �Section ��� and working with irregular subsets �Section 
��

We present conclusions and a look toward the future in Section ��

� Background

There are many di�erent parallel �le systems 	DSE��� Pie�
� Dib
�� DdR
�� Mas
�� FPD
��

LIN�
�� Roy
�� CF
�� Kri
�� MS
�� HdC

� HER�

�� Most are based on a fairly traditional

Unix�like interface� in which individual processes make a request to the �le system for each piece of

the �le they read or write� Increasingly common� however� are specialized interfaces to support mul�

tidimensional matrices 	GL
�� Mas
�� BdC
�� CFPB
�� GGL
�� BBS�
�� SW
��� and interfaces

that support collective I�O 	Mas
�� BdC
�� GGL
�� BBS�
�� CFH�

�� With a collective�I�O

interface� all processes make a single joint request to the �le system� rather than numerous inde�

pendent requests�

In this paper we assume that the multiprocessor has an architecture like that in Figure ��

in which there are two types of processor nodes� those without disks� which are called compute

processors �CPs�� and those with disks� which are dedicated to the �le system and which are called

I�O processors �IOPs�� Most� though not all� of the above parallel �le systems are designed for

machines with an architecture of this type�

There are several database machines that can �lter tuples from blocks of data as they are

read o� disk� forwarding only those of interest on to the computational nodes �e�g�� Tandem Non�

Stop 	EGKS
���� The Super Database Computer 	KHH�
�� has disk controllers that continuously

produce tasks from the input data set� which are consumed and processed by CPs as they become

available� Thus they have a load�dependent data�distribution mechanism� The Bridge �PIFS� �le

system 	DSE��� tried to distribute data among memories to improve access locality�

The PASSION library can read submatrices that can be represented as a large contiguous region

with some �holes� of unwanted data� by reading the full region of data and then �sieving� out the

undesired data 	TBC�
��� This sieve is not data�dependent� and is used to allow the library to

make larger� more e�cient requests to the �le system�

Disk�directed I�O� Disk�directed I�O is a technique for optimizing data transfer given a high�

level� collective interface 	Kot
��� In this scheme� the complete high�level� collective request is passed

�



Network

Memory

Memory

Memory

Disk

Disk

Disk

I�O Processor

I�O Processor

I�O Processor

Memory

Memory

Memory

Compute Processor

Compute Processor

Compute Processor

Interconnection

Figure �� An architecture with two types of processor nodes� compute processors and I�O pro�
cessors� The latter have attached disks and are dedicated to �le�system service�

�



to the I�O processors� which examine the request� make a list of disk blocks to be transferred� sort

the list� and then use double�bu�ering and special remote�memory �get� and �put� messages to

pipeline the transfer of data between compute�processor memories and the disks� Compared to a

traditional system with caches at the I�O processors� this strategy optimizes the disk accesses� uses

less memory �no cache at the I�O processors�� and has less CPU and message�passing overhead�

In experiments with reading and writing one� and two�dimensional matrices� disk�directed I�O

was as much as �� times faster than traditional caching in some access patterns� and was never

slower 	Kot
���

An interesting application� Karpovich et al� 	KFG
�� describe the problem of storing and

retrieving radio�astronomy data sets� The read�mostly data set is large and multi�dimensional� each

data point represents an astronomical reading at some time at some frequency on some instrument

pointed at some region of the sky� Needless to say the data set is extremely sparse� They store the

data set by partitioning into buckets along a few of the dimensions� and sorting within a bucket

along other dimensions� Applications rarely read the entire data set� instead� they request a subset

of the data by specifying ranges for the time� frequency� and region� Using an index of buckets�

only the necessary buckets must be read into memory� The buckets are then �ltered to extract the

items of interest� and �in a parallel application� distributed among memories of the multiprocessor

according to the application�s needs�

Clearly this application has very di�erent I�O needs from those imagined for the disk�directed�

I�O system in 	Kot
��� It reads an irregular� discontiguous subset of data from the �le� It �lters

out and discards some of the data it reads� after examining the data� Finally� it distributes the

data among the memories in a data�dependent manner� In the remainder of the paper� we show

how the concept of disk�directed I�O can also include these unusual requirements�

� Data�dependent distributions

In the disk�directed I�O system described in 	Kot
��� matrices could be read from the �le� dis�

tributing records among the memories in many di�erent distributions� As each block was read

from disk �in whatever order was convenient for the disk�� the records within that block were

sent to the appropriate location in the appropriate memory� based on the distribution function� In

