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Abstract

As parallel systems move into the production scienti�c computing world� the emphasis will
be on cost�e�ective solutions that provide high throughput for a mix of applications� Cost�
e�ective solutions demand that a system make e�ective use of all of its resources� Many MIMD
multiprocessors today� however� distinguish between �compute� and �I�O� nodes� the latter
having attached disks and being dedicated to running the �le�system server� This static divi�
sion of responsibilities simpli�es system management but does not necessarily lead to the best
performance in workloads that need a di�erent balance of computation and I�O�

Of course� computational processes sharing a node with a �le�system service may receive less
CPU time� network bandwidth� and memory bandwidth than they would on a computation�
only node� In this paper we examine this issue experimentally� We found that high�performance
I�O does not necessarily require substantial CPU time� leaving plenty of time for application
computation� There were some complex �le�system requests� however� which left little CPU
time available to the application� �The impact on network and memory bandwidth still needs
to be determined�	 For applications �or users	 that cannot tolerate an occasional interruption�
we recommend that they continue to use only compute nodes� For tolerant applications needing
more cycles than those provided by the compute nodes� we recommend that they take full
advantage of both compute and I�O nodes for computation� and that operating systems should
make this possible�

� Introduction

As parallel systems move into the production scienti�c computing world� the emphasis will be on

cost�e�ective solutions that provide high throughput for a mix of applications� Several applications�

each with di�erent computational and I�O needs� will be simultaneously active within a single
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multiprocessor� Cost�e�ective solutions demand that a system make e�ective use of all of its

resources�

Many MIMD multiprocessors today are con�gured with two distinct types of processor nodes�

those that have disks attached� which are dedicated to �le I�O� and those that do not have disks

attached� which are used for running applications� This static division of responsibilities simpli�es

system management but does not necessarily lead to the best performance in workloads that need

a di�erent balance of computation and I�O� For example� a system which makes all nodes available

to computational applications increases its overall computational power and may therefore be more

cost e�ective�

Computational processes running on nodes that also serve part of the �le system� however�

may receive less CPU time� network bandwidth� and memory bandwidth than they would on a

computation�only node� The conventional wisdom is that the CPU overhead of the �le�system code

running on I�O nodes� coupled with the unpredictable and erratic nature of I�O activity� would

substantially disrupt the performance of computational applications� In this paper we examine this

issue experimentally� focusing on the impact of a �le�system server on the CPU time available to

local computational processes� We found that high�performance I�O does not necessarily require

substantial CPU time� leaving plenty of time for application computation� There were some complex

�le�system requests� however� which left little CPU time available to the application� �The impact

on network and memory bandwidth still needs to be determined�	 For applications �or users	 which

cannot tolerate an occasional interruption� we recommend that they continue to use only compute

nodes� For other applications� particularly those that can adapt to changing load� we recommend

that they take full advantage of both compute and I�O nodes for computation� After all� our results

show that the I�O nodes have free cycles�

We begin in the next section with background information about multiprocessor �le systems�

Section 
 describes some simulations and their results and Section � describes some measurements

on a real system� We summarize our conclusions in Section ��

� Background

There are many di�erent parallel �le systems Kri��� Pie��� FPD�
� Roy�
� LIN��
� DdR���

CF��� Dib��� DSE��� MS��� HdC��� HER����� Most� though not all� are designed for machines

that have dedicated I�O nodes� Most are based on a fairly traditional Unix�like interface� in

which individual processes make a request to the �le system for each piece of the �le they read
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or write� Increasingly common� however� are specialized interfaces to support multidimensional

matrices CFPB�
� SW��� GL��� GGL�
� BdC�
� BBS���� Mas���� and interfaces that support

collective I�O GGL�
� BdC�
� BBS���� Mas���� With a collective�I�O interface� all processes

make a single joint request to the �le system� rather than numerous independent requests�

Disk�directed I�O is a promising new technique that takes advantage of a collective�I�O inter�

face� and leads to much better performance than �le systems based on traditional caching strate�

gies Kot���� With disk�directed I�O� compute nodes make a collective request to the �le system�

which forwards the request to all I�O nodes� Each I�O node examines the request to determine

which �le blocks are on its disks� sorts the �le blocks by physical location to determine an e�cient

schedule� and then begins a series of transfers� In e�ect� the I�O nodes are in charge of the data

transfer� which is organized to best suit the disks� performance characteristics� Each I�O node uses

two bu�ers to overlap disk transfer and network transfer� For example� when reading� one bu�er is

�lled by reading a block from disk while another bu�er is emptied by scattering its contents among

the compute�node memories according to the requested distribution� Data transfers between com�

pute nodes and I�O nodes use low�overhead �Memput� and �Memget� messages that move data

directly to and from the application bu�er� The experiments in Kot��� show that disk�directed I�O

obtains nearly the peak disk bandwidth across many data distributions and system con�gurations�

There have been no similar studies of CPU activity on the I�O nodes of multiprocessors� A ten�

year old study of diskless workstations LZCZ��� found that �le�server CPU load can be extremely

high� To be able to provide high performance during periods of intense I�O activity� however� a

balanced multiprocessor spreads its disks across many I�O nodes so that the I�O�node CPUs will

not be a performance bottleneck� This con�guration leaves open the possibility that the I�O nodes

will be underutilized during other periods�

� Simulation Experiments

We wanted to measure the worst�case impact of unpredictable I�O interruptions on a computational

application� so we devised an experiment involving two ���processor applications on a 
��node

multiprocessor� in which one application did nothing but I�O� and the other did nothing but

computation� The I�O application either read or wrote a �le that was striped across disks attached

to the computational application�s processors� Thus� the computational application was occasionally

interrupted so that the �le system could service I�O requests for the other application� These

interruptions slowed the computational application in two ways� First� every cycle spent servicing






the I�O request was another cycle delay for the interrupted application� Second� delaying one

process in the computational application indirectly delayed other processes that waited for the

process at a future synchronization point MCD�����

In our experiments we used two di�erent kinds of computational applications� 
� di�erent kinds

of I�O applications� and two di�erent kinds of �le systems� all on a parallel �le�system simulator�

�	� Computational applications

Our two computational applications did nothing but computation� The �rst application� designed

to measure the e�ect of interruptions on raw computational performance� had no synchronization

or other communication between processes� The second application was designed to measure the

e�ect of load imbalance caused by I�O�related interruptions� by having all processes meet at a

barrier every � msec of virtual time� With no interruptions� all processes would meet at every

barrier at precisely the same physical times� and thus would never wait� An interruption of the

computation on one processor� however� delayed both that process and all other processes that had

to wait for it at the next barrier� Thus� a small perturbation of the execution time of one process

could have a ripple e�ect that was much larger than the original�

We chose to use barriers because they have the most drastic e�ects on performance if the

processors become unbalanced� all processes must wait for the slowest process� Similarly we chose

a tight � msec interval to represent a challenging case �several NASA benchmarks on the Paragon

and an SGI cluster were measured with inter�barrier times of �� ��� or �� msec Nit���	�

Note that our barrier experiment also represents a computational application that is running

on many processors� only some of which are involved in serving I�O� while others are left to run at

full speed� All other things being equal� those without I�O interruptions will always have to wait

for those with I�O interruptions� If those slow processors run at ��� of the speed� then the whole

application runs at ��� of full speed� regardless of the number of uninterrupted processors�

�	� I
O applications

Our I�O applications did nothing but I�O� They each transferred a one� or two�dimensional array

of records� but in either case the �le size was �� MB ����� ��KB blocks	� While �� MB is not a

large �le� preliminary tests showed qualitatively similar results with ��� and ���� MB �les� Thus�

�� MB was a compromise to save simulation time� The �le was striped� block by block� across

the �� disks attached to the computational application�s processors� The matrix was distributed
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Figure �� Examples of matrix distributions� which we used as �le�access patterns in our experi�
ments� These examples represent common ways to distribute a �x� vector or an �x� matrix over
four processors� Patterns are named by the distribution method �NONE� BLOCK� or CYCLIC	
in each dimension �rows �rst� in the case of matrices	� Each region of the matrix is labeled with
the number of the compute node responsible for that region� The matrix is stored in row�major
order� both in the �le and in memory� The chunk size �cs	 is the size of the largest contiguous
chunk of the �le that is sent to a single compute node �in units of array elements	� and the stride
�s	 is the �le distance between the beginning of one chunk and the next chunk destined for the
same compute node� where relevant�

across the �� memories of the I�O application according to one of the HPF distributions HPF�
��

as shown in Figure �� Each matrix element was either � bytes or � Kbytes� Clearly� patterns that

use ��byte elements and a column�cyclic distribution lead to a �ne�grained data distribution� and

typically to more I�O overhead�
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�	� File�system implementations

The �le accessed by the I�O applications was striped across all �� disks� Within each disk the

blocks of the �le were laid out contiguously� that is� the logical blocks of the �le were laid out

in consecutive physical blocks on disk� We chose this layout because it provides the highest I�O

throughput� thus keeping the �le�system code the most busy� Any other layout would transfer data

more slowly� requiring interruptions less often�

We modeled two di�erent �le systems� traditional caching and disk�directed I�O� Traditional

caching was meant to simulate a typical parallel �le system where compute nodes� on behalf of

application processes� made independent requests to the appropriate I�O nodes� Each application

request to a compute node was for some contiguous range of bytes in the �le� but because the �le

was striped by blocks� each compute�node request to an I�O node could be for at most one block�

The I�O nodes each maintained a block cache� with LRU replacement and support for prefetching

and write�behind� The I�O node was multithreaded� with a new thread created for each incoming

request� Threads shared a data structure describing the LRU bu�er list� blocking when waiting for

a bu�er to be �ushed for re�use� or for a bu�er to be �lled with new data from disk� This choice

led to a clean design with plenty of concurrency� at the cost of some thread�switching overhead�

More importantly� the distribution of I�O�request service times was highly variable� depending on

whether it was a cache hit or miss� could easily locate a free bu�er� and so forth�

Disk�directed I�O is a new technique that takes advantage of a collective�I�O interface� and

leads to much better performance than traditional caching Kot���� As described above� it works

by giving control over the order and pace of data transfer to the I�O nodes� who optimize the

transfer for maximum disk performance� After an initial burst of CPU activity to determine the disk

schedules� the only ongoing CPU overhead is to compute the distribution of each block�s data among

the compute�node memories� When reading� for example� some blocks coming o� of disk must be

split into several smaller pieces� which are sent to the remote compute�node memories� Some

distributions� particularly when the matrix�element size is small� involve substantial computations

to determine the ultimate location of each element�

�	� Measurement methodology

Rather than actually running a computational application� we measured the fraction of CPU time

available for running a computational application on one set of processors� during the period the

I�O application was running on the other set of processors� Before and after the I�O application
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ran� of course� there were no interruptions and so the computational application received ���� of

the CPU�s time� since we were interested in the e�ect of the I�O requests� we only measured the

period when the I�O application was running� Note that this methodology means that the I�O

interruptions had priority over the computation� again� this experiment was designed to expose the

worst�case e�ects on the computational application�

To make this measurement� we collected traces of the CPU activity on the I�O nodes of our two

�le systems� under load from one of the I�O applications� We processed the traces to count idle

cycles as a proportion of total cycles �i�e�� the inverse of the CPU utilization	� However� not all idle

cycles would be available to a real computation� due to the overhead for switching context between

the application and the �le system� For each interruption� therefore� we deducted �� �sec�� Idle

intervals shorter than �� �sec were therefore useless to the computation� and so were not counted�

�	� Simulator

Our traces were collected from the STARFISH parallel �le�system simulator Kot���� which ran on

top of the Proteus parallel�architecture simulator BDCW���� which in turn ran on a DEC�����

workstation� We con�gured Proteus using the parameters listed in Table �� These parameters are

not meant to re�ect any particular machine� but a generic machine of current technology�

�	� Results

Figure � compares the impact of all 
� I�O applications on our �rst computational application� as

well as showing the I�O bandwidth achieved by the I�O application� Ideally� all points would be

in the upper�right corner� indicating high I�O throughput and computational performance� Most

of the disk�directed�I�O points are there� except for six �hard� patterns on the left� Traditional

caching had much poorer I�O performance� and its CPU needs were slightly smaller �to some extent

the CPU needs appear smaller because the CPU impact was spread over a longer physical time�

due to the poor I�O performance	�

To get a better understanding of Figure �� we selected two representative patterns for more

detailed presentation� one that was extremely easy and fast in both �le systems� and another

that was extremely complex and slow in both �le systems� The easy pattern �representing points

in the upper right	 distributed a one�dimensional matrix of ��KB records cyclically among the

memories �recall that � KB was the �le�system block size	� The hard pattern �representing points

�This is a moderate context�switch time �ALBL���� even when cache eects are considered
 In any case� preliminary
experiments showed that our results were not sensitive to this parameter
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Table �� Parameters for simulator�

MIMD� distributed�memory 
� processors
Compute processors �CPs	 ��
I�O processors �IOPs	 ��
CPU speed� type �� MHz� RISC

Disks ��
Disk type HP �����
Disk capacity ��
 GB
Disk peak transfer rate ��
� Mbytes�s
File�system block size � KB
I�O buses �one per IOP	 ��
I�O bus type SCSI
I�O bus peak bandwidth �� Mbytes�s

Interconnect topology �� � torus
Interconnect bandwidth ���� ��� bytes�s

bidirectional
Interconnect latency �� ns per router
Routing wormhole

in the lower left	 distributed a two�dimensional matrix of ��byte records among the memories in a

BLOCK�CYCLIC layout� to use HPF terminology� We look at both the read and write versions of

these two patterns� for a total of four cases��

Table � shows the results in detail for each of these four access patterns and each �le system�

The �easy� access patterns took little CPU time� leaving ������ of the CPU for the computa�

tional application� Nonetheless� they sustained 
��

 MB�s� which is ������ of the disks� peak

bandwidth� Of the two �le systems� disk�directed I�O had higher I�O throughput and less CPU

demand�

For the �hard� access patterns� however� the situation was quite di�erent� I�O performance

su�ered� in traditional caching because it managed the disks and cache poorly� and in disk�directed

I�O because of the amount of overhead in handling thousands of ��byte messages�� Nonetheless�

this example points out a situation where the I�O bene�ts of disk�directed I�O were enormous� It

came at a cost� however� in terms of the amount of CPU overhead required� which in the worst case

left only 
��� of the CPU cycles available for the computational application� The CPU overhead

of traditional caching does not seem to be so bad� but this was again partially due to the poor I�O

�In �Kot���� the easy patterns are called rc and wc with ��KB records� and the hard patterns are called rbc and
wbc with ��byte records


�We suspect the latter may be improved with a gather�scatter message�passing mechanism
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Table �� Percent of CPU time available to the computational application ����� is ideal	� and the
amount of data throughput achieved by the I�O application�

Traditional Caching Disk�directed I�O

CPU available I�O throughput CPU available I�O throughput
�percent	 �MBytes�s	 �percent	 �MBytes�s	

easy read ��� 
��� ��� 

��
easy write ��� 
��� ��� 
���
hard read ��� ��� 
�� ����
hard write ��� ��� ��� ����

performance spreading out the overhead over many cycles�

When we added barrier synchronizations to the computational application� the I�O activity of

course had a bigger e�ect� Figure 
 plots the e�ect of all 
� access patterns on this synchronizing

application� Table 
 focuses on the same representative cases as before� First� note that there was

only minimal e�ect on the easy access patterns� The interruptions were short and rare� leading to

little disturbance� On the �hard� patterns in the traditional�caching �le system� however� there was

a dramatic e�ect due to the highly variable amount of computation needed for cache�management

operations �for example� a cache miss took much more computation than a cache hit	� leading to

load imbalance within the computational application�

Table 
� A comparison of the amount of CPU time usable by the computation� with and without
barrier synchronization� In the presence of load imbalance caused by I�O interruptions� barriers
cause some processors to idle� reducing the percentage of CPU that was �usable��

Traditional Caching Disk�directed I�O

no barriers barriers no barriers barriers

easy read ��� ��� ��� �
�
easy write ��� ��� ��� �
�
hard read ��� ��� 
�� ���
hard write ��� ��� ��� 
��
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Figure �� I�O throughput vs� computational performance for all 
� di�erent access patterns� and
both �le�system implementations� The upper�right corner represents the best cases� there are
actually �� points above 
� MB�s� many of which overlap in this picture�
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Figure 
� Similar to Figure �� but with a computational application that includes a barrier
synchronization every � msec of virtual time� Again� many of the points in the upper right
overlap�
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� Measurement Experiments

The simulations in the previous section allowed us to examine the e�ects of a variety of workloads

on two very di�erent �le systems in a controlled setting� To support these results� we have also

measured the e�ects of a real �le system on a real computation� using a cluster of eight IBM

RS��������� workstations in Dartmouth�s FLEET lab�� We used a LINPACK benchmark program

as a computational application� We ran several copies of this program in parallel� one on each of

six workstations� Each process ran �� iterations of the LINPACK computation� stopping for a

barrier after each iteration�� Needless to say� this synthetic parallel application is perfectly load

balanced� Then� we had one of the other two workstations run a simple program that either read

or wrote a ��� MB �le with � KB requests� sequentially or randomly� where the �le was served

through NFS from one of the hosts running the LINPACK program� Due to periodic barriers� any

slowdown experienced by that node caused the entire application to slow down� �As a control�

we ran a similar test with six workstations running the LINPACK program while the other two

did I�O� one as client and one as server� despite the network tra�c� the I�O had no e�ect on the

LINPACK program�s barriers�	

Table � presents the results� Although we cannot fully explain the di�erences in the e�ects of

the I�O access patterns� it is clear that the application was able to run at ������ e�ciency despite

the CPU impact of the I�O� Faster processors� which would be found in any substantial parallel

machine� should experience even less impact� Given the heavyweight nature of this operating

system and the NFS �le system� these results corroborate those in the previous section�

Table �� Execution time of a synthetic parallel computation� in seconds� In the �No I�O� case� this
application runs alone� and represents the ideal execution time for this application� In the other
cases one of the nodes is burdened with heavy NFS tra�c� �E�ciency� represents the performance
relative to the ideal execution time�

Execution time �sec	 E�ciency

No I�O �
���
Sequential read ����� �����
Random read ����� �����
Sequential write �
��� �����
Random write ��
�� �����

�For more information see http���www�cs�dartmouth�edu�research�fleet�

�We used MPI �Wal��� for the communication support
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� Discussion and conclusions

Large multiprocessors with many processors and disks have great potential for fast computations

and high I�O throughput� Since they typically cost a lot of money� it is important to utilize the

resources e�ciently� To provide the high�performance I�O needed by some applications� many

multiprocessors today dedicate a subset of their nodes to I�O� Our results show that for some

complex �le�request patterns� these dedicated nodes were saturated� For many simpler patterns�

however� the I�O�node CPUs were largely idle� that is� with ������ available that could be used for

running applications� Furthermore� even applications that synchronized at a barrier every � msec

could pro�tably obtain about ����
� of the I�O node�s CPU time for computation� Disk�directed

I�O usually needed less CPU time than a traditional caching �le system� Measurement results from

a real �le system on a cluster of workstations corroborated these results�

We therefore encourage the development of parallel operating systems that do not enforce a

static partitioning of I�O nodes and compute nodes� and of applications that are willing to run all

or in part on the I�O nodes of a system� Clearly� applications that can adapt to changing load

conditions are best suited to run in this environment�

Future work� We have only considered the impact of I�O service on the CPU utilization of

an I�O node� File�I�O tra�c may also substantially impact the communication performance of a

computation�only application� depending on the nature of the network interface� so further study

is required�
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