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Abstract

Many scientific applications for high-performance multiprocessors have tremendous 1/0 re-
quirements. As a result, the I/O system is often the limiting factor of application performance.
Several new parallel file systems have been developed in recent years, each promising better
performance for some class of parallel applications. As we gain experience with parallel com-
puting, and parallel file systems in particular, it becomes increasingly clear that a single solution
does not suit all applications. For example, it appears to be impossible to find a single appro-
priate interface, caching policy, file structure, or disk management strategy. Furthermore, the
proliferation of file-system interfaces and abstractions make application portability a significant
problem.

We propose that the traditional functionality of parallel file systems be separated into two
components: a fixed core that is standard on all platforms, encapsulating only primitive ab-
stractions and interfaces, and a set of high-level libraries to provide a variety of abstractions
and application-programmer interfaces (APIs). We think of this approach as the “RISC” of
parallel file-system design.

We present our current and next-generation file systems as examples of this structure. Their
features, such as a three-dimensional file structure, strided read and write interfaces, and I/0O-
node programs, are specifically designed with the flexibility and performance necessary to sup-
port a wide range of applications.

1 Introduction

Scientific applications are increasingly dependent on multiprocessor computers to satisfy their
computational needs. Many scientific applications, however, also use tremendous amounts of
data [dC94]: input data collected from satellites or seismic experiments, checkpointing output,
and visualization output. Worse, some applications manipulate data sets too large to fit in main
memory, requiring either explicit or implicit virtual memory support. The 1/O system becomes the
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bottleneck in all of these applications, a bottleneck that is worsening as processor speeds continue
to improve more rapidly than disk speeds.

Fortunately, it is now possible to configure most parallel systems with sufficient 1/O hard-
ware [Kot96]. Most of today’s parallel computers interconnect tens or hundreds of processor nodes,
each of which has a processor and memory, with a high-speed network. Nodes with attached disks
are usually reserved as I/0 nodes, while applications run on some cluster of the remaining compute
nodes.

In the past few years, many parallel file systems have been described in the literature, in-
cluding Bridge/PFS [Dib90], CFS [Pies9], nCUBE [DdR92], OSF/PFS [Roy93], sfs [LINT93],
Vesta/PIOFS [CFPT95], HFS [KS96], PIOUS [MS94], RAMA [MK95], PPFS [HERT'95],
Scotch [GSC195], and Galley [NK96a, NK96b]. Many more techniques for improving the
performance of parallel file systems have been described, including caching and prefetching
[KE93b, KE93a, PGGT95], two-phase I/O [dBC93], disk-directed I/O [Kot94], compute-node
caching [PEK96], chunking [SW94], compression [SW95], filtering [Kot95, BP88], and so forth.

The diversity of current systems and techniques indicates that there is clearly no consensus
about the structure of, interface to, or even functionality of parallel file systems. Indeed, it seems
that no one interface or structure will be appropriate for all parallel applications; for maximum
performance, flexibility of the underlying system is critical [KS96]. It is important that applications
be able to choose the interface and policies that work best for them, and for application programmers
to have control over I/O [WGRW93, CK93].

This diversity of current systems, particularly of the application-programmer’s interface (API),
also makes it difficult to write portable applications. Nearly every file system mentioned above has
its own API. A standard interface is being developed, MPI-IO [CFH'95], but even that interface
is appropriate only for a certain class of applications.

2 Solution

We believe that flexibility is needed for performance. An application programmer should be able
to choose the interfaces and abstractions that work best for that application. To be practical,
however, these interfaces and abstractions should be available on all platforms, so the application
is portable, and each platform should support multiple interfaces and abstractions, so the platform
is usable by many applications.

Consider Figure 1. Most traditional parallel file-system solutions attempt to provide a common
file system that hopes to fit all applications. This common “core” file system is fixed, in that it
must be used by all applications accessing parallel files.! To increase flexibility, we propose to move
much of the functionality out of the core and into application libraries. Our new Galley Parallel
File System takes this “RISC”-like approach.