	Kot
�� the distribution function was independent of the data� of course� a di�erent� data�dependent

distribution function could easily be used for the same purpose�

�



A traditional �le system� however� is quite di�erent� With a data�independent distribution�

each processor independently computes the locations of the records it requires from the �le� and

reads those records� With a data�dependent distribution� however� there is no way for processors

to request their own set of data� A reasonable solution is similar to two�phase I�O 	dBC
��� each

processor reads some convenient subset of data from the �le� examines each record to compute the

distribution function� and then sends the data to the appropriate processor�

In both cases we assume that the distribution function can only decide to which processor each

record belongs� and send the record to that processor� Once there� the processor appends the record

to its bu�er for later processing�

��� Experiments

To gauge the impact of data�dependent distribution on performance� we devised an experiment

to compare our disk�directed I�O and traditional�caching �le systems� Of course� for the purpose

of this experiment it matters little what distribution function we actually use � even a data�

independent function would do� We used a cyclic distribution �rc in 	Kot
���� Thus� the disk�

directed system needed no change for this experiment� In the traditional caching system� the

compute processors each looped reading blocks from the �le� and for each record within each block�

sent the record on to the appropriate destination processor� Logically� it made no di�erence which

blocks were read by which processor� since most records would be redistributed anyway� For best

performance on contiguous layouts 	Kot
��� we chose to have compute processors read the blocks

in a cyclic distribution�

We ran these experiments on our simulator from 	Kot
�� called STARFISH� STARFISH ran on

top of the Proteus parallel�architecture simulator 	BDCW
��� which in turn ran on a DEC�
���

workstation� We con�gured Proteus as in 	Kot
��� as shown in Table �� In all cases a �� Mbyte �le

was striped across disks� block by block� using one of two layouts within each disk� contiguous or

random� Blocks were � Kbytes�

We repeated each experiment in this paper �ve times and report the mean value of each measure

here� The largest coe�cient of variation of any data point was ����� so the trials were extremely

consistent�

��� Results






Normalized execution time

0.0

5.0

10.0

15.0

contig,
6 4

random,
6 4

contig,
8192

random,
8192

8.5

1.2

8.5

2.2

8.5

1.2

12.1

2.6
6.0

1.1

6.0

1.1

TC, redirect TC, no redirect DDIO

Normalized message bytes

0.0

1.0

2.0

3.0

contig,
6 4

random,
6 4

contig,
8192

random,
8192

2.02.0
2.52.5

1.01.0
1.51.5

1.01.0
1.51.5

TC, redirect TC, no redirect DDIO

Normalized message count

0.0
1.0
2.0
3.0
4.0
5.0

contig,
6 4

random,
6 4

contig,
8192

random,
8192

4.24.2

2.02.0 2.22.22.02.0 2.52.52.02.0

TC, redirect TC, no redirect DDIO

Figure �� Results of data�dependent distribution experiments� Each graph is normalized against the
�best� value for that measure� TC is traditional caching� and DDIO is disk�directed I�O� �contig�
is a contiguous disk layout� and �random� is a random disk layout� Both ��� and ��
��byte records
were used�

�



Table �� Parameters for simulator�

MIMD� distributed�memory �� processors
Compute processors �CPs� ��
I�O processors �IOPs� ��
CPU speed� type 
� MHz� RISC

Disks ��
Disk type HP 
�
��
Disk capacity ��� GB
Disk peak transfer rate ���� Mbytes�s
File�system block size � KB
I�O buses �one per IOP� ��
I�O bus type SCSI
I�O bus peak bandwidth �� Mbytes�s

Interconnect topology �� � torus
Interconnect bandwidth ���� ��� bytes�s

bidirectional
Interconnect latency �� ns per router
Routing wormhole

Figure � shows the results of these experiments� These charts plot the execution time for the

experiment� the number of bytes sent through the interconnect as messages� and the number of

messages� each normalized against the best possible value for that measure� In all cases a smaller

number is better� with ��� being the best� For execution time� the best possible value is computed

from the amount of data read o� disk and the peak throughput of the disk drives� Clearly� that

execution time was only possible with no overhead and a contiguous layout� For message bytes� the

best possible value is obtained when only the data itself is sent from the I�O nodes directly to the

appropriate compute nodes� For message count� the best possible value is the number of records�

since in our system each record is sent to its destination as a separate message� STARFISH often

uses protocols with an acknowledgement sent for each message� so the normalized message count

is usually greater than ��

Each chart compares two disk layouts �contiguous and random�� two record sizes ��� bytes

and ��
� bytes�� and two �le systems �traditional caching �TC� and disk�directed I�O �DDIO���

For comparison� we add �TC� no redirect�� in which each processor directly requested the data

it needed� this would be impossible with a truly data�dependent distribution� but provides an

interesting comparison�

Consider �rst the ��
��byte records� On the contiguous layout� all three systems performed

�



similarly �which is why we chose this distribution pattern�� but using traditional caching to fetch

and then redirect the data pushed all of the data through the network twice� The number of

messages exploded as each block needed four messages� I�O request� I�O reply� send to another

node� and acknowledgement from the other node� On the random layout� disk�directed I�O was

faster because it could schedule the I�Os for better disk performance� Disk�directed I�O used

slightly more messages here� these were startup overhead and would be negligible with a larger

number of records� as can be seen in the bars for ���byte records�

Consider the ���byte records� which present an interesting picture� Despite nearly doubling the

amount of message tra�c� traditional caching with data�dependent redistribution was faster than

the direct�access version� Here we were essentially using a pipelined form of two�phase I�O 	dBC
���

Compute processors requested whole blocks from the I�O nodes� rather than small records� The

larger requests reduced the overhead bottleneck experienced at I�O nodes� which in this case more

than o�set the extra work at the compute nodes and in the network� Disk�directed I�O was always

better� however� because it could not only avoid the extra messages� but had less overhead and

could optimize the disk tra�c�

In our experiments the network was fast enough to not be a bottleneck� Thus� redistributing

the data from the compute nodes was not a performance problem� Of course� systems with slower

networks� or with networks being shared by other applications� may �nd disk�directed I�O to be

even more valuable for its ability to avoid doubling the network tra�c� An important example is

a workstation cluster being used as a parallel computer�

� Data�dependent �ltering

If the disk�directed �le system can make distribution decisions based on the data in the record� it

is easy to see how it could �lter out records according to some function of the data in the record�

�Again� we assume that we do not send the data to a speci�c location within the destination

processor� instead� the destination appends newly arriving records to its current bu�er�� The same

amount of I�O is needed� but there may be substantial savings on network tra�c�

In a traditional system� each compute processor reads its data in chunks� �ltering and com�

pacting each chunk before reading more from the �le system� The same amount of I�O is needed�

and the same amount of network tra�c is needed� as without �ltering� Thus� traditional caching

is essentially una�ected by �ltering�

�



��� Experiments

We again used the cyclic �rc� distribution pattern� We �ltered out either �� or 
�� of the records�

according to a random �ltration function �since again it does not matter speci�cally what function

we use�� Other system parameters are the same�

��� Results

Figure � shows the results of these experiments with two disk layouts �contiguous and random��

two record sizes ��� bytes and ��
� bytes�� two �le systems �traditional caching and disk�directed

I�O�� and two �ltration ratios ��� and 
���� Since we used a trivial �ltration function� traditional

caching has the same performance regardless of the �ltration ratio� On random layouts disk�directed

I�O can optimize the disk schedule� and on small records it has lower overhead� so it had better

performance in those cases than did traditional caching� This chart shows that adding �ltration

does not a�ect performance� which is no surprise� but that it dramatically reduces the network

tra�c� Thus� �ltering at the I�O processor rather than at the compute processor will have less

impact on other applications� or on other simultaneous communication in the same application�

and would perform better in systems where the network may be a bottleneck� e�g�� workstation

clusters�

� Irregular subsets

While many applications may be able to specify an I�O transfer as a large� contiguous portion

of a �le� or perhaps as a regular pattern of smaller pieces of the �le 	NK

�� there are some ap�

plications that need to request an irregular� discontiguous subset of a �le� One example is the

radio�astronomy data set described above� Another class of such applications includes computa�

tional quantum chemistry applications� which retrieve precomputed integrals from a table stored

in a large �le 	Ken

�� Finally� many applications use sparse matrices� non�uniform mesh decompo�

sitions� or other irregular out�of�core data structures� How might disk�directed I�O support these

kinds of applications�

��� Experiments

We simulate applications that request an irregular subset of blocks from the �le� although we do

assume that they could specify the entire subset up front in a list �e�g�� in a batch request 	NK

���

The list was in logical sorted order� In the disk�directed I�O system� each compute processor sent






