THaW publications

Carl Landwehr
George Washington University, carl.landwehr@gmail.com

David Kotz
David.F.Kotz@Dartmouth.EDU

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

Part of the [Economics Commons](https://digitalcommons.dartmouth.edu/economics), [Health Information Technology Commons](https://digitalcommons.dartmouth.edu/hit), and the [Information Security Commons](https://digitalcommons.dartmouth.edu/ictsec)

Dartmouth Digital Commons Citation

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Dartmouth Digital Commons. For more information, please contact dartmouthdigitalcommons@groups.dartmouth.edu.
THaW publications

The Trustworthy Health and Wellness (THaW) project
Carl Landwehr and David Kotz

Dartmouth Computer Science Technical Report TR2020-904

December 11, 2020

Abstract

In 2013, the National Science Foundation’s Secure and Trustworthy Cyberspace program awarded a Frontier grant to a consortium of four institutions, led by Dartmouth College, to enable trustworthy cybersystems for health and wellness. As of this writing, the Trustworthy Health and Wellness (THaW) project’s bibliography includes more than 130 significant publications produced with support from the THaW grant; these publications document the progress made on many fronts by the THaW research team. The collection includes dissertations, theses, journal papers, conference papers, workshop contributions and more. The bibliography is organized as a Zotero library, which provides ready access to citation materials and abstracts and associates each work with a URL where it may be found, cluster (category), several content tags, and a brief annotation summarizing the work’s contribution. For more information about THaW, visit thaw.org.

Introduction

There are many ways one might organize the works in a collection such as this one. For simplicity, this bibliography assigns each work to one of eight loosely defined clusters or a catchall “other” cluster. Inevitably, many works do not fit precisely or only into one particular cluster; the content tags provide another way to organize the works and to help users find material relevant to their interests. Each work is labeled with up to four content tags drawn from a set of twenty, also loosely defined, categories. The collection can be filtered by cluster category or content tag to help locate entries of interest to the user. (In the Zotero version of the bibliography, clusters and tags are both recorded in the Zotero “tags” field. However, the bibliography can still be grouped by cluster simply by filtering on the appropriately named tag.)

Each of the following sections provides a brief overview each cluster, ordered roughly by the size of cluster. Each cluster has its own ‘References’ section listing the publications in that cluster.

1. Devices
2. Automated policy
3. Human / Machine interaction
4. Management
5. Encryption and trusted computing base
6. Economics
7. Medicine / Epidemiology
8. Audit
9. Other

1https://www.zotero.org/groups/2647330/thaw/library
1 Devices

The usability, security, and privacy of medical devices and systems has been a primary focus for THaW researchers. The earliest THaW contribution in this category is a comprehensive Systematization of Knowledge (SoK) paper published at the IEEE Symposium on Security and Privacy in 2014 that provides a baseline for research in security and privacy for implantable and body area network devices. THaW research produced several innovative devices both to simplify authentication for medical systems and to provide continuous authentication. Papers and reports on the ZEBRA (later BRACE) system and the KBID system document some of this work, for which two patents were also issued. Vocal resonance as a biometric was also explored as a means to assure the identity of a microphone wearer. Research also investigated unexpected vulnerabilities in several devices, including interactions between acoustic and electromagnetic energy producers and sensors. Crafted acoustic signals were demonstrated to be able to damage hard drive availability and integrity. Vulnerabilities of implantable pacemakers, and communicating the consequent risks to patients were also the subject of THaW research and publication. Jointly with the IEEE, THaW supported the development of a draft “building code” for medical devices with security responsibilities. Additional device-related research can be found in the bibliography under this cluster.

References

ACM Viewpoint notes the risks of promiscuous provision of sensor data to apps on IoT devices and endorses applying Principle of Least Privilege and establishing appropriate design patterns so that user privacy will not be accidentally compromised.

[architecture, cluster-devices, design, opinion, privacy]

Paper documents mechanisms by which acoustic interference can disrupt hard drive performance, demonstrates the effects, and proposes protective measures to protect hard drives against such interference.

[architecture, cluster-devices, security, vulnerabilities]

Short survey of medical device security history, organized into four overlapping periods, with comments on the future. Eric Johnson video segment available.

[cluster-devices, medical-devices, security, survey, vulnerabilities]

Newspaper report of security vulnerability in Medtronic implantable defibrillators.

[cluster-devices, medical-devices, security, vulnerabilities]

Report is a template for a STEM classroom outreach activity involving student use of activity monitoring devices (e.g. FitBit).

[cluster-devices, medical-devices, privacy, security]

Paper presents an authentication system that incorporates a user-worn bracelet that can in effect store strong authentication information (e.g. a lengthy password) and provide information based on it so that the user need not remember and recall the authentication information.

[cluster-devices, security]

Application date 19 May 2017. This is a patent application for software techniques to mitigate the effects of acoustic injection attacks on sensors such as MEMS accelerometers. See also Trippel2017: WALNUT.

[cluster-devices, security, sensor]

CACM Viewpoint argues that sensors need to be designed to be checkable in order to detect/defeat malicious attacks on them; also notes need to educate students about physical aspects of computing.

[cluster-devices, opinion, security]

Poster presented at HealthTech 2015. Evidently reports a scheme for inferring a medical device’s network activity based on the blinking of its LEDs. Poster not available for download.

[cluster-devices]

Application filed 28 August 2015; Patent granted 10 October 2017. This is a patent for a method of using an array of SRAM cells to provide a physically unclonable function (PUF).

[cluster-devices, security]

Viewpoint discussing FDA’s release of a safety communication concerning cybersecurity of pacemakers from St. Jude Medical.

[cluster-devices, opinion, security]

Documents how acoustic signals may be recovered from hard drives, whose read/write heads are sensitive to pressure changes and thus can provide as a side channel, a record of acoustic signals.

[cluster-devices, experiment, security, vulnerabilities]

Article advocates the development of the analog of building codes for software with significant security responsibilities, and reports the development of a draft code for medical devices developed at a workshop convening researchers, developers, and government representatives.

[cluster-devices, design, opinion, security, testing]

Report describes a workshop to develop an analog of a building code for medical device software security and provides a draft code developed by the workshop. Participants included medical device developers, researchers, and government representatives.

[cluster-devices, medical-systems, security]

Presentation describes approaches to projecting information from wristband monitor (eg FitBit) to nearby displays securely, with little user interaction, and without hardware modifications. Suggested approach involves a light-sensing monitor detecting light from screen. (No paper - workshop presentation only)

[cluster-devices, security]

Paper describes the LightTouch system for displaying wristband information securely on nearby displays, coordinating by using an ambient light sensor on the wristband and light output by the display. Experiments demonstrate the feasibility, security, and reliability of the approach. See earlier version liang:lighttouch.
[cluster-devices, security]

This journal paper builds on and summarizes work reported in an earlier (2018) INFOCOM paper on a system for displaying wristband information securely on nearby displays, coordinating by using an ambient light sensor on the wristband and light output by the display. Experiments demonstrate the feasibility, security, and reliability of the approach.
[cluster-devices, security]

Priority date 2014-08-18, Grant date 2020-03-03. Patent describes a system enabling information from mobile health sensors (eg Fitbit) to be displayed onto nearby screens without being affected by local security threats. The scheme uses visible light sensor on the mobile device. See papers liang:lighttouch and liang:jlighttouch.
[cluster-devices, security]

Paper describes a system enabling information from mobile health sensors (eg Fitbit) to be displayed onto nearby screens without being affected by local security threats. The scheme uses visible light sensor on the mobile device. Prototype system built and evaluated. See journal version liang:jlighttouch.
[cluster-devices, security]

Poster reports on a system to use a device with a contact microphone to receive acoustic (speech) signals transmitted through the body and to use these signals to authenticate the wearer of the device. The speaker must first have gone through an enrollment process. Reported accuracy of recognition is good.
[cluster-devices, experiment, implementation, security]

(Senior Honors Thesis) surveys characteristics of several specific mobile health sensing devices, considers potential security vulnerabilities in them, discusses the severity of threats against them and lists potential research topics.

[cluster-devices, security, vulnerabilities]

Ph.D. Dissertation focuses on usable and continuous authentication, starting with user studies, developing the concept of bilateral authentication, and culminating in development of a seamless authentication method for desktops and smartphones that employs a wristband to detect motions of the user that can be correlated with inputs observed from the authenticated user's desktop or smartphone. Available as Dartmouth Computer Science Technical Report TR2016-793.

[cluster-devices, experiment, medical-systems, security]

Observing problems with current approaches to continuous authentication of users at keyboards, the paper proposes ZEBRA. In ZEBRA, a user wears a bracelet (with a built-in accelerometer, gyroscope, and radio) on her dominant wrist. When the user interacts with a computer terminal, the bracelet records the wrist movement, processes it, and sends it to the terminal. The terminal compares the wrist movement with the inputs it receives from the user (via keyboard and mouse), and confirms the continued presence of the user only if they correlate. This project has been renamed CSAW. Note: since the time this paper was published we have learned of a relevant trademark on the name 'Zebra'. Thus, we have renamed our approach 'CSAW' and will use that name in future publications.

[cluster-devices, security]

Technical report providing additional details and depth on ZEBRA, a system for providing continuous authentication for users of keyboard input devices. This project has been renamed CSAW. Note: since the time this paper was published we have learned of a relevant trademark on the name 'Zebra'. Thus, we have renamed our approach 'CSAW' and will use that name in future publications.

[cluster-devices, security]

Patent covers technology reported under 'SAW' project papers for continuous authentication of users of medical systems through motion-detecting wristbands.

[cluster-devices, medical-systems, security]

Paper describes a wristband device that, by detecting motions of the wearer’s wrist and conveying these to a monitor, permits those motions to be correlated (or not) with the motions of an authenticated user. In this way, if the authenticated wearer of the wristband is replaced by another user at the same workstation, for example, the new user’s inputs will not correlate with the wristband of the authenticated user. In this way, the device provides a means for continuous authentication.

[cluster-devices, experiment, medical-systems, security]

Building on prior work, the paper describes a method (CSAW) for proving continuous authentication between a user and a smartphone through use of a wristband worn by the same user. The method correlates motions detected by the wristband with those detected by the smartphone. In a study of CSAW with 11 participants, CSAW could verify the user with 96.5% accuracy every 2 seconds during continuous phone use.

[cluster-devices, design, experiment, implementation, validation]

Paper reports on Sentinel, a secure mode profiler for embedded devices. Sentinel uses a bus-tapping interface to derive a partial control flow graph during device operation. The control flow graph can then be used to audit device execution and detect deviations, which may be attacks.

[cluster-devices, security]

The invention is a wearable device whose motions can be correlated to inputs to a mobile device. The invention supports continuous authentication for users wearing the device.

[cluster-devices, design, implementation]

Demonstration of novel device that exploits the differences in signals received over two antennas separated by a half wavelength to associate a wi-fi enabled device with a wi-fi network.

[cluster-devices, experiment, security, validation]

This is a patent. Priority date 2015-06-23, Grant date 2020-02-25. Patent based on ‘Wanda’ device, described in other publications. Device implements a scheme for single antenna wi-fi device to determine its proximity to another wi-fi device with which it is communicating, in order to assure it is not unwittingly communicating with a distant adversary device rather than a nearby device. See paper pierson:wanda.

[cluster-devices, security]

Poster describes scheme for single antenna wi-fi device to determine its proximity to another wi-fi device with which it is communicating, in order to assure it is not unwittingly communicating with a distant adversary device rather than a nearby device.

[cluster-devices, security]

Paper describes design, implementation, and evaluation of CloseTalker, a system that leverages multiple antennas and the physics of near-field radio to ensure wireless devices in close physical proximity can securely communicate while more distant devices cannot recover the information transmitted. CloseTalker works irrespective of device type or manufacturer and without additional hardware, out-of-band channels, complicated computation, or manual configuration.

[cluster-devices, design, implementation, testing]

Paper describes scheme for single antenna wi-fi device to determine its proximity to another wi-fi device with which it is communicating, in order to assure it is not unwittingly communicating with a distant adversary device rather than a nearby device.

[cluster-devices, security]

Paper proposes to facilitate secure transmission of data over short distances (less than 10 centimeters) by using one antenna of a wifi router to send the data while the other antenna transmits a jamming signal, blocking reception by devices not close by because of the inverse square law governing received power from a point source. Elsewhere referred to as JamFi.

[cluster-devices, medical-devices, security]

Article advocates that device designers think twice about offloading mobile and wearable device storage and processing tasks to cloud services. Instead, consider a ‘no-cloud’ architecture for better privacy and trust, energy efficiency, network reliability, and response time.

[architecture, cluster-devices, opinion, privacy, security]

Comprehensive introduction and survey of security and privacy issues and state of knowledge in implantable medical devices and body area networks. Includes substantial graphic organizing research trends in the area.

[cluster-devices, privacy, security, survey]

Conference paper describes a scheme for assuring that an IoT device has an authenticated channel to another device, typically a smartphone the user trusts. The scheme employs a user-worn ”Vibe-Ring”, which generates vibrations to be received by the IoT device, which must include an accelerometer for sensing the vibrations. Design details are discussed; a prototype was built, and user studies (N=12) were conducted, demonstrating feasibility.

[cluster-devices, design, implementation, security, testing]

Paper describes vulnerabilities/attacks on medical devices (cardiac implantable devices) and discusses whom to notify when vulnerabilities are discovered and appropriate communication methods to use. (Proceedings of the Heart Rhythm Society’s Leadership Summit)

[cluster-devices, opinion, vulnerabilities]

USENIX 2020 paper and presentation describes using laser at a distance of 110 meters to stimulate audio sensors on smart speakers and thereby insert audio commands that are accepted as coming from a legitimate user. Techniques for dealing with this vulnerability are proposed.

[cluster-devices, security, vulnerabilities]

Paper reports on attacks on MEMs accelerometers through acoustic signals, in detail.

[cluster-devices, security, vulnerabilities]

Conference paper demonstrates methods for attacking temperature sensors for control systems, leading to incorrect and possibly dangerous behavior of the temperature control mechanisms. A remote signal injection attack exploits the unintended rectification effect in operational and instrumentation amplifiers to generate a controllable DC component on the amplifier output that can be used to manipulate the sensor readings. Several methods to mitigate these attacks are explored, including a hardware anomaly detection system.

[attack, cluster-devices, experiment, sensor]

This IEEE S+P conference Systematization of Knowledge paper provides a framework for assessing the security of analog sensors. Contributions include a simple model for sensor security, formalisms to help predict new attack vectors, and defensive design patterns.

[cluster-devices, security, survey]

Noting that the sounds from keyboards have been used to eavesdrop on content of the typed information, this paper presents WritingHacker, a prototype system which explores the possibility of audio-based eavesdropping on handwriting via mobile devices.

[cluster-devices, security, vulnerabilities]

Paper documents a side channel attack on force detection sensors worn in shoes. The sensor data is analyzed to reconstruct building corridor maps and potentially the location of the individual in the building at the time the force data is collected. The attack takes a machine
learning approach and entails the development, also described in the paper, of an algorithm to identify when the wearer ascends or descends a typical staircase.

2 Automated policy

Formulating security and privacy policies that provide both fine grained control and accountability and yet are easy to configure and use continues to be a challenging problem. THaW research reported in this cluster covers this topic and a wide range of others. All too often, apps violate policies intended by the platforms on which they run. Some early THaW work in this category revealed widespread use of unsecured internet communications by mHealth applications for Android and proposed mitigation strategies for them. Later work proposed augmenting SE-Android security controls with SEACAT, designed to support more fine-grained and flexible resource management. Genomic data security and privacy policies and enforcement are comprehensively reviewed in a THaW 2015 ACM Computing Surveys paper and subsequent ACM CCS tutorial paper. Concerns about disease propagation raise the question of whether two people have been in the same place at nearly the same time. Answering this question while preserving individual location privacy is the subject of THaW research on the SPICE system, which uses crowdsourcing to identify such “close encounters.” The Internet of Things raises numerous privacy and security issues. Sensors in the home or elsewhere collect rich streams of data from which “recognizers” may extract sensitive information. THaW researchers proposed the development of a “decognizer” toolkit that could redact sensitive information from such a stream. Again, further work is reported in the bibliography under this cluster.

References

Brief introduction to genomics and the security and privacy issues raised by storing and processing genomic data. This is the abstract for a tutorial at CCS based on ThaW survey paper https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666540/.

[cluster-automated-policy, genomics, privacy, security, tutorial]

Paper proposes and analyzes an alternative criterion to differential privacy, called plausible deniability, to enable release of medical datasets without unduly compromising privacy or degrading potential analysis.

[cluster-automated-policy, privacy]

Paper proposes the Facial Information Segmentation algorithm (FIS), which combines the Harris Corner, the color information and an off-the-shelf face detection algorithm to identify
pixels revealing facial information. Evaluation is by comparison with the human trace tracking (HTT) and an off-the-shelf face detection algorithm (FD) proposed in earlier works. The result demonstrates that FD is unsuitable for video redaction. Further, compared with HTT, FIS achieves higher background preservation with negligible loss of video privacy in most cases.

[cluster-automated-policy, implementation, privacy, privacy protection technologies, validation]

Paper presents a real-time video redaction system (ReSPonSe), which aims to protect private information in personal videos according to permissions of people-in-video for other viewers to view them in the video. Video production has two stages: Encapsulation, which produces neutral videos in real-time, and Decapsulation, which provides privacy-aware video to the viewer, revealing private content of people-in-video who grants access rights to that viewer. Efficiency and accuracy of the system in protecting private information are evaluated.

[cluster-automated-policy, implementation, privacy, privacy protection technologies, validation]

The paper introduces the concept of a ‘decognizer’ toolkit which could be used to redact sensitive information in an image or text, complementing the function of a recognizer toolkit, which helps detect such information.

[cluster-automated-policy, medical-devices, privacy]

Paper notes vulnerabilities introduced by customary use of Android privilege management for controlling external resources and introduces SEACAT to support more fine-grained and flexible resource management. SEACAT builds on the SE-Android base.

[cluster-automated-policy, design, implementation]

M.S. Thesis reviews neural network techniques and the extent to which an attacker may infer properties of the data set used to train the network.

[cluster-automated-policy, privacy, vulnerabilities]

Paper studies fully-connected neural nets (FCNNs) and shows how adversarial machine learning techniques can reveal properties that the developer of the model did not intend to share.

[AI, cluster-automated-policy, machine-learning, security, vulnerabilities]

Short paper and video of talk describe a scheme for controlling the flow of information to physicians in accordance with a privacy policy. Paper records are physical and segmented and thereby provide some de facto privacy control. Digital records can flow more freely and transparently. The scheme introduced here involves predicates that determine whether a patient record implies a specified (potentially privacy-sensitive) condition, reducers that remove parts of a record so the condition cannot be inferred, and an inference analyzer that estimates the probability a condition can be inferred.

[cluster-automated-policy, privacy, security]

Noting the rise in the Internet of Things and consequent development of large aggregations of data, the paper describes a user-centric, multi-level, multiple granularity mechanism to share the data from these devices with people and organizations. Revisiting the fundamental mechanisms in security for providing protection, the proposed solution uses capabilities, access lists, and access rights following well-understood formal notions for reasoning about access. The contribution is to describe an auditable, transparent, distributed, decentralized, publication-subscription based robust mechanism and automation of these ideas in the IoT realm that is well-matched to the current generation of clouds

[architecture, cluster-automated-policy, privacy, security]

M.S. Thesis studies mHealth apps for Android, revealing widespread use of unsecured internet communications and widespread use of third party servers. The research also finds side channels in the Android platform that could be exploited by malicious users and proposes mitigation strategies.

[cluster-automated-policy, privacy, security, vulnerabilities]

De-identification of data is performed in order to enable data to be analyzed without revealing identities of study participants. But de-identification is done by rules derived from HIPAA that cannot guarantee participants are not later re-identified using outside data sources. This paper develops models that enable estimating the probability that individuals can be re-identified.

[cluster-automated-policy, experiment, privacy]

Paper introduces the concept of Differential Training Privacy (DTP), intended to enable estimating the privacy risk to the training data of a machine-learning-based system that is posed by the release of a classifier of those data. It proposes that classifiers with DTP measures greater than 1 should not be published.

[AI, cluster-automated-policy, machine-learning, privacy]

Extensive introduction to genomic data, genomic data processing, and the privacy and security issues raised. Results of an opinion poll of an opportunistically assembled group of 61 experts are included.

[cluster-automated-policy, genomics, privacy, survey]

Ph.D. Dissertation covers development of two systems, ENACT and SPICE, that enable mobile users to collect and share health information within the bounds of user privacy requirements. Focus groups are used to understand human sharing and privacy concerns. Available as Dartmouth Computer Science Technical Report TR2016-794.

[architecture, cluster-automated-policy, privacy, security]

Poster proposes a web service, ShareBuddy, that is interposed between users (subjects) and data recipients so that users can understand the risks and benefits of sharing their data before they surrender it. In addition to the web service, ShareBuddy software resides on both the subject’s and recipient’s devices (smartphones).

[architecture, cluster-automated-policy, experiment, privacy]

Paper introduces SPICE, a system using crowdsourcing to identify 'close encounters’ – events when system users are close to each other in space and/or time. The security model
calls for unlinkability, anonymity, and confidentiality of the information about close encounters. The system design therefore avoids the use of a trusted third party server.
[cluster-automated-policy, privacy, security]

Paper describes weakness in Android runtime permissions structure, which allows untrusted apps to set custom permissions, which are then treated the same as system permissions. A fix called Cusper, which allows custom permissions to be distinguished from system permissions, is proposed, implemented, and analyzed.
[cluster-automated-policy, security]

Dissertation studies various vulnerabilities introduced by the incorporation of high resolution sensors in mobile devices and provides a framework for analysis. These sensors can improve device function but also ease the exploitation of side channels for information leakage. See Abstract.
[cluster-automated-policy, design, privacy, vulnerabilities]

(Senior Honors Thesis) proposes that smartphone app access controls be based partly on user location. The idea is to combine behavioral and contextual information to support a hierarchical authentication scheme for continuous authentication. Machine learning techniques are used to learn contexts.
[cluster-automated-policy, security]

Ph.D. Dissertation studies analysis of intentions from big data traces of human activities as a means to improve accuracy of computational models, for example in query auto-completion (QAC), both for static and mobile devices. Security and Privacy implications for some medical applications are considered.
[AI, cluster-automated-policy, machine-learning, privacy, security]

Paper develops cost models for access control schemes that determine access a priori (prospective) or a posteriori (retrospective). Machine learning methods are used to classify the
correctness of the access control decisions, and a new method, termed bispective analysis, is developed to quantify the difference in cost between alternative access control schemes.

[AI, cluster-automated-policy, machine-Learning, medical-systems, security]

3 Human / Machine interaction

Many aspects of human machine interaction including the development of trust between people and machines have been explored by THaW researchers. Studies of workarounds that users employ to avoid security and privacy measures reveal that the theory of privacy as contextual integrity can help explain such behaviors. A patient who needs to provide sensor readings from home to the doctor’s office must first figure out how to connect the sensor to the home network. To simplify this common problem, THaW researchers designed a clever device “Wanda” that the user need only point at or touch the device for it to be added to the network. Other work addressed the use of voice for authentication to a constrained computing environment presented by wearable health and fitness devices. Finally, the use of 3-D virtual headsets like Microsoft’s HoloLens was investigated as a way to bring patient images from an emergency situation to a similarly equipped provider at a remote location.

References

Study of how the theory of privacy as contextual integrity might explain work-arounds employed by healthcare workers with respect to security and privacy controls in Electronic Medical Record systems. Results indicate that contextual integrity provides a useful framework for understanding information transmission and workaround decisions in the health sector.

[cluster-HCI, experiment, privacy]

Describes a software tool that enables users to customize visual interfaces to help in requirements definition. The system was used successfully by neonatal clinicians to help create a neonatal handoff tool.

[cluster-HCI, implementation, medical-systems]

This short paper reports on a telemedicine demonstration in the context of emergency medicine. A person at the site of the emergency with a wearable camera (Microsoft HoloLens) surveys the victim and transmits images to a medical provider also wearing a
HoloLens at the remote site. Algorithms for detecting facial droop were developed and employed to alert the provider to the state of the victim.

[architecture, cluster-HCI, medical-systems]

Describes ‘mixed-methods implementation study’ in which patient portal was offered to pediatric asthma patients/families. Of 9133 patients invited to enroll, 237 (less than 3%) enrolled. ’Although use was associated with higher treatment engagement, our results suggest that achieving widespread portal adoption is unlikely in the short term. Implementation efforts should include workflow redesign and prioritize enrollment of symptomatic children.’

[cluster-HCI, experiment, medical-systems]

Study reviewed weblogs of patient engagements with electronic health information portals. Specifically, logs of patients with cardiovascular disease and/or diabetes who had a Geisinger Clinic primary care provider and were registered ‘MyGeisinger’ Web portal users were studied. Hierarchical cluster analysis indicates that there are clusters of patients with different portal use characteristics.

[clinical-study, cluster-HCI, sampling]

Paper lists challenges in the Internet of Things environment, and in particular what issues arise as people and ‘things’ move into and out of new (and old) environments. The context is challenges to safety, but many of these challenges could be posed as security challenges as well. The life cycle of ‘things’ – creation, deployment, configuration, renewal, disposal – provides a framework.

[architecture, cluster-HCI, opinion, security]

Paper introduces a device for continuous authentication – a ring with an embedded accelerometer. Software correlates user input actions with ring movements for authentication. An experimental prototype is built and evaluated.

[cluster-HCI, experiment, medical-devices, security]

Wearable and Ubiquitous Technologies (IMWUT) (UbiComp), 2(1) page Article No. 19, March 2018. DOI 10.1145/3191751.

Paper proposes that internal body voice (vocal resonance within the body, as measured by a contact microphone) can be used as a biometric. An objective is to assure the device is physically on the authenticated speaker’s body, not merely nearby. Results indicate the method is a feasible authentication method.

[cluster-HCI, security]

Ph.D. Dissertation incorporates work on Wanda, SNAP, and CloseTalker (JamFi), generally addressing issues of radio communications over short distances and exploiting properties of antennas and electromagnetic waves to achieve authentication and secure communication without altering commercial products.

[cluster-HCI, medical-devices, security]

Paper introduces and describes Wanda, a device designed to simplify the introduction of target wireless devices, including blood pressure monitors and other home medical devices, into a wifi network. The device includes two antennas separated by a distance of a half wavelength. Information is transmitted by discriminating the received signal strength of packets sent over one antenna or the other. This discrimination is possible only when the device is physically close to its target. The idea is that the user merely touches or points Wanda to a nearby device and presses a button to introduce the device to the network.

[cluster-HCI, design, implementation, security]

Technical report providing additional details and depth on Wanda, a device to ease the introduction of wireless devices into wifi networks and in general to simplify the transmission of medical data from in-home patient monitors to remotely stored Electronic Health Records. (Expanded version of the INFOCOM 2016 paper by the same title)

[cluster-HCI, design, implementation, security]

Paper proposes a problem, detecting ‘close encounters’ – instances where people were at the same place at slightly different times so that, if one carried a virus, the other might have been exposed to it. The idea is to be able to alert those exposed. The proposed scheme aims to protect users locational privacy and to prevent fake alerts.

[architecture, cluster-HCI, medical-systems]
Based on user observations, researchers develop a natural language (textual) interface to enable users to query mobile health devices (e.g., wristbands) for quantified health data (e.g., step count).

[cluster-HCI, design, implementation]

Paper describes a system for monitoring and recording shoppers’ interactions with products on shelves in a retail environment, recording both items selected and items considered but not selected for purchase. The system incorporates information from Bluetooth Low Energy beacons, smartwatches, and smartphones. System details, implementation, evaluation covered very lightly.

[architecture, cluster-HCI, design]

Paper is about human machine interaction in the sense that it deals with a body area network and devices that may be sensing the state of the body. The idea is to detect intrusions into a body area network on the basis of anomalous power usage exhibited by devices in the network.

[cluster-HCI, security]

Paper proposes that disturbing sounds heard by US workers in Cuban embassy could have arisen from intermodulation distortion coming from ultrasound-based sensing systems operating at different frequencies. Experiments are conducted to show that the released signals are not inconsistent with this hypothesis.

[cluster-HCI, vulnerabilities]

Handwriting recognition system using audio signals and tabletop writing with fingers. Machine Learning and gesture tracking are used to train the system, and techniques to deal with audio multipath yield a claimed accuracy of 90-95% accuracy in laboratory environments.

[AI, cluster-HCI, experiment, machine-learning, medical-devices]

Walking direction change and the stride length of each step made by the user are estimated based on insole sensors. A particle filter is applied to the data to improve the accuracy of the estimated walking path.

[cluster-HCI, design, implementation, validation]

Demonstrates how content of handwriting (as in patient information forms) may be deduced from audio signals generated by writing implements and recorded by nearby mobile devices in contact with the writing surface.

[cluster-HCI, design, implementation, vulnerabilities]

Paper presents SKEPRID, a re-identification method that is resistant to strong pose and lighting changes. By incorporating skeleton information, the impact of changes in pose is reduced, and a set of skeleton-based illumination-independent features can be designed that significantly improves re-id accuracy. Experimental results show that SKEPRID outperforms other current approaches and confirms the benefit of handling complex poses and various illumination jointly.

[cluster-HCI, design, implementation, validation]

4 Management

The continuing evolution during the THaW grant of the CMS/ONC “Meaningful Use” criteria to encourage the adoption and use of electronic health records stimulated research to study the effects of these criteria on healthcare institutions. Results indicate that institutions satisfying stage 1 meaningful use criteria experienced a temporary reduction in external breaches but at the same time experienced an increase in internal breaches. In the longer term, such institutions do see reductions in all breaches. Reports on this work can be found in this cluster, along with several other studies relating cybersecurity and hospital management, including training of clinical IT personnel. Also included are studies of whether a data breach at a hospital leads to subsequent effects on the mortality rate at the hospital. For those hospitals that suffered data breaches, mortality rates were seen to decline less rapidly relative to other hospitals in the same geographic area.

References

Article reviews the distinct impact of data breaches involving PII, finding that these breaches are significantly larger compared to other breaches, and shows that past breaches are useful for predicting future breaches.

[cluster-management, sampling, vulnerabilities]

The authors briefly describe the changing landscape of an IT-enabled healthcare ecosystem and discuss the emerging issues of mobility and security.

[cluster-management, security, survey]

The paper studies records of patient populations from two hospitals, aiming to see whether inferred phenotypes of patients provide a better match between the populations than do conventional billing codes. The inferred phenotypes are observed to perform better. Latent Dirichlet allocation is the basis for the generative topic modeling strategy used to infer phenotypes.

[AI, cluster-management, machine-learning, medical-systems]

Paper studies hospital mortality figures, comparing those hospitals that suffered data breaches with those that didn’t. Findings include that hospitals suffering breaches showed reduced declines in mortality relative to those that didn’t, suggesting that the response to the breach had some negative effects on healthcare delivery.

[cluster-management, medical-systems, security]

Journal paper reporting results of study comparing hospitals reporting data breaches with those that didn’t suffer breaches. Comparison based on response times (time to electrocardiogram) and mortality for patients with myocardial infarctions (heart attack). Results indicate mean response times for breached hospitals increased slightly as did 30-day acute myocardial infarction mortality in the 3-year period following a breach.

[cluster-management]

Article advocates good practices for healthcare enterprises but also building systems with fewer flaws to start with.

[cluster-management, security, tutorial]

The report documents an approach to specifying security requirements for medical device software to reduce the number of security vulnerabilities in delivered medical devices.

[cluster-management, design, implementation, medical-devices, security]

Study of hospitals that have suffered/not suffered multiple data breaches, in relation to outpatient visits and admissions. Finding is that hospitals with multiple breaches experience declines relative to other geographically local institutions. (Poster only)

[cluster-management, privacy, sampling, security]

This report outlines the role of a 'Chief Clinical Informatics Officer’ and recommends appropriate training and certification for people who will fill this role.

[clinical-study, cluster-management]

Presentation only, assessing effects of the 'meaningful use' criterion on hospital data breaches.

[cluster-management, sampling, security]

Study of hospitals that have suffered/not suffered multiple data breaches, in relation to outpatient visits and admissions. Finding is that hospitals with multiple breaches experience declines relative to other geographically local institutions.

[cluster-management, privacy, sampling, security]

Study of hospitals that have/have not achieved Stage 1 'meaningful use’ certification for EHR use to see effects on security breaches. Findings include that institutions reaching Stage 1 meaningful use standards experience a temporary reduction in external breaches and at the same time experience an increase in internal breaches, but do see reductions in both types in the longer term.

[cluster-management, sampling, security]

Article describes the difficulties faced by ambulatory pediatricians in exchanging patient health data electronically and calls for improving incentives for construction and use of mechanisms for this purpose.

[cluster-management, medical-systems, opinion, survey]

Workshop paper lays out characteristics of genomic data and the consequent challenges in storing, processing, and preserving those data.

[cluster-management, genomics, opinion, privacy, security]

Appears to be response to an editorial in the journal that advocated an oversight body to help assure Electronic Health Records.

[cluster-management, opinion]

Paper discussing how to incorporate the evaluation of clinical informatics fellowships into the milestones defining the path of competency from novice to expert in clinical IT career path.

[cluster-management, opinion]

Poster presented at 2014 INFORMS annual meeting; not available for download. Evidently a preliminary version of paper published in INFORMS Journal on Computing in 2015, ”Maintaining secure and reliable distributed control systems.” That paper presents a stochastic model of a network in which nodes may either fail or be brought down by malicious attack, and in which knowledge of state is uncertain. The paper formulates the problem and develops a linear-programming based model to optimize repair priorities. The optimal repair policy follows a threshold indicator: either work on the real failures or the suspected ones.

[cluster-management, security]

Article forecasts changes in future demand for physicians and other healthcare workers as a function of the adoption of healthcare information technology and e-health applications, based on extensive literature review.

[cluster-management, survey]

5 Encryption and trusted computing base

Outsourcing computation to third party providers without revealing sensitive information to those providers is a significant challenge. This cluster includes THaW research applying functional encryption and some aspects of multiparty computation and homomorphic encryption to enable secure and private outsourcing of health data processing. Other papers in this cluster report on vulnerabilities in ostensibly secure trusted computing bases such as Intel’s SGX, which proves to be vulnerable to side channel attacks. Isolation mechanisms in the Android platform, provided by its trusted computing base, are another object of study, as is the detection of malicious apps that run on Android platforms.

References

Ph.D. Dissertation studies Android platform, particularly isolation mechanisms and permission model, discovers weaknesses from side channels, third party libraries and various other aspects that may be exploited by untrustworthy application, including medical apps, and proposes mitigations for them.

[cluster-crypto-tcb, design, security, vulnerabilities]

Paper presents an architecture for protecting IoT devices from some classes of threats, using concepts borrowed from Software-Defined Networking. Prototype implementations are developed and tested.

[architecture, cluster-crypto-tcb, implementation, security]

The paper documents an effort to support outsourcing of medical data analysis without resorting to a trusted third party. Currently available methods for fully homomorphic encryption and differential privacy are described and applied in the context of a dataset of 2.5 million patient encounters, cost is considered, and the researchers conclude that the methods are practical.

[cluster-crypto-tcb, privacy, security]
A patent regarding an architecture comprised of distributed trusted platform modules (TPMs) configured to establish a root-of-trust.

[IoT, TPM, cluster-crypto-tcb, patent]

Paper describes a beacon system that provides authenticated location information and so is not subject to spoofing attacks that Apple iBeacon could be. Application to medical device asset tracking and other areas.

[cluster-crypto-tcb, design, medical-devices, security]

As in functional encryption, a user is enabled to retrieve only cleartext related to a particular function of the ciphertext, rather than a complete decryption of the ciphertext. The 'Control' aspect requires that the user submit a fresh key request to the authority every time it wants to evaluate a function of the cyphertext. The paper includes protocols, implementations, and evaluations of the proposed CFE.

[cluster-crypto-tcb, implementation, security, validation]

Paper presents a new scheme for searching keywords in encrypted documents without decrypting the documents. A server is only required to support upload and download of documents, so the scheme is compatible with cloud based resources.

[cluster-crypto-tcb, privacy, security]

Paper documents an approach to provide a trusted path for data transmitted wirelessly over Bluetooth to an Intel SGX Trusted Execution Environment, eliminating the need to trust drivers, middleware, OS, or hypervisor.

[architecture, cluster-crypto-tcb, security]

25
Describes current hardware/software approaches to provide security/trustworthiness on both 'unconstrained' (PC/server) platforms and 'constrained' (mobile, limited power/size) platforms.

[cluster-crypto-tcb, security, survey]

Develops in-app browser access controls for Android to support safe in-app browsing (using WebView) without heavyweight browser.

[cluster-crypto-tcb, design, implementation, security]

Paper explores vulnerabilities of Intel’s SGX platform, particularly memory side channel attacks.

[cluster-crypto-tcb, security, vulnerabilities]

Ph.D. Dissertation focuses on Android app security: how to detect malicious apps, particularly based on characterization of the app’s behavior in context. Differences in structure in malware (command and control structure with remote communication) and non-malware apps Static analysis of app is part of the method.

[cluster-crypto-tcb, security, vulnerabilities]

6 Economics

Economic incentives are key influencers of both human behavior and the security features of systems. THaW research in this cluster includes determining optimal repair policies for networks where nodes may either fail or be brought down by malicious behavior and in which knowledge is uncertain. One THaW line of research has produced several auction-based models (INCEPTION, CENTURION, THESEUS) for incentivizing desired behaviors among mobile crowd sensing (MCS) participants. Studies of the effects of government regulation and both proactive and reactive investments by healthcare organizations in cybersecurity measures are also included in this cluster, as is a study that shows that, following a data breach, healthcare organization spending on advertising (presumably to recover lost reputation) increases.

References

Study to investigate advertising costs for healthcare institutions that have suffered data breaches. Finding is that advertising costs rise significantly in the period of two years following the breach.

[cluster-economics, sampling, vulnerabilities]

Paper proposes an auction scheme to be used in mobile crowd sensing applications. The scheme takes into account an incentive for user Quality of Information (QoI). The incentive mechanism rewards higher information quality in a reverse combinatorial auction. Both single-minded and multi-minded combinatorial auctions are considered. Analysis and simulation are used to validate the model.

[cluster-economics, validation]

Paper proposes an auction scheme to be used in mobile crowd sensing applications. The scheme takes an approach based on differential privacy to protect users bid data. The scheme is analyzed and simulated to show its effectiveness.

[cluster-economics, privacy, validation]

The paper reports a new scheme for crowd sourcing the task of sensing that addresses the case where there are multiple requestors of sensing tasks as well as multiple performers of sensing tasks (workers). A double-auction-based scheme provides the mechanism to incentivize both requestors and workers. The scheme is both analyzed and simulated to validate its properties.

[cluster-economics, validation]

Paper proposes a payment mechanism, THESEUS, to compensate participants in a mobile crowd sensing (MCS) system for the effort they devote to sensing. The overall scheme is designed to ensure that, at the Bayesian Nash Equilibrium of the non-cooperative game induced by Theseus, all participating workers will spend their maximum possible effort on sensing, which improves their data quality. As a result, the aggregated results calculated subsequently by truth discovery algorithms based on workers’ data will be highly accurate. Analysis and simulation are employed to validate results.

[cluster-economics, validation]

Paper proposes an auction scheme to be used in mobile crowd sensing applications. The scheme takes into account an incentive, a data aggregation, and a data perturbation mechanism. The incentive mechanism rewards reliable workers and compensates their costs for sensing and privacy leakage, which meanwhile satisfies truthfulness and individual rationality. The scheme is analyzed and simulated to show its effectiveness.

[cluster-economics, validation]

Paper looks at the effects of government regulation and proactive and reactive investments by health care organizations in terms of their effects on the rate of data breaches. In organizations with more mature security programs, compliance with regulations has less effect than in organizations with less mature programs. Proactive investments are also seen as more effective than investments made in response to a breach event.

[cluster-economics, medical-systems, sampling, vulnerabilities]

Stochastic model of a network in which nodes may either fail or be brought down by malicious attack, and in which knowledge of state is uncertain. The paper formulates the problem and develops a linear-programming based model to optimize repair priorities. The optimal repair policy follows a threshold indicator: either work on the real failures or the suspected ones.

[cluster-economics, security]

7 Medicine / Epidemiology

Some THaW research has investigated “Learning Healthcare Systems” – that is, healthcare systems that incorporate digital information in a way that can lead to better treatment outcomes. Issues studied include the appropriate use of machine learning technologies to incorporate unstructured expert knowledge from web data, accurate predictions of discharge dates for neonates by applying natural language processing techniques to patient progress notes, effects of automated prescription writing systems, and more.

References

Paper compares performance of alternative approaches to applying machine learning to electronic medical records. Specifically, compares conventional unsupervised dimensionality reduction techniques (e.g., Principal Component Analysis) to approaches that leverage large but unstructured expert knowledge available on the Web.

[AI, cluster-medicine, machine-learning, medical-systems]

This article describes the fundamental functionalities required in an EHR to provide safe and effective care to neonates, including neonatal data requirements and appropriate display of neonatal data; the need for the mother-infant dyad in the EHR; neonatology-specific scores; and special considerations for medication ordering, nutrition, newborn screening, transitions of care, and documentation.

[architecture, cluster-medicine, medical-systems]

Paper reports the results of a workshop to identify research challenges in the development of a comprehensive healthcare system that is able to learn from the data it collects and accumulates.

[cluster-medicine, medical-systems]

Study of the efficacy of a computerized prescription writer that has been in use since 2007. Study concludes the tool 'eliminated most but not all the errors common to handwritten prescriptions.'

[clinical-study, cluster-medicine, validation]

The paper reviews research in clinical data reuse or secondary use by surveying the literature published from 2005 - 2016 in MEDLINE (via PUBMED), conference proceedings, and the ACM Digital Library. It concludes that this fast-growing field holds promise for achieving high quality healthcare, improved healthcare management, reduced healthcare costs, population health management, and effective clinical research.

[cluster-medicine, survey]

Study of diagnostic errors in pediatrics, based on randomized collection of retrospective data. Significant frequencies of diagnostic errors and missed opportunities for diagnosis were found.

[clinical-study, cluster-medicine]

Paper applies AI methods (supervised/unsupervised learning) to study records of diagnoses in relation to identified medical specialties (listed in the Health Care Provider Taxonomy Code Set) in order to identify de facto diagnosis specialties and potentially identify new specialties. Existing specialties are confirmed and new de facto specialties in breast cancer and obesity are identified.

[AI, cluster-medicine, experiment, machine-learning, validation]

8 Audit

Auditing can reveal when software doesn’t live up to its promised behavior. THaW researchers have audited large numbers of Android mHealth apps to reveal security and privacy shortcomings, as well as to monitor resource usage and detect exposure of user data through libraries used by apps.

References

Paper presents a system, Pluto, for detecting the exposure of user data to ad libraries incorporated in apps. Security and privacy risks are assessed for a range of apps, and are substantial.

[cluster-audit, privacy, security, vulnerabilities]

A study of a random sample of 120 out of 1080 Android mHealth apps reveals common shortcomings in security and privacy when using communications and storage.

[cluster-audit, sampling, vulnerabilities]

Paper proposes a platform-centric scheme for collecting audit data from IoT devices and providing provenance.

[architecture, cluster-audit, privacy, security]

Paper reports on a framework for real-time auditing of resource usage (network bandwidth and sensor access) of mHealth apps. Android logs are parsed and analyzed, and experimental results are reported.

[architecture, cluster-audit, implementation, security]

9 Other

Documents in this cluster include research agendas, viewpoints and perspectives, book introductions, and letters responding to other published works.

References

Paper describes an unsupervised feature-learning framework for building useful abstractions for categorical data. The method involves using unstructured data from the web to learn a hierarchical Pachinko allocation model to discover a set of latent variables. Non-uniform distances among the variables are accounted for using the Earth Mover’s Distance. A case study based on a healthcare application is reported.

[AI, cluster-other, experiment, machine-learning]

Paper presents an event-driven stitching algorithm for tile-based 360 video live streaming, which abstracts various semantic information as events and makes tiling scheme decisions based on a tile actuator. A streaming system is implemented based on an event-driven stitching scheme called LiveTexture. Evaluation by comparison with other baseline systems and shows that LiveTexture adapts well to various timing budgets by meeting 89.4% of the timing constraints while utilizing timing budget more efficiently.

[cluster-other, design, implementation, testing]

Short opinion piece motivated by incident in which an investment firm publicized claimed vulnerabilities in medical devices, possibly motivated by driving movements in stock prices for the device manufacturer. The authors argue for a more disciplined and cooperative approach among researchers, vendors, and regulators so that reactions to vulnerabilities will be driven by knowledge rather than fear. The authors look toward a day when partnerships
between healthcare delivery professionals and device developers will enable devices and
systems with stronger security properties.

[cluster-other, opinion]

[4] Reinhold Haux, Antoine Geissbuhler, Justice Holmes, Marie-Christine Jaulent, Sabine Koch,
Casimir A. Kulikowski, Christoph U. Lehmann, Alexa T. McCray, Brigitte Séroussi, Lina Fatima
Soualmia, and Jan H. van Bemmel. On contributing to the progress of medical informatics as publisher.

Paper is a laudatory account of the history of Dieter Breggeman as a publisher of bioinformatics journals and proceedings.

[cluster-other, opinion]

informs.org/editorscut/healthcareanalytics.

This is a curated website published by INFORMS that organizes some of the literature and
podcasts in the general area of analytics applied to healthcare.

[cluster-other, medical-systems, survey]

[6] David Kotz, Kevin Fu, Carl A. Gunter, and Avi Rubin. Security for mobile and cloud frontiers in

Viewpoint calls out research challenges in healthcare systems security and privacy, includ-
ing usable authentication, trustworthy control of medical devices, and trust through account-
ability.

[cluster-other, opinion, privacy, security]

Paper identifies health IT privacy and security challenges and proposes a research agenda
to address issues in data sharing and consent management, access control and authentication,
confidentiality and anonymity, behavioral privacy, continuous and unintended sensing,
multiple-use sensors, mHealth smartphone apps, policies and compliance, accuracy and
data provenance, and security technology.

[cluster-other, opinion, privacy, security, survey]

Introduction to silver anniversary IMIA yearbook edition.

[cluster-other, opinion]

tional academy of health sciences informatics: an academy of excellence. *Yearbook of Medical

Brief article announces the creation of the International Academy of Health Sciences Infor-
matics and the membership of the inaugural membership class. The IAHSI is intended to
be a national academy-like organization.

[cluster-other, opinion]

Systematic literature review of publications addressing frequency, perceptions/attitudes, patient safety risks, existing guidance, and potential interventions and mitigation practices for the use of copy and paste operations in EHRs. Provides four best practice recommendations.

[clinical-study, cluster-other, survey]

10 Conclusion

NSF’s investment in the Trustworthy Health and Wellness grant has led to significant advances in understanding what is required for future more trustworthy, secure, and usable healthcare systems both for patients and for physicians, and how our aspirations for such systems may be achieved in practice. This annotated bibliography is provided both as documentation of that progress and as a tool for others to use in building upon it.

Acknowledgements

Many thanks to Shengsong (Peter) Gao for his assistance in collecting, verifying, and organizing THaW references prior to early drafts of this work. This research results from a research program supported by the National Science Foundation under award numbers CNS-1329686, 1329737, 1330142, and 1330491. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the sponsors.