The new core file system provides only a minimal set of services, leaving higher-level interfaces,
semantics, and functionality to application-selectable libraries. While the implementation of the
core is platform dependent, and provided by the platform vendor, its interface is standard across all
platforms. This approach has proven successful with the MPI message-passing standard [MPI194].

Application programmers may then choose from a variety of different languages and libraries,

1We avoid the term “kernel,” as the core may be comprised of user-level libraries, server daemons, and kernel
code.



to select one that best fits the application’s needs. Some languages or libraries would provide a
traditional read-write abstraction; others (probably with compiler support) would provide trans-
parent out-of-core data structures; still others may provide persistent objects. Some libraries may
be designed for particular application classes like computational chemistry [FN96] or to support
a particular language [CC94, CBH'94]. Finally, some compilers and programmers may choose to
generate application-specific code using the core interface directly.

The concept of I/O libraries is not new; the C stdio library and the C++ iostreams library are
common examples, both layered above the “core” kernel interface. Yet few parallel file systems have
been designed specifically to support a variety of high-level libraries. The difficulty is in deciding
how to divide features between the core and the application libraries, and then in designing an
appropriate core interface. In our research to explore this issue, we are building two generations of
file systems. In the first, Galley, we investigate the underlying file abstraction, a low-level read /write
interface, and resource-scheduling alternatives. In the second, with the tentative name Galley2, we
go a step further and allow user code to run on the I/O nodes. The next two sections discuss each
file system in more detail.

3 The Galley Parallel File System

Our current parallel file system, Galley [NK96a, NK96b], looks like Figure 1b. A more detailed
picture is shown in Figure 2. The core file system includes servers that run on the I/O nodes and
a tiny interface library that runs on the compute nodes. The I/O-node servers manage file-system
metadata, [/O-node caching, and disk scheduling. The interface library translates library calls into
messages to servers on the I/O nodes and arranges the movement of data between compute and
I/O nodes. The higher-level application library, if any, is responsible for providing a convenient
API, data declustering, file-access semantics, and any compute-node caching.

Galley’s servers provide a unified global file-name space. Each file is actually a collection of
subfiles, each of which resides entirely on one I/O node. Fach subfile is itself a collection of one
or more named forks. Each fork is a sequence of bytes, the traditional file abstraction. Galley’s
core file system provides no automatic data declustering; a library may choose to stripe data across
subfiles, for example.

Galley’s forks are specifically designed to support libraries. In particular, some libraries may
wish to store metadata in one or more forks of the subfile, with data in other forks. The traditional
approach is to place the metadata in an auxiliary file or in a “header” at the beginning of the
data. The former approach makes file management awkward, as there is more than one file name
involved in a single data set. The latter approach makes it difficult to access the file through multiple
libraries, each of which expects its own header, and can complicate declustering calculations. In
Galley each library can add its own fork to the subfiles, containing its own metadata.

The structure of parallel files, beyond the fact that they are collections of local files, is completely
determined by library code. Multiple applications wishing to use the same parallel files must
maintain a mutually agreed structure, by convention.

In an extensive characterization of parallel scientific applications [NKP195], we found that many
applications access files in small pieces, typically in a regular “strided” pattern. To allow application
libraries to support these patterns efficiently, the Galley interface supports both structured (e.g.,
strided and nested strided) and unstructured read and write requests. This interface leads to
dramatically better performance [NK96b].
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Figure 1: Our proposed evolution of parallel file-system structure. Traditional systems depend on a fixed
“core” file system that attempts to serve all applications. In our Galley File System, we shrink the core to
leave the API and many of the parallel features to an application-selectable library. In our next-generation

Galley2 File System, we shrink the core further to allow user-selected code to run on the I/O nodes.
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Figure 2: The structure of the Galley parallel file system includes a tiny interface library on the compute
node, which coordinates communication between application I/O libraries on the compute nodes and servers

on the I/O nodes.



Galley’s features, including the global name space, three-dimensional file structure, and struc-
tured read and write requests, make it a suitable and efficient base for constructing parallel file
systems, much more so than building directly on distributed Unix systems.

More information about Galley is available on the WWW? and in forthcoming papers [NK96a,
NK96b].

4 The Galley2 Parallel File System

Our next-generation file system, which we so far call “Galley2” for lack of a better name, goes
beyond Galley to allow application control over I/0-node activities. We keep the same three-
dimensional file structure of subfiles and forks, and we keep the global name space, but we otherwise
reduce the core file system to a minimal local file system on each 1/O node, and allow application-
supplied code to run on the I/O nodes (see Figure 1c). Indeed, we expect that an I/O node would
have an active process (or thread) for each application with files on that I/O node. Figure 3 gives
a more detailed picture of this structure.

This structure breaks away from the traditional client-server structure to allow for “pro-
grammable” servers. A fixed, common server always forces designers to choose between specific
high-level services that may not fit the needs of all applications, and primitive low-level opera-
tions that permit flexibility in the clients but at the cost of extensive client-server communications.
Galley makes a reasonable choice here, but (for example) uses a fixed caching policy.

In Galley2 the core file system is extremely simple: there is no caching, prefetching, or remote
access. It provides a (local) interface to open, close, read and write forks through a block-level
interface, and it arbitrates among I/O-node programs competing for processor time, memory, disk
access, and network access. In short, it focuses on the shared aspects of the file system.

Thus, Galley2 applications can choose nearly all features of the parallel file system, including
the API, caching, prefetching, declustering, inter-node communication protocols, synchronization
and consistency, and so forth. Again, we expect most applications to choose from pre-defined
libraries, but we also encourage use of application-specific code written by application programmers,
generated automatically by compilers, or generated at run time [PABT95]. We refer to all of these
choices as “application-selected code.”

There are many reasons to allow application-selected code on the I/O node. Application-
specific optimizations can be applied to I/O-node caching and prefetching. Mechanisms like disk-
directed 1/0 [Kot94] can be implemented, using application-specific data-distribution information.
File data can be distributed among memories according to a data-dependent mapping function,
for example, in applications with a data-dependent decomposition of unstructured data [Kot95].
Incoming data can be filtered in a data-dependent way, passing only the necessary data on to the
compute node, saving network bandwidth and compute-node memory [Kot95, BP88]. Blocks can be
moved directly between I/O nodes, for example, to rearrange blocks between disks during a copy or
permutation operation, without passing through compute nodes. Format conversion, compression,
and decompression are also possible. In short, there are many ways that we can optimize memory
and disk activity at the I/O node, and reduce disk and network traffic, by moving what is essentially
application code to run at the I/O node in addition to the compute nodes.

Although it would be feasible to use a Unix file system as the local file system, the semantics

*http://www.cs.dartmouth.edu/ nils/galley.html
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Figure 3: The structure of the Galley2 parallel file system depends on application 1/O libraries that have
components on both the compute and I/O nodes. The I/O-node servers shrink down to simple I/O managers

that arbitrate resources among the local user-selected library modules.



and interface are not appropriate for the highest performance. In particular, the Unix file-system
interface does not give the applications enough control, would have no global name space, and has
an inefficient copy-based interface.

5 Research directions

The success of our design clearly depends on the ability of the 1/O-node operating system to
efficiently manage its resources while providing the necessary functionality. We are exploring the
following issues:

e resource management: how should the I/O node manage its shared resources in the presence of
competing applications? The result must be a tradeoff between overall system throughput and
individual application performance. Traditional uniprocessor policies do not directly apply to
this distributed situation; local resource decisions can have a disproportionate global impact
on performance.

e physical memory allocation: how should we best allocate physical memory among I/0O-node
programs?

e processor scheduling: how shall we schedule the CPU among I/0O-node programs? What
about applications that choose to move some non-I1/0-related computation to the I/O node?

e disk transfers: what is an appropriate interface for requesting I/O to and from buffers?

e message-passing: what is the best interface for I/O-node programs to communicate with the
compute nodes, and with each other?

e What is the appropriate mechanism to support I/O-node programs? We are considering
three alternatives: processes, threads within a safe language like Java [GM94] or Python?,
and threads running sandboxed code [WLAG93]. There are three primary issues in this
consideration:

1. how is the I/O-node manager protected from I/O-node programs? With normal hard-
ware protection, in the case of processes; with type-safe languages like Java; or with
sandboxing.

2. how is the code loaded onto the I/O node? Presumably they can be loaded from disk in
the same way as the compute-node code. The tricky part might be dynamic linking of
sandboxed code.

3. what is the overhead?

6 Related work

The Hurricane File System (HFS) [KS96], a parallel file system for the Hector multiprocessor, is
also designed with the philosophy that flexibility is critical for performance. Indeed, their results
clearly demonstrate the tremendous performance impact of choosing the right file structure and

*http://www.python.org/



management policies for the application’s access pattern. HFS is actually a collection of building-
block objects that can be plugged together differently according to application needs. For example,
some building blocks distribute data across multiple disks, others provide prefetching policies, and
others define an API. HFS allows the programmer to replace or extend application-level building
blocks, but these do not include the objects that control declustering, replication, parity, or other
server-side attributes. Galley permits, but does not enforce, a building-block approach to library
design; other approaches are possible. Finally, the Hurricane operating system does not dedicate
nodes to I/0, so it is not unusual for application code to run on “I/O” nodes.

The Portable Parallel File System (PPFS) [HER195] is a testbed for experimenting with parallel
file-system issues. It includes many alternative policies for declustering, caching, prefetching, and
consistency control, and allows application programmers to select appropriate policies for their
needs. It also supports user-defined declustering patterns through an upcall function. Unlike
Galley, however, there is no clearly defined lower-level interface to which programmers may write
new high-level libraries. Unlike Galley2, it does not allow application-selected code (beyond that
already included in PPFS) to execute on the I/O nodes.

In the Transparent Informed Prefetching (TIP) system [PGGT95] an application provides a
set of hints about its future accesses to the file system. The file system uses these hints to make
intelligent caching and prefetching decisions. While this technique can lead to better performance
through better prefetching, it only affects prefetching and caching behavior. It is possible to provide
“hints that disclose,” in their words, for other aspects of the system, but it is unclear that these
hints can provide the same amount of flexibility offered by Galley and Galley?2.

All three of these systems provide the application programmer some control over the parallel
file system, primarily by selecting existing policies from the built-in alternatives.

Galley2 promotes the use of application-selected code on the 1/O nodes. Several operating
systems can download user code into the kernel [Gai72, LCC94, BSPT95]. Other researchers have
noted that it is useful to move the function to the data rather than to move the data to the
function [CBZ95, SG90, Gra95]. Some distributed database systems execute part of the SQL query
in the server rather than the client, to reduce client-server traffic [BP88]. Hatcher and Quinn hint
that allowing user code to run on nCUBE I/O nodes would be a good idea [HQ91].

7 Status

Galley runs on the IBM SP-2 and on workstation clusters [NK96a], and has so far been extremely
successful [NK96b]. We are currently porting several application libraries on top of Galley, including
a traditional striped-file library, Panda [SCJT95], Vesta [CFPT95], and SOLAR [TG96]. We are
also using Galley to investigate policies for managing multi-application workloads.

We are building a simulator for Galley2, to evaluate some of the key ideas, and a full imple-
mentation, to experiment with real applications. There is no question that it will be a much more
flexible system than Galley and its predecessors. We will declare success if that flexibility provides
better performance on a wider range of applications. That will occur if the benefits of application-
specific I/O-node programs outweigh the cost of the extension mechanism (sandboxing, context
switching, or interpretation). We are optimistic!

More information about our research can be found at

http://www.cs.dartmouth.edu/research/pario.html



Interested readers should also plan to visit the upcoming Workshop on I/O in Parallel and
Distributed Systems (IOPADS), at FCRC on May 27, 1996. See

http://www.cs.dartmouth.edu/iopads/
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