Normalized execution time

0.0

5.0

10.0

15.0

contig,
6 4

random,
6 4

contig,
8192

random,
8192

8.5

1.2

12.1

2.6
6.06.0

1.11.1

6.0

1.1

6.0

1.1

TC DDIO DDIO 90%

Normalized message bytes

0.0
0.5
1.0
1.5
2.0

contig,
6 4

random,
6 4

contig,
8192

random,
8192

1.01.0
1.51.5

1.0
1.5

1.0
1.5

0.10.10.10.1

TC DDIO DDIO 90%

Normalized message count

0.0
0.5
1.0
1.5
2.0
2.5

contig,
6 4

random,
6 4

contig,
8192

random,
8192

2.22.22.02.0
2.52.5

2.0 2.0

0.60.6
0.2 0.2

TC DDIO DDIO 90%

Figure �� Results of data�dependent �ltration experiments� Traditional caching is unchanged by
�ltering� We compare normal DDIO with a DDIO that �ltered 
�� of all records� The message
metrics are normalized against the amount of tra�c necessary with no �ltration�

��



its list of requests to the appropriate I�O processors� The I�O processors converted the logical

o�sets to a list of physical block numbers� sorted the list for the best schedule� and processed the

blocks much as before� In the traditional�caching system� each compute processor requested one

block at a time� according to the list�

We used a ��� Mbyte �le and selected an irregular subset of about ��� of the �le blocks� of

that subset� each processor requested those blocks that would also be distributed to it if the whole

�le were distributed cyclically� block by block� to all processors� Thus� this pattern was a subset of

the rc pattern� The subset was arranged so that each processor received about the same number

of blocks� and each disk received about the same number of read requests�

��� Results

Figure � displays the results of these experiments� Traditional caching is presented both with and

without the prefetching it normally uses� It is clear that in the random layout the prefetching

made performance dramatically worse� by prefetching useless blocks on the mistaken assumption

of sequential access� whereas in the contiguous layout those mistakes made little di�erence because

those prefetches were quickly completed by the drive�s own prefetching� A production system would

need to include smarter prefetching policies 	KE
�� PG
���

Disk�directed I�O was faster than traditional caching� and obtained its usual bene�t on a random

layout due to sorting� It is no better or worse in terms of message tra�c� The main point here is

that disk�directed I�O need not be restricted to regular access patterns� as long as the request can

be formed as a reasonably compact list of records to transfer� it works �ne�

� Conclusions

While our earlier work demonstrated the value of disk�directed I�O for large� collective requests� the

examples were limited to regular structures with a data�independent distribution 	Kot
��� In this

paper we show that disk�directed I�O could accommodate irregularly structured requests� data�

dependent distributions� and data�dependent �ltering� with no loss in performance� Traditional

caching� on the other hand� had costly prefetch mistakes on the irregular access pattern� doubled

the network tra�c when doing a data�dependent distribution function� and was not able to reduce

the network tra�c when doing data�dependent �ltering� Although the di�erence in network tra�c

did not a�ect the execution time in our experiments� because we used a very fast network� it may

a�ect performance on systems where the network is slower or shared �as in a workstation cluster��

��



Normalized execution time

0.0

5.0

10.0

15.0

contig random

4.3

14.2

8.6
4.6

8.5

3.9
5.8

TC prefetch TC no
prefetch

DDIO no sort DDIO sort

Normalized message bytes

0.0

0.5

1.0

1.5

contig random

TC prefetch TC no
prefetch

DDIO no sort DDIO sort

Normalized message count

0.0

1.0

2.0

3.0

contig random

2.12.1 2.12.1 2.22.2 2.2

TC prefetch TC no
prefetch

DDIO no sort DDIO sort

Figure �� Normalized measures for experiments requesting an irregular subset of the �le� Best exe�
cution time is computed from the peak disk bandwidth and the actual amount of data transferred�
Best message count and message bytes are computed assuming that only the requested blocks will
�ow through the network�

��



Given that disk�directed I�O has the potential for all of these capabilities� the crucial remaining

question is how to make these capabilities available to the programmer� In particular� how does

the user �or compiler� tell the I�O processor about its distribution function� �ltration function�

and which �le data to read� We are beginning to study this issue� We have proposed a new

interface 	NK

� that may play a role in specifying the desired subset of �le data� and perhaps in

data�independent distributions� but much more work remains to be done�

Availability

STARFISH is available at http���www�cs�dartmouth�edu�research�starfish� or by ftp to

ftp�cs�dartmouth�edu in pub�pario�STARFISH��

Many of these papers can be found via the URL http���www�cs�dartmouth�edu�pario�html�

References

	BBS�
�� Robert Bennett� Kelvin Bryant� Alan Sussman� Raja Das� and Joel Saltz� Jovian� A
framework for optimizing parallel I�O� In Proceedings of the ���� Scalable Parallel
Libraries Conference� pages ������ IEEE Computer Society Press� October �

��

	BdC
�� Rajesh Bordawekar� Juan Miguel del Rosario� and Alok Choudhary� Design and evalua�
tion of primitives for parallel I�O� In Proceedings of Supercomputing ���� pages �
������
�

��

	BDCW
�� Eric A� Brewer� Chrysanthos N� Dellarocas� Adrian Colbrook� and William E�
Weihl� Proteus� A high�performance parallel�architecture simulator� Technical Re�
port MIT�LCS�TR�
��� MIT� September �

��

	CF
�� Peter F� Corbett and Dror G� Feitelson� Design and implementation of the Vesta parallel
�le system� In Proceedings of the Scalable High�Performance Computing Conference�
pages ������ �

��

	CFH�

� Peter Corbett� Dror Feitelson� Yarson Hsu� Jean�Pierre Prost� Marc Snir� Sam
Fineberg� Bill Nitzberg� Bernard Traversat� and Parkson Wong� MPI�IO� a paral�
lel �le I�O interface for MPI� Technical Report NAS�

����� NASA Ames Research
Center� January �


� Version ����

	CFPB
�� Peter F� Corbett� Dror G� Feitelson� Jean�Pierre Prost� and Sandra Johnson Baylor�
Parallel access to �les in the Vesta �le system� In Proceedings of Supercomputing ����
pages �������� �

��

	CK
�� Thomas H� Cormen and David Kotz� Integrating theory and practice in parallel �le
systems� In Proceedings of the ���� DAGS�PC Symposium� pages ������ Hanover� NH�
June �

�� Dartmouth Institute for Advanced Graduate Studies�

	dBC
�� Juan Miguel del Rosario� Rajesh Bordawekar� and Alok Choudhary� Improved parallel
I�O via a two�phase run�time access strategy� In IPPS ��� Workshop on Input�Output

��



in Parallel Computer Systems� pages 
����� �

�� Also published in Computer Archi�
tecture News ���
�� December �

�� pages ������

	DdR
�� Erik DeBenedictis and Juan Miguel del Rosario� nCUBE parallel I�O software� In
Eleventh Annual IEEE International Phoenix Conference on Computers and Commu�
nications �IPCCC�� pages ���������� April �

��

	Dib
�� Peter C� Dibble� A Parallel Interleaved File System� PhD thesis� University of
Rochester� March �

��

	DSE��� Peter Dibble� Michael Scott� and Carla Ellis� Bridge� A high�performance �le sys�
tem for parallel processors� In Proceedings of the Eighth International Conference on
Distributed Computer Systems� pages �
������ June �
���

	EGKS
�� Susanne Englert� Jim Gray� Terrye Kocher� and Praful Shah� A benchmark of NonStop
SQL Release � demonstrating near�linear speedup and scaleup on large databases� In
Proceedings of the ���	 ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems� pages ��
����� May �

��

	FBD
�� Craig S� Freedman� Josef Burger� and David J� Dewitt� SPIFFI � a scalable parallel
�le system for the Intel Paragon� Submitted to IEEE TPDS� �

��

	FPD
�� James C� French� Terrence W� Pratt� and Mriganka Das� Performance measurement
of the Concurrent File System of the Intel iPSC�� hypercube� Journal of Parallel and
Distributed Computing� ����������
����� January and February �

��

	GGL
�� N� Galbreath� W� Gropp� and D� Levine� Applications�driven parallel I�O� In Proceed�
ings of Supercomputing ���� pages �������� �

��

	GL
�� Andrew S� Grimshaw and Edmond C� Loyot� Jr� ELFS� object�oriented extensible �le
systems� Technical Report TR�
����� Univ� of Virginia Computer Science Department�
July �

��

	HdC

� Michael Harry� Juan Miguel del Rosario� and Alok Choudhary� VIP�FS� A virtual�
parallel �le system for high performance parallel and distributed computing� In Pro�
ceedings of the Ninth International Parallel Processing Symposium� April �


� To
appear�

	HER�

� Jay Huber� Christopher L� Elford� Daniel A� Reed� Andrew A� Chien� and David S�
Blumenthal� PPFS� A high performance portable parallel �le system� Technical Report
UIUCDCS�R�

��
��� University of Illinois at Urbana Champaign� January �


�

	KE
�� David Kotz and Carla Schlatter Ellis� Practical prefetching techniques for multipro�
cessor �le systems� Journal of Distributed and Parallel Databases� ��������
�� January
�

��

	Ken

� Rick Kendall� Personal communication� Paci�c Northwest Laboratories� February �


�

	KFG
�� John F� Karpovich� James C� French� and Andrew S� Grimshaw� High performance
access to radio astronomy data� A case study� In Proceedings of the 
th International
Working Conference on Scienti�c and Statistical Database Management� September
�

�� Also available as Univ� of Virginia TR CS�
���
�

��



	KHH�
�� Masaru Kitsuregawa� Satoshi Hirano� Masanobu Harada� Minoru Nakamura� and Mikio
Takagi� The Super Database Computer �SDC�� System architecture� algorithm and pre�
liminary evaluation� In Proceedings of the Twenty�Fifth Annual Hawaii International
Conference on System Sciences� volume I� pages ������
� �

��

	KN
�� David Kotz and Nils Nieuwejaar� Dynamic �le�access characteristics of a production
parallel scienti�c workload� In Proceedings of Supercomputing ���� pages ������
�
November �

��

	Kot
�� David Kotz� Disk�directed I�O for MIMD multiprocessors� In Proceedings of the ����
Symposium on Operating Systems Design and Implementation� pages ������ November
�

�� Updated as Dartmouth TR PCS�TR
����� on November �� �

��

	KR
�� Thomas T� Kwan and Daniel A� Reed� Performance of the CM�
 scalable �le system�
In Proceedings of the �th ACM International Conference on Supercomputing� pages
�
����
� July �

��

	Kri
�� Orran Krieger� HFS
 A �exible �le system for shared�memory multiprocessors� PhD
thesis� University of Toronto� October �

��

	LIN�
�� Susan J� LoVerso� Marshall Isman� Andy Nanopoulos� William Nesheim� Ewan D�
Milne� and Richard Wheeler� sfs� A parallel �le system for the CM�
� In Proceedings
of the ���� Summer USENIX Conference� pages �
����
� �

��

	Mas
�� Parallel �le I�O routines� MasPar Computer Corporation� �

��

	MS
�� Steven A� Moyer and V� S� Sunderam� PIOUS� a scalable parallel I�O system for
distributed computing environments� In Proceedings of the Scalable High�Performance
Computing Conference� pages ������ �

��

	Nit
�� Bill Nitzberg� Performance of the iPSC���� Concurrent File System� Technical Report
RND�
������ NAS Systems Division� NASA Ames� December �

��

	NK

� Nils Nieuwejaar and David Kotz� Low�level interfaces for high�level parallel I�O� Tech�
nical Report PCS�TR

��
�� Dept� of Computer Science� Dartmouth College� March
�


� Submitted to IOPADS at IPPS �

�

	PEK�

� Apratim Purakayastha� Carla Schlatter Ellis� David Kotz� Nils Nieuwejaar� and Michael
Best� Characterizing parallel �le�access patterns on a large�scale multiprocessor� In
Proceedings of the Ninth International Parallel Processing Symposium� April �


� To
appear�

	PG
�� R� Hugo Patterson and Garth A� Gibson� Exposing I�O concurrency with informed
prefetching� In Proceedings of the Third International Conference on Parallel and
Distributed Information Systems� pages ����� September �

��

	Pie�
� Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In
Fourth Conference on Hypercube Concurrent Computers and Applications� pages �

�
���� Golden Gate Enterprises� Los Altos� CA� March �
�
�

	Roy
�� Paul J� Roy� Unix �le access and caching in a multicomputer environment� In Proceed�
ings of the Usenix Mach III Symposium� pages ������ �

��

�




	SW
�� K� E� Seamons and M� Winslett� An e�cient abstract interface for multidimensional
array I�O� In Proceedings of Supercomputing ���� pages �
���

� November �

��

	TBC�
�� Rajeev Thakur� Rajesh Bordawekar� Alok Choudhary� Ravi Ponnusamy� and Tarvinder
Singh� PASSION runtime library for parallel I�O� In Proceedings of the Scalable Parallel
Libraries Conference� pages ��
����� October �

��

��


