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Abstract

As parallel systems move into the production scientific computing world, the emphasis will
be on cost-effective solutions that provide high throughput for a mix of applications. Cost-
effective solutions demand that a system make effective use of all of its resources. Many MIMD
multiprocessors today, however, distinguish between “compute” and “I/O” nodes, the latter
having attached disks and being dedicated to running the file-system server. This static divi-
sion of responsibilities simplifies system management but does not necessarily lead to the best
performance in workloads that need a different balance of computation and 1/0.

Of course, computational processes sharing a node with a file-system service may receive less
CPU time, network bandwidth, and memory bandwidth than they would on a computation-
only node. In this paper we examine this issue experimentally. We found that high-performance
I/O does not necessarily require substantial CPU time, leaving plenty of time for application
computation. There were some complex file-system requests, however, which left little CPU
time available to the application. (The impact on network and memory bandwidth still needs
to be determined.) For applications (or users) that cannot tolerate an occasional interruption,
we recommend that they continue to use only compute nodes. For tolerant applications needing
more cycles than those provided by the compute nodes, we recommend that they take full
advantage of both compute and I/O nodes for computation, and that operating systems should
make this possible.

1 Introduction

As parallel systems move into the production scientific computing world, the emphasis will be on
cost-effective solutions that provide high throughput for a mix of applications. Several applications,

each with different computational and 1/O needs, will be simultaneously active within a single
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multiprocessor. Cost-effective solutions demand that a system make effective use of all of its
resources.

Many MIMD multiprocessors today are configured with two distinct types of processor nodes:
those that have disks attached, which are dedicated to file I/O, and those that do not have disks
attached, which are used for running applications. This static division of responsibilities simplifies
system management but does not necessarily lead to the best performance in workloads that need
a different balance of computation and 1/0O. For example, a system which makes all nodes available
to computational applications increases its overall computational power and may therefore be more
cost effective.

Computational processes running on nodes that also serve part of the file system, however,
may receive less CPU time, network bandwidth, and memory bandwidth than they would on a
computation-only node. The conventional wisdom is that the CPU overhead of the file-system code
running on I/O nodes, coupled with the unpredictable and erratic nature of 1/O activity, would
substantially disrupt the performance of computational applications. In this paper we examine this
issue experimentally, focusing on the impact of a file-system server on the CPU time available to
local computational processes. We found that high-performance 1/O does not necessarily require
substantial CPU time, leaving plenty of time for application computation. There were some complex
file-system requests, however, which left little CPU time available to the application. (The impact
on network and memory bandwidth still needs to be determined.) For applications (or users) which
cannot tolerate an occasional interruption, we recommend that they continue to use only compute
nodes. For other applications, particularly those that can adapt to changing load, we recommend
that they take full advantage of both compute and I/O nodes for computation. After all, our results
show that the I/O nodes have free cycles.

We begin in the next section with background information about multiprocessor file systems.
Section 3 describes some simulations and their results and Section 4 describes some measurements

on a real system. We summarize our conclusions in Section 5.

2 Background

There are many different parallel file systems [Kri94, Pie89, FPD93, Roy93, LINT93, DdR92,
CF94, Dib90, DSESS, MS94, HdC95, HER195]. Most, though not all, are designed for machines
that have dedicated I/O nodes. Most are based on a fairly traditional Unix-like interface, in

which individual processes make a request to the file system for each piece of the file they read



