
Copyright 1992 by David Kotz.  Appeared in Usenix Workshop on File Systems, pp. 149-150.

Multiprocessor File System Interfaces

David Kotz

Department of Math and Computer Science

Dartmouth College

Hanover� NH ����������
David	Kotz
Dartmouth	edu

Introduction

MIMD multiprocessors are increasingly used for production supercomputing� Supercom�
puter applications often have tremendous �le I�O requirements� Although newer I�O sub�
systems� which attach multiple disks to the multiprocessor� permit parallel �le access� �le
system software often has insu�cient support for parallel access to the parallel disks� which
is necessary for scalable performance� Most existing multiprocessor �le systems are based on
the conventional �le system interface �which has operations like open� close� read� write� and
seek	� Although this provides the familiar �le abstraction� it is di�cult to use for parallel
access to a �le� Scalable applications must cooperate to read or write a �le in parallel�

We propose an extension to the conventional interface� that supports the most common
parallel access patterns� hides the details of the underlying parallel disk structure� and is
implementable on both uniprocessors and multiprocessors� It also supports the conventional
interface for programs ported from other systems� programmers who do not require the
expressive power of the extended interface� and access via a standard network �le system�

We concentrate on scienti�c workloads� which on uniprocessors have large� sequentially�
accessed �les� Parallel �le systems and the applications that use them are not su�ciently
mature for us to know what access patterns might be typical� but we expect to still see
sequential access either locally� within the access pattern of each process� or globally� in the
combined accesses of all processes cooperating to access a �le�

Extensions to the Conventional Interface

The Unix �le system interface 
�� is the typical conventional interface� supporting operations
such as open� create� close� read� write� and seek on the �le� considered to be an addressable
sequence of bytes� Depending on the particular multiprocessor implementation of the Unix
interface� there are many di�culties in using the interface to program a parallel �le access
pattern� We describe our extensions as solutions to these problems�

Sharing open �les� Typically� each process must open the �le independently� gener�
ating many open requests� This is both inconvenient and ine�cient� We propose amultiopen

operation� which opens the �le for the entire parallel application when run from any process
in the application�

Self�scheduled access� One globally sequential access pattern reads or writes the �le
in a self�scheduled order� The conventional interface requires the programmer to synchronize
the processes� determine a �le location for the next record� seek to that location� and perform
the access� This is inconvenient and error�prone� We propose to support a both a global

�le pointer �providing a single shared �le pointer for all processes� atomically updated on
each access	 as well as the traditional local �le pointer �providing each process with an
independent� local �le pointer	�



Segmented �les� Consider the task of writing a large output �le� One possibility
is to write all of one process
s data� followed by the next� and so forth� In parallel� each
process seeks to the beginning of its segment of the �le� and starts writing� This is di�cult
to do if the sizes of the segments are not known in advance� It is extremely awkward to
extend a process
s segment later� For these situations� we provide a new type of �le called
a multi�le� A multi�le is a single �le with one directory entry� and contains a collection of
sub�les� each of which is a separate sequence of bytes� A multi�le is created by a parallel
program with a certain number of sub�les� usually equal to the number of processes in
the program� Each process writes its own sub�le� Later� when the multi�le is opened for
reading� each process reads its own sub�le�

Records� We support logical records� in addition to the traditional byte�stream ab�
straction� The record support can be combined with the global �le pointer synchronization
to provide atomic operations for reading and writing records�

Mapped File Pointers� To support access patterns other than self�scheduled and
segmented� we allow the user to specify a mapping function for each �le pointer� which
maps the �le pointer to a speci�c position� Some built�in functions �e�g�� interleaved	� are
provided�

Coercion� With record �les and multi�les� �les are no longer simply a single sequence
of bytes� To allow access by programs using the traditional interface� we provide automatic
coercion of multi�les or record�oriented �les into plain byte�oriented �les� The interface
provides the conventional abstraction without physically changing the �le
s organization�

Previous Work

One early implementation is the Intel Concurrent File System 
��� Crockett 
�� outlines a
multiprocessor �le system design� The most exciting recent work is the new nCUBE �le
system 
�� and the ELFS object�oriented interface 
���

References

��� T� W� Crockett� File concepts for parallel I�O� In Proceedings of Supercomputing ���� pages
��	
���� �����

�
� E� DeBenedictis and J� M� del Rosario� nCUBE parallel I�O software� In Proceedings of the

Eleventh Annual IEEE International Phoenix Conference on Computers and Communications�
pages ����
��
	� Scottsdale� AZ� April ���
� IEEE Computer Society Press�

��� A� S� Grimshaw and J� Prem� High performance parallel �le objects� In Proceedings of the Sixth

Annual Distributed�Memory Computer Conference� pages �
�
�
�� �����

�	� P� Pierce� A concurrent �le system for a highly parallel mass storage system� In Proceedings of

the Fourth Conference on Hypercube Concurrent Computers and Applications� pages ���
����
Monterey� CA� March ����� Golden Gate Enterprises� Los Altos� CA�

��� D� M� Ritchie and K� Thompson� The UNIX time�sharing system� The Bell System Technical

Journal� ��
������
����� July�August �����

Availability� The full version of this paper� Dartmouth technical report PCS�TR�
����� is
available at http���www�cs�dartmouth�edu�reports�abstracts�TR����	���

This research was supported in part by startup research funds from Dartmouth College and

by DARPA�NASA subcontract of NCC
����� Thanks to Carla Ellis� Rick Floyd� and Mike del

Rosario�


