Multiprocessor File System Interfaces

David Kotz

Department of Math and Computer Science
Dartmouth College
Hanover, NH 03755-3551
David. Kotz@Dartmouth.edu

Introduction

MIMD multiprocessors are increasingly used for production supercomputing. Supercom-
puter applications often have tremendous file I/O requirements. Although newer 1/0 sub-
systems, which attach multiple disks to the multiprocessor, permit parallel file access, file
system software often has insufficient support for parallel access to the parallel disks, which
is necessary for scalable performance. Most existing multiprocessor file systems are based on
the conventional file system interface (which has operations like open, close, read, write, and
seek). Although this provides the familiar file abstraction, it is difficult to use for parallel
access to a file. Scalable applications must cooperate to read or write a file in parallel.

We propose an extension to the conventional interface, that supports the most common
parallel access patterns, hides the details of the underlying parallel disk structure, and is
implementable on both uniprocessors and multiprocessors. It also supports the conventional
interface for programs ported from other systems, programmers who do not require the
expressive power of the extended interface, and access via a standard network file system.

We concentrate on scientific workloads, which on uniprocessors have large, sequentially-
accessed files. Parallel file systems and the applications that use them are not sufficiently
mature for us to know what access patterns might be typical, but we expect to still see
sequential access either locally, within the access pattern of each process, or globally, in the
combined accesses of all processes cooperating to access a file.

Extensions to the Conventional Interface

The Unix file system interface [5] is the typical conventional interface, supporting operations
such as open, create, close, read, write, and seek on the file, considered to be an addressable
sequence of bytes. Depending on the particular multiprocessor implementation of the Unix
interface, there are many difficulties in using the interface to program a parallel file access
pattern. We describe our extensions as solutions to these problems.

Sharing open files: Typically, each process must open the file independently, gener-
ating many open requests. This is both inconvenient and inefficient. We propose a multiopen
operation, which opens the file for the entire parallel application when run from any process
in the application.

Self-scheduled access: One globally sequential access pattern reads or writes the file
in a self-scheduled order. The conventional interface requires the programmer to synchronize
the processes, determine a file location for the next record, seek to that location, and perform
the access. This is inconvenient and error-prone. We propose to support a both a global
file pointer (providing a single shared file pointer for all processes, atomically updated on
each access) as well as the traditional local file pointer (providing each process with an
independent, local file pointer).

Copyright 1992 by David Kotz. Appeared in Usenix Workshop on File Systems, pp. 149-150.



Segmented files: Consider the task of writing a large output file. One possibility
is to write all of one process’s data, followed by the next, and so forth. In parallel, each
process seeks to the beginning of its segment of the file, and starts writing. This is difficult
to do if the sizes of the segments are not known in advance. It is extremely awkward to
extend a process’s segment later. For these situations, we provide a new type of file called
a multifile. A multifile is a single file with one directory entry, and contains a collection of
subfiles, each of which is a separate sequence of bytes. A multifile is created by a parallel
program with a certain number of subfiles, usually equal to the number of processes in
the program. Each process writes its own subfile. Later, when the multifile is opened for
reading, each process reads its own subfile.

Records: We support logical records, in addition to the traditional byte-stream ab-
straction. The record support can be combined with the global file pointer synchronization
to provide atomic operations for reading and writing records.

Mapped File Pointers: To support access patterns other than self-scheduled and
segmented, we allow the user to specify a mapping function for each file pointer, which
maps the file pointer to a specific position. Some built-in functions (e.g., interleaved), are
provided.

Coercion: With record files and multifiles, files are no longer simply a single sequence
of bytes. To allow access by programs using the traditional interface, we provide automatic
coercion of multifiles or record-oriented files into plain byte-oriented files. The interface
provides the conventional abstraction without physically changing the file’s organization.

Previous Work

One early implementation is the Intel Concurrent File System [4]. Crockett [1] outlines a
multiprocessor file system design. The most exciting recent work is the new nCUBLE file
system [2] and the ELF'S object-oriented interface [3].

References

[1] T. W. Crockett. File concepts for parallel I/O. In Proceedings of Supercomputing 89, pages
574-579, 1989.

[2] E. DeBenedictis and J. M. del Rosario. nCUBE parallel 1/O software. In Proceedings of the
Eleventh Annual IEEE International Phoeniz Conference on Computers and Communications,
pages 0117-0124, Scottsdale, AZ, April 1992. IEEE Computer Society Press.

[3] A.S. Grimshaw and J. Prem. High performance parallel file objects. In Proceedings of the Sixth
Annual Distributed-Memory Computer Conference, pages 720-723, 1991.

[4] P. Pierce. A concurrent file system for a highly parallel mass storage system. In Proceedings of
the Fourth Conference on Hypercube Concurrent Computers and Applications, pages 155-160,
Monterey, CA, March 1989. Golden Gate Enterprises, Los Altos, CA.

[5] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. The Bell System Technical
Journal, 6(2):1905-1930, July-August 1978.

Availability. The full version of this paper, Dartmouth technical report PCS-TR92-179, is
available at http://www.cs.dartmouth.edu/reports/abstracts/TR92-179/.

This research was supported in part by startup research funds from Dartmouth College and
by DARPA/NASA subcontract of NCC2-560. Thanks to Carla Ellis, Rick Floyd, and Mike del

Rosario.