or write. Increasingly common, however, are specialized interfaces to support multidimensional
matrices [CFPB93, SW94, G191, GGL93, BAC93, BBST94, Mas92], and interfaces that support
collective 1/0 [GGLI3, BAC93, BBST94, Mas92]. With a collective-I/O interface, all processes
make a single joint request to the file system, rather than numerous independent requests.
Disk-directed 1/0O is a promising new technique that takes advantage of a collective-1/O inter-
face, and leads to much better performance than file systems based on traditional caching strate-
gies [Kot94]. With disk-directed 1/O, compute nodes make a collective request to the file system,
which forwards the request to all I/O nodes. Each I/O node examines the request to determine
which file blocks are on its disks, sorts the file blocks by physical location to determine an efficient
schedule, and then begins a series of transfers. In effect, the I/O nodes are in charge of the data
transfer, which is organized to best suit the disks’ performance characteristics. Each I/O node uses
two buffers to overlap disk transfer and network transfer. For example, when reading, one buffer is
filled by reading a block from disk while another buffer is emptied by scattering its contents among
the compute-node memories according to the requested distribution. Data transfers between com-
pute nodes and I/O nodes use low-overhead “Memput” and “Memget” messages that move data
directly to and from the application buffer. The experiments in [Kot94] show that disk-directed 1/0O
obtains nearly the peak disk bandwidth across many data distributions and system configurations.
There have been no similar studies of CPU activity on the I/O nodes of multiprocessors. A ten-
year old study of diskless workstations [LZCZ86] found that file-server CPU load can be extremely
high. To be able to provide high performance during periods of intense 1/O activity, however, a
balanced multiprocessor spreads its disks across many I/0O nodes so that the I/O-node CPUs will
not be a performance bottleneck. This configuration leaves open the possibility that the I/O nodes

will be underutilized during other periods.

3 Simulation Experiments

We wanted to measure the worst-case impact of unpredictable I/O interruptions on a computational
application, so we devised an experiment involving two 16-processor applications on a 32-node
multiprocessor, in which one application did nothing but 1/0, and the other did nothing but
computation. The I/O application either read or wrote a file that was striped across disks attached
to the computational application’s processors. Thus, the computational application was occasionally
interrupted so that the file system could service 1/O requests for the other application. These

interruptions slowed the computational application in two ways. First, every cycle spent servicing



the I/O request was another cycle delay for the interrupted application. Second, delaying one
process in the computational application indirectly delayed other processes that waited for the
process at a future synchronization point [MCD191].

In our experiments we used two different kinds of computational applications, 36 different kinds

of I/O applications, and two different kinds of file systems, all on a parallel file-system simulator.

3.1 Computational applications

Our two computational applications did nothing but computation. The first application, designed
to measure the effect of interruptions on raw computational performance, had no synchronization
or other communication between processes. The second application was designed to measure the
effect of load imbalance caused by I/O-related interruptions, by having all processes meet at a
barrier every 5 msec of virtual time. With no interruptions, all processes would meet at every
barrier at precisely the same physical times, and thus would never wait. An interruption of the
computation on one processor, however, delayed both that process and all other processes that had
to wait for it at the next barrier. Thus, a small perturbation of the execution time of one process
could have a ripple effect that was much larger than the original.

We chose to use barriers because they have the most drastic effects on performance if the
processors become unbalanced: all processes must wait for the slowest process. Similarly we chose
a tight 5 msec interval to represent a challenging case (several NASA benchmarks on the Paragon
and an SGI cluster were measured with inter-barrier times of 6, 17, or 64 msec [Nit94]).

Note that our barrier experiment also represents a computational application that is running
on many processors, only some of which are involved in serving 1/0O, while others are left to run at
full speed. All other things being equal, those without 1/O interruptions will always have to wait
for those with I/O interruptions. If those slow processors run at 95% of the speed, then the whole

application runs at 95% of full speed, regardless of the number of uninterrupted processors.

3.2 1I/0 applications

Our I/0 applications did nothing but I/O. They each transferred a one- or two-dimensional array
of records, but in either case the file size was 10 MB (1280 8-KB blocks). While 10 MB is not a
large file, preliminary tests showed qualitatively similar results with 100 and 1000 MB files. Thus,
10 MB was a compromise to save simulation time. The file was striped, block by block, across

the 16 disks attached to the computational application’s processors. The matrix was distributed
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Figure 1: Examples of matrix distributions, which we used as file-access patterns in our experi-
ments. These examples represent common ways to distribute a 1x8 vector or an 8x8 matrix over
four processors. Patterns are named by the distribution method (NONE, BLOCK, or CYCLIC)
in each dimension (rows first, in the case of matrices). Each region of the matrix is labeled with
the number of the compute node responsible for that region. The matrix is stored in row-major
order, both in the file and in memory. The chunk size (cs) is the size of the largest contiguous
chunk of the file that is sent to a single compute node (in units of array elements), and the stride
(s) is the file distance between the beginning of one chunk and the next chunk destined for the
same compute node, where relevant.

across the 16 memories of the I/O application according to one of the HPF distributions [HPF93],
as shown in Figure 1. Fach matrix element was either 8 bytes or 8 Kbytes. Clearly, patterns that
use 8-byte elements and a column-cyclic distribution lead to a fine-grained data distribution, and

typically to more I/O overhead.



3.3 File-system implementations

The file accessed by the I/O applications was striped across all 16 disks. Within each disk the
blocks of the file were laid out contiguously, that is, the logical blocks of the file were laid out
in consecutive physical blocks on disk. We chose this layout because it provides the highest 1/0
throughput, thus keeping the file-system code the most busy. Any other layout would transfer data
more slowly, requiring interruptions less often.

We modeled two different file systems: traditional caching and disk-directed 1/O. Traditional
caching was meant to simulate a typical parallel file system where compute nodes, on behalf of
application processes, made independent requests to the appropriate I/O nodes. Each application
request to a compute node was for some contiguous range of bytes in the file, but because the file
was striped by blocks, each compute-node request to an I/O node could be for at most one block.
The I/0O nodes each maintained a block cache, with LRU replacement and support for prefetching
and write-behind. The I/O node was multithreaded, with a new thread created for each incoming
request. Threads shared a data structure describing the LRU buffer list, blocking when waiting for
a buffer to be flushed for re-use, or for a buffer to be filled with new data from disk. This choice
led to a clean design with plenty of concurrency, at the cost of some thread-switching overhead.
More importantly, the distribution of I/O-request service times was highly variable, depending on
whether it was a cache hit or miss, could easily locate a free buffer, and so forth.

Disk-directed 1/0 is a new technique that takes advantage of a collective-I/O interface, and
leads to much better performance than traditional caching [Kot94]. As described above, it works
by giving control over the order and pace of data transfer to the I/O nodes, who optimize the
transfer for maximum disk performance. After an initial burst of CPU activity to determine the disk
schedules, the only ongoing CPU overhead is to compute the distribution of each block’s data among
the compute-node memories. When reading, for example, some blocks coming off of disk must be
split into several smaller pieces, which are sent to the remote compute-node memories. Some
distributions, particularly when the matrix-element size is small, involve substantial computations

to determine the ultimate location of each element.

3.4 Measurement methodology

Rather than actually running a computational application, we measured the fraction of CPU time
available for running a computational application on one set of processors, during the period the

I/0O application was running on the other set of processors. Before and after the 1/O application



ran, of course, there were no interruptions and so the computational application received 100% of
the CPU’s time; since we were interested in the effect of the I/O requests, we only measured the
period when the I/O application was running. Note that this methodology means that the 1/0O
interruptions had priority over the computation; again, this experiment was designed to expose the
worst-case effects on the computational application.

To make this measurement, we collected traces of the CPU activity on the I/O nodes of our two
file systems, under load from one of the I/O applications. We processed the traces to count idle
cycles as a proportion of total cycles (i.e., the inverse of the CPU utilization). However, not all idle
cycles would be available to a real computation, due to the overhead for switching context between
the application and the file system. For each interruption, therefore, we deducted 50 psec.! Idle

intervals shorter than 50 usec were therefore useless to the computation, and so were not counted.

3.5 Simulator

Our traces were collected from the STARFISH parallel file-system simulator [Kot94], which ran on
top of the Proteus parallel-architecture simulator [BDCW91], which in turn ran on a DEC-5000
workstation. We configured Proteus using the parameters listed in Table 1. These parameters are

not meant to reflect any particular machine, but a generic machine of current technology.

3.6 Results

Figure 2 compares the impact of all 36 1/O applications on our first computational application, as
well as showing the I/O bandwidth achieved by the 1/O application. Ideally, all points would be
in the upper-right corner, indicating high 1/O throughput and computational performance. Most
of the disk-directed-1/O points are there, except for six “hard” patterns on the left. Traditional
caching had much poorer I/O performance, and its CPU needs were slightly smaller (to some extent
the CPU needs appear smaller because the CPU impact was spread over a longer physical time,
due to the poor 1/O performance).

To get a better understanding of Figure 2, we selected two representative patterns for more
detailed presentation: one that was extremely easy and fast in both file systems, and another
that was extremely complex and slow in both file systems. The easy pattern (representing points
in the upper right) distributed a one-dimensional matrix of 8-KB records cyclically among the

memories (recall that 8 KB was the file-system block size). The hard pattern (representing points

!This is a moderate context-switch time [ALBL91], even when cache effects are considered. In any case, preliminary
experiments showed that our results were not sensitive to this parameter.



Table 1: Parameters for simulator.

MIMD, distributed-memory 32 processors

Compute processors (CPs) 16

I/0O processors (I10Ps) 16

CPU speed, type 50 MHz, RISC
Disks 16

Disk type HP 97560
Disk capacity 1.3 GB

Disk peak transfer rate
File-system block size

2.34 Mbytes/s
8 KB

I/O buses (one per IOP) 16

I/0 bus type SCSI

I/O bus peak bandwidth 10 Mbytes/s

Interconnect topology 6 X 6 torus

Interconnect bandwidth 200 x 10° bytes/s
bidirectional

Interconnect latency 20 ns per router

Routing wormhole

in the lower left) distributed a two-dimensional matrix of 8-byte records among the memories in a
BLOCK-CYCLIC layout, to use HPF terminology. We look at both the read and write versions of
these two patterns, for a total of four cases.?

Table 2 shows the results in detail for each of these four access patterns and each file system.
The “easy” access patterns took little CPU time, leaving 90-95% of the CPU for the computa-
tional application. Nonetheless, they sustained 32-33 MB/s, which is 86-89% of the disks’ peak
bandwidth. Of the two file systems, disk-directed I/O had higher I/O throughput and less CPU
demand.

For the “hard” access patterns, however, the situation was quite different. 1/0 performance
suffered, in traditional caching because it managed the disks and cache poorly, and in disk-directed
I/O because of the amount of overhead in handling thousands of 8-byte messages.> Nonetheless,
this example points out a situation where the I/O benefits of disk-directed 1/O were enormous. It
came at a cost, however, in terms of the amount of CPU overhead required, which in the worst case

left only 3.4% of the CPU cycles available for the computational application. The CPU overhead

of traditional caching does not seem to be so bad, but this was again partially due to the poor 1/0O

In [Kot94], the easy patterns are called rc and wc with 8-KB records, and the hard patterns are called rbc and
wbc with 8-byte records.
#We suspect the latter may be improved with a gather/scatter message-passing mechanism.



Table 2: Percent of CPU time available to the computational application (100% is ideal), and the
amount of data throughput achieved by the 1/O application.

Traditional Caching Disk-directed 1/0
CPU available | I/O throughput || CPU available | I/O throughput
(percent) (MBytes/s) (percent) (MBytes/s)
easy read 95. 32.2 95. 33.5
easy write 90. 32.4 95. 32.2
hard read 60. 2.2 3.4 16.2
hard write 87. 0.7 5.1 14.2

performance spreading out the overhead over many cycles.

When we added barrier synchronizations to the computational application, the 1/0 activity of
course had a bigger effect. Figure 3 plots the effect of all 36 access patterns on this synchronizing
application. Table 3 focuses on the same representative cases as before. First, note that there was
only minimal effect on the easy access patterns. The interruptions were short and rare, leading to
little disturbance. On the “hard” patterns in the traditional-caching file system, however, there was
a dramatic effect due to the highly variable amount of computation needed for cache-management
operations (for example, a cache miss took much more computation than a cache hit), leading to

load imbalance within the computational application.

Table 3: A comparison of the amount of CPU time usable by the computation, with and without
barrier synchronization. In the presence of load imbalance caused by I/O interruptions, barriers
cause some processors to idle, reducing the percentage of CPU that was “usable.”

Traditional Caching Disk-directed 1/0

no barriers | barriers || no barriers | barriers
easy read 95. 92. 95. 93.
easy write 90. 87. 95. 93.
hard read 60. 11. 3.4 2.4
hard write 87. 7.1 5.1 3.4
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Figure 2: 1/0 throughput vs. computational performance for all 36 different access patterns, and
both file-system implementations. The upper-right corner represents the best cases; there are
actually 41 points above 30 MB/s, many of which overlap in this picture.
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Figure 3: Similar to Figure 2, but with a computational application that includes a barrier
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4 Measurement Experiments

The simulations in the previous section allowed us to examine the effects of a variety of workloads
on two very different file systems in a controlled setting. To support these results, we have also
measured the effects of a real file system on a real computation, using a cluster of eight IBM
RS/6000-250 workstations in Dartmouth’s FLEET lab.* We used a LINPACK benchmark program
as a computational application. We ran several copies of this program in parallel, one on each of
six workstations. FEach process ran 15 iterations of the LINPACK computation, stopping for a
barrier after each iteration.” Needless to say, this synthetic parallel application is perfectly load
balanced. Then, we had one of the other two workstations run a simple program that either read
or wrote a 400 MB file with 1 KB requests, sequentially or randomly, where the file was served
through NFS from one of the hosts running the LINPACK program. Due to periodic barriers, any
slowdown experienced by that node caused the entire application to slow down. (As a control,
we ran a similar test with six workstations running the LINPACK program while the other two
did 1/0, one as client and one as server; despite the network traffic, the I/O had no effect on the
LINPACK program’s barriers.)

Table 4 presents the results. Although we cannot fully explain the differences in the effects of
the I/O access patterns, it is clear that the application was able to run at 60-97% efficiency despite
the CPU impact of the I/O. Faster processors, which would be found in any substantial parallel
machine, should experience even less impact. Given the heavyweight nature of this operating

system and the NF'S file system, these results corroborate those in the previous section.

Table 4: Execution time of a synthetic parallel computation, in seconds. In the “No I/O” case, this
application runs alone, and represents the ideal execution time for this application. In the other
cases one of the nodes is burdened with heavy NF'S traffic. “Efficiency” represents the performance
relative to the ideal execution time.

Execution time (sec) Efficiency
No /0 130.8
Sequential read 219.9 59.5%
Random read 181.4 72.1%
Sequential write 135.1 96.8%
Random write 193.8 67.5%

*For more information see http://www.cs.dartmouth. edu/research/fleet/.
"We used MPI [Wal94] for the communication support.
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5 Discussion and conclusions

Large multiprocessors with many processors and disks have great potential for fast computations
and high 1/O throughput. Since they typically cost a lot of money, it is important to utilize the
resources efficiently. To provide the high-performance 1/O needed by some applications, many
multiprocessors today dedicate a subset of their nodes to 1/O. Our results show that for some
complex file-request patterns, these dedicated nodes were saturated. For many simpler patterns,
however, the I/O-node CPUs were largely idle, that is, with 80-95% available that could be used for
running applications. Furthermore, even applications that synchronized at a barrier every 5 msec
could profitably obtain about 89-93% of the I/O node’s CPU time for computation. Disk-directed
I/0 usually needed less CPU time than a traditional caching file system. Measurement results from
a real file system on a cluster of workstations corroborated these results.

We therefore encourage the development of parallel operating systems that do not enforce a
static partitioning of I/O nodes and compute nodes, and of applications that are willing to run all
or in part on the I/O nodes of a system. Clearly, applications that can adapt to changing load

conditions are best suited to run in this environment.

Future work. We have only considered the impact of 1/O service on the CPU utilization of
an 1/0 node. File-1/O traffic may also substantially impact the communication performance of a
computation-only application, depending on the nature of the network interface, so further study

is required.
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