
Copyright 1996 by David Kotz.
ACM Operating Systems Review 30(2), April 1996, pp. 63-73.
doi:10.1145/232302.232314.

Flexibility and Performance of Parallel File Systems

David Kotz Nils Nieuwejaar

Department of Computer Science

Dartmouth College

Hanover� NH �����

fdfk�nilsg�cs�dartmouth�edu

February ��� ����

Abstract

Many scienti�c applications for high�performance multiprocessors have tremendous I�O re�
quirements� As a result� the I�O system is often the limiting factor of application performance�
Several new parallel �le systems have been developed in recent years� each promising better
performance for some class of parallel applications� As we gain experience with parallel com�
puting� and parallel �le systems in particular� it becomes increasingly clear that a single solution
does not suit all applications� For example� it appears to be impossible to �nd a single appro�
priate interface� caching policy� �le structure� or disk management strategy� Furthermore� the
proliferation of �le�system interfaces and abstractions make application portability a signi�cant
problem�

We propose that the traditional functionality of parallel �le systems be separated into two
components� a �xed core that is standard on all platforms� encapsulating only primitive ab�
stractions and interfaces� and a set of high�level libraries to provide a variety of abstractions
and application�programmer interfaces �APIs�� We think of this approach as the �RISC	 of
parallel �le�system design�

We present our current and next�generation �le systems as examples of this structure� Their
features� such as a three�dimensional �le structure� strided read and write interfaces� and I�O�
node programs� are speci�cally designed with the 
exibility and performance necessary to sup�
port a wide range of applications�

� Introduction

Scienti�c applications are increasingly dependent on multiprocessor computers to satisfy their
computational needs� Many scienti�c applications� however� also use tremendous amounts of
data �dC���� input data collected from satellites or seismic experiments� checkpointing output�
and visualization output� Worse� some applications manipulate data sets too large to �t in main
memory� requiring either explicit or implicit virtual memory support� The I�O system becomes the

This research was funded by NSF under grant number CCR�������� and by NASA Ames under agreement

numbers NCC ����� and NAG �����	



bottleneck in all of these applications� a bottleneck that is worsening as processor speeds continue
to improve more rapidly than disk speeds�

Fortunately� it is now possible to con�gure most parallel systems with su	cient I�O hard

ware �Kot���� Most of today�s parallel computers interconnect tens or hundreds of processor nodes�
each of which has a processor and memory� with a high
speed network� Nodes with attached disks
are usually reserved as I�O nodes� while applications run on some cluster of the remaining compute
nodes�

In the past few years� many parallel �le systems have been described in the literature� in

cluding Bridge�PFS �Dib�
�� CFS �Pie���� nCUBE �DdR���� OSF�PFS �Roy���� sfs �LIN�����
Vesta�PIOFS �CFP����� HFS �KS���� PIOUS �MS���� RAMA �MK���� PPFS �HER�����
Scotch �GSC����� and Galley �NK��a� NK��b�� Many more techniques for improving the
performance of parallel �le systems have been described� including caching and prefetching
�KE��b� KE��a� PGG����� two
phase I�O �dBC���� disk
directed I�O �Kot���� compute
node
caching �PEK���� chunking �SW���� compression �SW���� �ltering �Kot��� BP���� and so forth�

The diversity of current systems and techniques indicates that there is clearly no consensus
about the structure of� interface to� or even functionality of parallel �le systems� Indeed� it seems
that no one interface or structure will be appropriate for all parallel applications� for maximum
performance� �exibility of the underlying system is critical �KS���� It is important that applications
be able to choose the interface and policies that work best for them� and for application programmers
to have control over I�O �WGRW��� CK����

This diversity of current systems� particularly of the application
programmer�s interface �API��
also makes it di	cult to write portable applications� Nearly every �le system mentioned above has
its own API� A standard interface is being developed� MPI
IO �CFH����� but even that interface
is appropriate only for a certain class of applications�

� Solution

We believe that �exibility is needed for performance� An application programmer should be able
to choose the interfaces and abstractions that work best for that application� To be practical�
however� these interfaces and abstractions should be available on all platforms� so the application
is portable� and each platform should support multiple interfaces and abstractions� so the platform
is usable by many applications�

Consider Figure �� Most traditional parallel �le
system solutions attempt to provide a common
�le system that hopes to �t all applications� This common �core� �le system is �xed� in that it
must be used by all applications accessing parallel �les�� To increase �exibility� we propose to move
much of the functionality out of the core and into application libraries� Our new Galley Parallel
File System takes this �RISC�
like approach�

The new core �le system provides only a minimal set of services� leaving higher
level interfaces�
semantics� and functionality to application
selectable libraries� While the implementation of the
core is platform dependent� and provided by the platform vendor� its interface is standard across all
platforms� This approach has proven successful with the MPI message
passing standard �MPI����

Application programmers may then choose from a variety of di�erent languages and libraries�

�We avoid the term 
kernel�� as the core may be comprised of user�level libraries� server daemons� and kernel

code	



to select one that best �ts the application�s needs� Some languages or libraries would provide a
traditional read
write abstraction� others �probably with compiler support� would provide trans

parent out
of
core data structures� still others may provide persistent objects� Some libraries may
be designed for particular application classes like computational chemistry �FN��� or to support
a particular language �CC��� CBH����� Finally� some compilers and programmers may choose to
generate application
speci�c code using the core interface directly�

The concept of I�O libraries is not new� the C stdio library and the C�� iostreams library are
common examples� both layered above the �core� kernel interface� Yet few parallel �le systems have
been designed speci�cally to support a variety of high
level libraries� The di	culty is in deciding
how to divide features between the core and the application libraries� and then in designing an
appropriate core interface� In our research to explore this issue� we are building two generations of
�le systems� In the �rst� Galley� we investigate the underlying �le abstraction� a low
level read�write
interface� and resource
scheduling alternatives� In the second� with the tentative name Galley�� we
go a step further and allow user code to run on the I�O nodes� The next two sections discuss each
�le system in more detail�

� The Galley Parallel File System

Our current parallel �le system� Galley �NK��a� NK��b�� looks like Figure �b� A more detailed
picture is shown in Figure �� The core �le system includes servers that run on the I�O nodes and
a tiny interface library that runs on the compute nodes� The I�O
node servers manage �le
system
metadata� I�O
node caching� and disk scheduling� The interface library translates library calls into
messages to servers on the I�O nodes and arranges the movement of data between compute and
I�O nodes� The higher
level application library� if any� is responsible for providing a convenient
API� data declustering� �le
access semantics� and any compute
node caching�

Galley�s servers provide a uni�ed global �le
name space� Each �le is actually a collection of
sub�les� each of which resides entirely on one I�O node� Each sub�le is itself a collection of one
or more named forks� Each fork is a sequence of bytes� the traditional �le abstraction� Galley�s
core �le system provides no automatic data declustering� a library may choose to stripe data across
sub�les� for example�

Galley�s forks are speci�cally designed to support libraries� In particular� some libraries may
wish to store metadata in one or more forks of the sub�le� with data in other forks� The traditional
approach is to place the metadata in an auxiliary �le or in a �header� at the beginning of the
data� The former approach makes �le management awkward� as there is more than one �le name
involved in a single data set� The latter approach makes it di	cult to access the �le through multiple
libraries� each of which expects its own header� and can complicate declustering calculations� In
Galley each library can add its own fork to the sub�les� containing its own metadata�

The structure of parallel �les� beyond the fact that they are collections of local �les� is completely
determined by library code� Multiple applications wishing to use the same parallel �les must
maintain a mutually agreed structure� by convention�

In an extensive characterization of parallel scienti�c applications �NKP����� we found that many
applications access �les in small pieces� typically in a regular �strided� pattern� To allow application
libraries to support these patterns e	ciently� the Galley interface supports both structured �e�g��
strided and nested strided� and unstructured read and write requests� This interface leads to
dramatically better performance �NK��b��



Compute
node

I/O node

application

core
file

system
core FS

application

application
library

application

application
library

core FS

Traditional Galley Galley2

a) b) c)

Figure �� Our proposed evolution of parallel �le�system structure� Traditional systems depend on a �xed

�core	 �le system that attempts to serve all applications� In our Galley File System� we shrink the core to

leave the API and many of the parallel features to an application�selectable library� In our next�generation

Galley� File System� we shrink the core further to allow user�selected code to run on the I�O nodes�

Compute Nodes

Interconnection
Network

I/O Nodes

kernel

I/O server

kernel

I/O library B

application B

interface

kernel

I/O library B

application B

interface

kernel

I/O library B

application B

interface

kernel

I/O library B

application B

interface

kernel

I/O library A

application A

interface

kernel

I/O library A

application A

interface

kernel

I/O library A

application A

interface

kernel

I/O library A

application A

interface kernel

I/O server

kernel

I/O server

kernel

I/O server

kernel

I/O server

kernel

I/O server

Figure �� The structure of the Galley parallel �le system includes a tiny interface library on the compute

node� which coordinates communication between application I�O libraries on the compute nodes and servers

on the I�O nodes�



Galley�s features� including the global name space� three
dimensional �le structure� and struc

tured read and write requests� make it a suitable and e	cient base for constructing parallel �le
systems� much more so than building directly on distributed Unix systems�

More information about Galley is available on the WWW� and in forthcoming papers �NK��a�
NK��b��

� The Galley� Parallel File System

Our next
generation �le system� which we so far call �Galley�� for lack of a better name� goes
beyond Galley to allow application control over I�O
node activities� We keep the same three

dimensional �le structure of sub�les and forks� and we keep the global name space� but we otherwise
reduce the core �le system to a minimal local �le system on each I�O node� and allow application

supplied code to run on the I�O nodes �see Figure �c�� Indeed� we expect that an I�O node would
have an active process �or thread� for each application with �les on that I�O node� Figure � gives
a more detailed picture of this structure�

This structure breaks away from the traditional client
server structure to allow for �pro

grammable� servers� A �xed� common server always forces designers to choose between speci�c
high
level services that may not �t the needs of all applications� and primitive low
level opera

tions that permit �exibility in the clients but at the cost of extensive client
server communications�
Galley makes a reasonable choice here� but �for example� uses a �xed caching policy�

In Galley� the core �le system is extremely simple� there is no caching� prefetching� or remote
access� It provides a �local� interface to open� close� read and write forks through a block
level
interface� and it arbitrates among I�O
node programs competing for processor time� memory� disk
access� and network access� In short� it focuses on the shared aspects of the �le system�

Thus� Galley� applications can choose nearly all features of the parallel �le system� including
the API� caching� prefetching� declustering� inter
node communication protocols� synchronization
and consistency� and so forth� Again� we expect most applications to choose from pre
de�ned
libraries� but we also encourage use of application
speci�c code written by application programmers�
generated automatically by compilers� or generated at run time �PAB����� We refer to all of these
choices as �application
selected code��

There are many reasons to allow application
selected code on the I�O node� Application

speci�c optimizations can be applied to I�O
node caching and prefetching� Mechanisms like disk

directed I�O �Kot��� can be implemented� using application
speci�c data
distribution information�
File data can be distributed among memories according to a data
dependent mapping function�
for example� in applications with a data
dependent decomposition of unstructured data �Kot����
Incoming data can be �ltered in a data
dependent way� passing only the necessary data on to the
compute node� saving network bandwidth and compute
node memory �Kot��� BP���� Blocks can be
moved directly between I�O nodes� for example� to rearrange blocks between disks during a copy or
permutation operation� without passing through compute nodes� Format conversion� compression�
and decompression are also possible� In short� there are many ways that we can optimize memory
and disk activity at the I�O node� and reduce disk and network tra	c� by moving what is essentially
application code to run at the I�O node in addition to the compute nodes�

Although it would be feasible to use a Unix �le system as the local �le system� the semantics

�http���www�cs�dartmouth�edu��nils�galley�html



Compute Nodes

Interconnection
Network

I/O Nodes

kernel

I/O manager

BA

kernel

I/O library B

application B

kernel

I/O manager

BA

kernel

I/O manager

BA

kernel

I/O manager

BA

kernel

I/O manager

BA

kernel

I/O manager

BA

kernel

I/O library B

application B

kernel

I/O library B

application B

kernel

I/O library B

application B

kernel

I/O library A

application A

kernel

I/O library A

application A

kernel

I/O library A

application A

kernel

I/O library A

application A

Figure �� The structure of the Galley� parallel �le system depends on application I�O libraries that have

components on both the compute and I�O nodes� The I�O�node servers shrink down to simple I�O managers

that arbitrate resources among the local user�selected library modules�



and interface are not appropriate for the highest performance� In particular� the Unix �le
system
interface does not give the applications enough control� would have no global name space� and has
an ine	cient copy
based interface�

� Research directions

The success of our design clearly depends on the ability of the I�O
node operating system to
e	ciently manage its resources while providing the necessary functionality� We are exploring the
following issues�

� resource management� how should the I�O node manage its shared resources in the presence of
competing applications� The result must be a tradeo� between overall system throughput and
individual application performance� Traditional uniprocessor policies do not directly apply to
this distributed situation� local resource decisions can have a disproportionate global impact
on performance�

� physical memory allocation� how should we best allocate physical memory among I�O
node
programs�

� processor scheduling� how shall we schedule the CPU among I�O
node programs� What
about applications that choose to move some non
I�O
related computation to the I�O node�

� disk transfers� what is an appropriate interface for requesting I�O to and from bu�ers�

� message
passing� what is the best interface for I�O
node programs to communicate with the
compute nodes� and with each other�

� What is the appropriate mechanism to support I�O
node programs� We are considering
three alternatives� processes� threads within a safe language like Java �GM��� or Python��
and threads running sandboxed code �WLAG���� There are three primary issues in this
consideration�

�� how is the I�O
node manager protected from I�O
node programs� With normal hard

ware protection� in the case of processes� with type
safe languages like Java� or with
sandboxing�

�� how is the code loaded onto the I�O node� Presumably they can be loaded from disk in
the same way as the compute
node code� The tricky part might be dynamic linking of
sandboxed code�

�� what is the overhead�

� Related work

The Hurricane File System �HFS� �KS���� a parallel �le system for the Hector multiprocessor� is
also designed with the philosophy that �exibility is critical for performance� Indeed� their results
clearly demonstrate the tremendous performance impact of choosing the right �le structure and

�http���www�python�org�



management policies for the application�s access pattern� HFS is actually a collection of building

block objects that can be plugged together di�erently according to application needs� For example�
some building blocks distribute data across multiple disks� others provide prefetching policies� and
others de�ne an API� HFS allows the programmer to replace or extend application
level building
blocks� but these do not include the objects that control declustering� replication� parity� or other
server
side attributes� Galley permits� but does not enforce� a building
block approach to library
design� other approaches are possible� Finally� the Hurricane operating system does not dedicate
nodes to I�O� so it is not unusual for application code to run on �I�O� nodes�

The Portable Parallel File System �PPFS� �HER���� is a testbed for experimenting with parallel
�le
system issues� It includes many alternative policies for declustering� caching� prefetching� and
consistency control� and allows application programmers to select appropriate policies for their
needs� It also supports user
de�ned declustering patterns through an upcall function� Unlike
Galley� however� there is no clearly de�ned lower
level interface to which programmers may write
new high
level libraries� Unlike Galley�� it does not allow application
selected code �beyond that
already included in PPFS� to execute on the I�O nodes�

In the Transparent Informed Prefetching �TIP� system �PGG���� an application provides a
set of hints about its future accesses to the �le system� The �le system uses these hints to make
intelligent caching and prefetching decisions� While this technique can lead to better performance
through better prefetching� it only a�ects prefetching and caching behavior� It is possible to provide
�hints that disclose�� in their words� for other aspects of the system� but it is unclear that these
hints can provide the same amount of �exibility o�ered by Galley and Galley��

All three of these systems provide the application programmer some control over the parallel
�le system� primarily by selecting existing policies from the built
in alternatives�

Galley� promotes the use of application
selected code on the I�O nodes� Several operating
systems can download user code into the kernel �Gai��� LCC��� BSP����� Other researchers have
noted that it is useful to move the function to the data rather than to move the data to the
function �CBZ��� SG�
� Gra���� Some distributed database systems execute part of the SQL query
in the server rather than the client� to reduce client
server tra	c �BP���� Hatcher and Quinn hint
that allowing user code to run on nCUBE I�O nodes would be a good idea �HQ����

� Status

Galley runs on the IBM SP
� and on workstation clusters �NK��a�� and has so far been extremely
successful �NK��b�� We are currently porting several application libraries on top of Galley� including
a traditional striped
�le library� Panda �SCJ����� Vesta �CFP����� and SOLAR �TG���� We are
also using Galley to investigate policies for managing multi
application workloads�

We are building a simulator for Galley�� to evaluate some of the key ideas� and a full imple

mentation� to experiment with real applications� There is no question that it will be a much more
�exible system than Galley and its predecessors� We will declare success if that �exibility provides
better performance on a wider range of applications� That will occur if the bene�ts of application

speci�c I�O
node programs outweigh the cost of the extension mechanism �sandboxing� context
switching� or interpretation�� We are optimistic�

More information about our research can be found at

http���www�cs�dartmouth�edu�research�pario�html



Interested readers should also plan to visit the upcoming Workshop on I�O in Parallel and
Distributed Systems �IOPADS�� at FCRC on May ��� ����� See

http���www�cs�dartmouth�edu�iopads�

References

�BP

� Andrea J� Borr and Franco Putzolu� High performance SQL through low�level system integra�
tion� In Proceedings of the ACM SIGMOD International Conference on Management of Data�
pages �������� ��

�

�BSP���� Brian Bershad� Stefan Savage� Przemys�law Pardyak� Emin G�un Sirer� Marc E� Fiuczynski�
David Becker� Craig Chambers� and Susan Eggers� Extensibility� safety and performance in the
SPIN operating system� In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles� pages �����
�� December �����

�CBH���� Alok Choudhary� Rajesh Bordawekar� Michael Harry� Rakesh Krishnaiyer� Ravi Ponnusamy�
Tarvinder Singh� and Rajeev Thakur� PASSION� parallel and scalable software for input�
output� Technical Report SCCS����� ECE Dept�� NPAC and CASE Center� Syracuse University�
September �����

�CBZ��� John B� Carter� John K� Bennett� and Willy Zwaenepoel� Techniques for reducing consistency�
related communication in distributed shared�memory systems� ACM Transactions on Computer
Systems� �������������� August �����

�CC��� Thomas H� Cormen and Alex Colvin� ViC�� A preprocessor for virtual�memory C�� Technical
Report PCS�TR������� Dept� of Computer Science� Dartmouth College� November �����

�CFH���� Peter Corbett� Dror Feitelson� Yarson Hsu� Jean�Pierre Prost� Marc Snir� Sam Fineberg� Bill
Nitzberg� Bernard Traversat� and Parkson Wong� MPI�IO� a parallel �le I�O interface for MPI�
Technical Report NAS�������� NASA Ames Research Center� January ����� Version ����

�CFP���� Peter F� Corbett� Dror G� Feitelson� Jean�Pierre Prost� George S� Almasi� Sandra Johnson
Baylor� Anthony S� Bolmarcich� Yarsun Hsu� Julian Satran� Marc Snir� Robert Colao� Brian
Herr� Joseph Kavaky� Thomas R� Morgan� and Anthony Zlotek� Parallel �le systems for the
IBM SP computers� IBM Systems Journal� pages ������
� �����

�CK��� Thomas H� Cormen and David Kotz� Integrating theory and practice in parallel �le systems�
In Proceedings of the ���� DAGS�PC Symposium� pages ������ Hanover� NH� June ����� Dart�
mouth Institute for Advanced Graduate Studies� Revised as Dartmouth PCS�TR����

 on
��������

�dBC��� Juan Miguel del Rosario� Rajesh Bordawekar� and Alok Choudhary� Improved parallel I�O
via a two�phase run�time access strategy� In IPPS ��� Workshop on Input�Output in Parallel
Computer Systems� pages ������ ����� Also published in Computer Architecture News ������
December ����� pages ����
�

�dC��� Juan Miguel del Rosario and Alok Choudhary� High performance I�O for parallel computers�
Problems and prospects� IEEE Computer� ����������
� March �����

�DdR��� Erik DeBenedictis and Juan Miguel del Rosario� nCUBE parallel I�O software� In Proceedings
of the Eleventh Annual IEEE International Phoenix Conference on Computers and Communi�
cations� pages ���������� April �����

�Dib��� Peter C� Dibble� A Parallel Interleaved File System� PhD thesis� University of Rochester� March
�����



�FN��� Ian Foster and Jarek Nieplocha� ChemIO� High�performance I�O for computational chemistry
applications� WWW http���www�mcs�anl�gov�chemio�� February �����

�Gai��� R� Stockton Gaines� An operating system based on the concept of a supervisory computer�
Communications of the ACM� �������������� March �����

�GM��� James Gosling and Henry McGilton� The Java language� A white paper� Sun Microsystems�
�����

�Gra��� Robert S� Gray� Agent Tcl� A transportable agent system� In Proceedings of the CIKM Work�
shop on Intelligent Information Agents� Fourth International Conference on Information and
Knowledge Management �CIKM ��	� Baltimore� Maryland� December �����

�GSC���� Garth A� Gibson� Daniel Stodolsky� Pay W� Chang� William V� Courtwright II� Chris G�
Demetriou� Eka Ginting� Mark Holland� Qingming Ma� LeAnn Neal� R� Hugo Patterson� Jiawen
Su� Rachad Youssef� and Jim Zelenka� The Scotch parallel storage systems� In Proceedings of

�th IEEE Computer Society International Conference �COMPCON ��	� pages �������� San
Francisco� Spring �����

�HER���� Jay Huber� Christopher L� Elford� Daniel A� Reed� Andrew A� Chien� and David S� Blumen�
thal� PPFS� A high performance portable parallel �le system� In Proceedings of the �th ACM
International Conference on Supercomputing� pages �
������ Barcelona� July �����

�HQ��� Philip J� Hatcher and Michael J� Quinn� C��Linda� A programming environment with multiple
data�parallel modules and parallel I�O� In Proceedings of the Twenty�Fourth Annual Hawaii
International Conference on System Sciences� pages �
���
�� �����

�KE��a� David Kotz and Carla Schlatter Ellis� Caching and writeback policies in parallel �le systems�
Journal of Parallel and Distributed Computing� ���������������� January and February �����

�KE��b� David Kotz and Carla Schlatter Ellis� Practical prefetching techniques for multiprocessor �le
systems� Journal of Distributed and Parallel Databases� ����������� January �����

�Kot��� David Kotz� Disk�directed I�O for MIMD multiprocessors� In Proceedings of the ���
 Sympo�
sium on Operating Systems Design and Implementation� pages ������ November ����� Updated
as Dartmouth TR PCS�TR������ on November 
� �����

�Kot��� David Kotz� Expanding the potential for disk�directed I�O� In Proceedings of the ���� IEEE
Symposium on Parallel and Distributed Processing� pages �������� October �����

�Kot��� David Kotz� Introduction to multiprocessor I�O architecture� In Ravi Jain� John Werth� and
J� C� Browne� editors� Input�Output in Parallel and Distributed Computer Systems� Kluwer
Academic Publishers� January ����� To appear�

�KS��� Orran Krieger and Michael Stumm� HFS� A performance�oriented 
exible �le system based on
building�block compositions� In Fourth Workshop on Input�Output in Parallel and Distributed
Systems� pages �����
� Philadelphia� May �����

�LCC��� Chao Hsien Lee� Meng Chang Chen� and Ruei Chuan Chang� HiPEC� High performance external
virtual memory caching� In Proceedings of the ���
 Symposium on Operating Systems Design
and Implementation� pages �������� �����

�LIN���� Susan J� LoVerso� Marshall Isman� Andy Nanopoulos� William Nesheim� Ewan D� Milne� and
Richard Wheeler� sfs� A parallel �le system for the CM��� In Proceedings of the ���� Summer
USENIX Conference� pages �������� �����

�MK��� Ethan L� Miller and Randy H� Katz� RAMA� Easy access to a high�bandwidth massively parallel
�le system� In Proceedings of the ���� Winter USENIX Conference� pages ������ January �����



�MPI��� Message Passing Interface Forum� MPI� A Message�Passing Interface Standard� ��� edition�
May � ����� http���www�mcs�anl�gov�Projects�mpi�standard�html�

�MS��� Steven A� Moyer and V� S� Sunderam� PIOUS� a scalable parallel I�O system for distributed
computing environments� In Proceedings of the Scalable High�Performance Computing Confer�
ence� pages ����
� �����

�NK��a� Nils Nieuwejaar and David Kotz� The Galley parallel �le system� In Proceedings of the ��th
ACM International Conference on Supercomputing� May ����� To appear�

�NK��b� Nils Nieuwejaar and David Kotz� Performance of the Galley parallel �le system� In Fourth
Workshop on Input�Output in Parallel and Distributed Systems� pages 
����� May �����

�NKP���� Nils Nieuwejaar� David Kotz� Apratim Purakayastha� Carla Schlatter Ellis� and Michael Best�
File�access characteristics of parallel scienti�c workloads� Technical Report PCS�TR�������
Dept� of Computer Science� Dartmouth College� August ����� Submitted to IEEE TPDS�

�PAB���� Calton Pu� Tito Autrey� Andrew Black� Charles Consel� Crispin Cowan� Jon Inouye� Lakshmi
Kethana� Jonathan Walpole� and Ke Zhang� Optimistic incremental specialization� Streamlining
a commercial operating system� In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles� pages �������� December �����

�PEK��� Apratim Purakayastha� Carla Schlatter Ellis� and David Kotz� ENWRICH� a compute�processor
write caching scheme for parallel �le systems� In Fourth Workshop on Input�Output in Parallel
and Distributed Systems� pages ����
� May �����

�PGG���� R� Hugo Patterson� Garth A� Gibson� Eka Ginting� Daniel Stodolsky� and Jim Zelenka� Informed
prefetching and caching� In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles� pages ������ December �����

�Pie
�� Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In Proceedings of
the Fourth Conference on Hypercube Concurrent Computers and Applications� pages ��������
Golden Gate Enterprises� Los Altos� CA� March ��
��

�Roy��� Paul J� Roy� Unix �le access and caching in a multicomputer environment� In Proceedings of
the Usenix Mach III Symposium� pages ������ �����

�SCJ���� K� E� Seamons� Y� Chen� P� Jones� J� Jozwiak� and M� Winslett� Server�directed collective I�O
in Panda� In Proceedings of Supercomputing ���� December �����

�SG��� JamesW� Stamos and David K� Gi�ord� Remote execution� ACM Transactions on Programming
Languages and Systems� �������������� October �����

�SW��� K� E� Seamons and M� Winslett� An e�cient abstract interface for multidimensional array I�O�
In Proceedings of Supercomputing ��
� pages �������� November �����

�SW��� K� E� Seamons and M� Winslett� A data management approach for handling large compressed
arrays in high performance computing� In Proceedings of the Fifth Symposium on the Frontiers
of Massively Parallel Computation� pages ������
� February �����

�TG��� Sivan Toledo and Fred G� Gustavson� The design and implementation of SOLAR� a portable li�
brary for scalable out�of�core linear algebra computations� In Fourth Workshop on Input�Output
in Parallel and Distributed Systems� pages �
���� Philadelphia� May �����

�WGRW��� David Womble� David Greenberg� Rolf Riesen� and Stephen Wheat� Out of core� out of mind�
Practical parallel I�O� In Proceedings of the Scalable Parallel Libraries Conference� pages ������
Mississippi State University� October �����

�WLAG��� Robert Wahbe� Steven Lucco� Thomas E� Anderson� and Susan L� Graham� E�cient software�
based fault isolation� In Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles� pages �������� �����


