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A B S T R A C T

The application of digital technologies to better assess, understand, and treat substance use disorders (SUDs) is a particularly promising and vibrant area of scientific
research. The National Drug Abuse Treatment Clinical Trials Network (CTN), launched in 1999 by the U.S. National Institute on Drug Abuse, has supported a growing
line of research that leverages digital technologies to glean new insights into SUDs and provide science-based therapeutic tools to a diverse array of persons with
SUDs.

This manuscript provides an overview of the breadth and impact of research conducted in the realm of digital health within the CTN. This work has included the
CTN's efforts to systematically embed digital screeners for SUDs into general medical settings to impact care models across the nation. This work has also included a
pivotal multi-site clinical trial conducted on the CTN platform, whose data led to the very first “prescription digital therapeutic” authorized by the U.S. Food and Drug
Administration (FDA) for the treatment of SUDs. Further CTN research includes the study of telehealth to increase capacity for science-based SUD treatment in rural
and under-resourced communities. In addition, the CTN has supported an assessment of the feasibility of detecting cocaine-taking behavior via smartwatch sensing.
And, the CTN has supported the conduct of clinical trials entirely online (including the recruitment of national and hard-to-reach/under-served participant samples
online, with remote intervention delivery and data collection). Further, the CTN is supporting innovative work focused on the use of digital health technologies and
data analytics to identify digital biomarkers and understand the clinical trajectories of individuals receiving medications for opioid use disorder (OUD).

This manuscript concludes by outlining the many potential future opportunities to leverage the unique national CTN research network to scale-up the science on
digital health to examine optimal strategies to increase the reach of science-based SUD service delivery models both within and outside of healthcare.
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1. Introduction

Advances in digital technologies and data analytics have created
unprecedented opportunities to assess and enhance health behavior and
to accelerate the ability of science to understand and contribute to
improved health behavior and health outcomes. Over 5 billion people
in the world have access to mobile phone services (Silver, 2019). And
access to these technologies is not confined to high income populations
or countries but is also increasingly evident in many low and middle
income countries and traditionally underserved populations (Collins
et al., 2016; Deloitte, 2017; GSMA Intelligence, 2019; Mitchell & Kan,
2019; Naslund, Aschbrenner et al., 2017).

Digital health refers to the use of digital technologies and data
analytics to understand people's health-related behavior and provide
personalized health care resources (Bhavnani, Narula, & Sengupta,
2016; Dallery, Kurti, & Erb, 2015). Given the widespread access to
technology worldwide, digital health offers great promise to enable
widespread reach and scalability of evidence-based treatments to pro-
mote health behavior and collectively lead to transformations in the
delivery of science-based health care.

The application of digital technologies to better assess, understand
and treat substance use disorders (SUDs) is a particularly promising and
vibrant area of scientific research (Budney, Borodovsky, Marsch, &
Lord, 2019; Marsch & Borodovsky, 2018; Marsch, Lord, & Dallery,
2014). Among the many applications of digital technologies, digital
tools may be useful in the screening and assessment of SUD. Indeed,
research evaluating the use of electronic screeners (e.g., assessments
completed by a patient on a tablet) has demonstrated that individuals
more accurately report risk behavior, including substance use and
sexual risk behavior, when responding to questions posed by an elec-
tronic screener instead of by another individual (Perlis, Des Jarlais,
Friedman, Arasteh, & Turner, 2004). Embedding standardized, vali-
dated clinical assessments of SUD into electronic health records may
also facilitate the assessment and treatment of SUDs as part of the
routine clinical workflow in a wide variety of clinical settings (Tai, Wu,
& Clark, 2012).

Digital health interventions (called “digital therapeutics”) are in-
teractive, self-directed software tools that can overcome some of the
striking disparities in treatment access and treatment quality evident in
healthcare settings across the globe (Hixon, 2015). For example, digital
therapeutics can teach people effective, scientifically validated skills to
recognize and change unhealthy thoughts and behavior (such as drug
use) and provide tools to help people apply these skills to their ev-
eryday lives. Digital therapeutics can be available 24/7 and thus allow
for “on-demand” access to therapeutic support, thereby creating un-
precedented models of intervention delivery and reducing barriers to
accessing care. Treatments delivered via digital platforms can be widely
accessible at a population level.

Telehealth, the use of telecommunication technologies to deliver
long-distance clinical care, may also allow SUD expert clinicians to
deliver care in communities (e.g., rural settings) where SUD treatment
needs are high but SUD workforce capacity is limited (Lin et al., 2019).
Telehealth can be used in concert with digital therapeutics to provide
real-time distance communication with SUD clinicians via video tech-
nology, complemented by digital therapeutic software that does not
rely on synchronous communication with another individual but rather
can be available at all times.

Digital therapeutics and telehealth models of care may be trans-
formative in the treatment of SUDs in many ways (Budney et al., 2019;
Marsch, 2012; Marsch & Borodovsky, 2018; Marsch & Dallery, 2012;
Rosa, Campbell, Miele, Brunner, & Winstanley, 2015). As most persons
with SUDs spend the majority of their time outside of a treatment fa-
cility, digital technologies can extend the reach and impact of treatment
by offering anytime/anywhere SUD care. Digital tools can function like
a therapist “in your pocket” and can be accessible at times when in-
dividuals struggling with SUDs may be in greatest need of therapeutic

support. Additionally, a large part of care offered in SUD treatment
settings does not reflect the state of the science of SUD care (Center on
Addiction, 2012). Digital therapeutics can ensure the delivery of SUD
care with fidelity to the most evidence-based practices. Further, the
behavioral health clinician workforce cannot meet the large population-
level needs for SUDs or offer anytime/anywhere care (Hyde, 2013).
Digital therapeutics provide science-based, scalable solutions to meet
SUD needs at a population-level. This may be particularly relevant in
tackling the current U.S. opioid crisis, in which the number of Amer-
icans with an opioid use disorder (OUD) has surged, especially in rural
communities, while the trained SUD workforce has not grown at a
comparable rate (Health Resources & Services Administration (HRSA),
2019).

Digital technologies also afford new opportunities to examine clin-
ical trajectories and identify novel digital biomarkers within-in-
dividuals through intensive collection of individual-level data using
mobile devices, wearable sensors, and mapping digital footprints.
Indeed, digital tools may capture information about individual's phy-
siology “in vivo” as they live their daily lives (Jain, Powers, Hawkins, &
Brownstein, 2015). Specifically, mobile technologies enable ecological
momentary assessment (EMA; (Shiffman, Stone, & Hufford, 2008)) a
method that prompts individuals to respond to queries on mobile de-
vices, and which enables near real-time monitoring, of individuals'
behavior (including exposure to individual risk factors for drug use and
drug-taking behavior) while they engage in daily activities. Because
EMA allows for intensive longitudinal assessment in naturalistic con-
texts, these data offer promise to enhance our understanding of me-
chanisms of health behavior, including drug-taking behavior (McCarthy
et al., 2008; Panlilio et al., 2019).

Digital technologies also enable passive sensing and inference from
smartphones or sensing devices worn on the body, which is trans-
forming how we understand human behavior (Cornet & Holden, 2018).
Mobile sensing allows for the continuous measurement of physiological
and behavioral data in the real world. This sensor data can be streamed
to a smartphone and processed immediately to infer information about
a person's health behavior, physiology, and context. These data from
sensors can be combined with data from self-report EMA assessments to
enhance an understanding of the individual's behavior in context
(Marsch, 2018). This information can then be used to trigger the de-
livery of interventions in real time (e.g., to respond to a person's in-the-
moment needs, such as craving of a substance of abuse) (Burns et al.,
2011; Gustafson et al., 2014).

Further, the use of social media sites (e.g., online forums, social
blogs) has exploded in recent years. Social media enables multi-direc-
tional communication anywhere and anytime. Social media may be
leveraged to recruit individuals into research, often allowing for rapid,
cost-effective recruitment of national and hard-to-reach populations
(Borodovsky, Marsch, & Budney, 2018; Reagan et al., 2019). Social
media data have also been used to predict many phenomena, ranging
from purchasing patterns to disease epidemics (Brownstein, Freifeld, &
Madoff, 2009; Darden & Perreault, 1976), and a growing body of lit-
erature shows how social media data may enable a rich understanding
of the topology and functioning of social networks and their relation-
ships to health/risk behavior (Kazemi, Borsari, Levine, & Dooley, 2017;
Kim, Marsch, Brunette, & Dallery, 2017; Naslund, Kim et al., 2017). For
example, social media has been shown to contain signals of depression
among individuals, such as decreased social activity, increased negative
affect, highly clustered egocentric networks, and heightened concerns
about relations and medications (Choudhury, Gamon, Counts, &
Horvitz, 2013). Also, data derived from social media has been shown to
predict a range of sensitive personal attributes including sexual or-
ientation, political views, personality traits, and use of addictive sub-
stances (Hassanpour, Tomita, DeLise, Crosier, & Marsch, 2019;
Kosinski, Stillwell, & Graepel, 2013; Ricard, Marsch, Crosier, &
Hassanpour, 2018).

Digitally-derived data offer great potential to refine and advance
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our understanding of health behavior, including SUDs. These granular-
level data captured in daily life allow for the development of dynamic
models of SUDs to understand behavior in real-time and in response to
changing environmental, social, physiological, and intrapersonal fac-
tors (Naslund, Aschbrenner et al., 2017; Spruijt-Metz & Nilsen, 2014).
And, they can help us understand when individuals may be most re-
ceptive to interventions (Nahum-Shani, Hekler, & Spruijt-Metz, 2015),
with a goal of providing the right type/amount of therapeutic support
at the right time by adapting to an individual's changing internal and
contextual state (Goldstein et al., 2017; Nahum-Shani et al., 2018).

Collectively, these digital technologies enable an entirely new of-
fering of tools for collecting rich data about individuals' behavior,
health, and environment, provide personalized interventions and re-
sources based on individuals' needs and preferences, and enable dy-
namic computational models to predict and characterize individuals'
changing needs and health trajectories over time.

The National Drug Abuse Treatment Clinical Trials Network (CTN),
launched in 1999 by the U.S. National Institute on Drug Abuse (NIDA),
has supported a growing line of research that leverages digital tech-
nologies to glean new insights into SUDs and provide science-based
therapeutic tools to a diverse array of persons with SUDs. The CTN is a
unique research infrastructure for conducting practical, rigorous, and
highly impactful trials focused on improving the treatment of SUDs and
promoting widespread implementation and sustainability of effective
and accessible SUD care in community systems across the nation.
Among its many contributions, the CTN has supported a broad array of
innovative and impactful research projects that have leveraged digital
health.

This manuscript provides an overview of the digital health portfolio
of the CTN and outlines a vision for the many future opportunities to
leverage the unique national CTN research network to scale-up the
science on digital health to examine optimal strategies to increase the
reach of, and reduce barriers in access to science-based SUD service
delivery models both within and outside of healthcare.

Note that we recognize that additional, rigorous research supported
by NIDA focused on the application of digital health to SUDs has been
conducted outside of the CTN (e.g., Bickel, Marsch, Buchhalter, &
Badger, 2008; Budney et al., 2011; Garrison et al., 2018; Getty,
Morande, Lynskey, Weaver, & Metrebian, 2019; Kiluk et al., 2018;
Ondersma, Svikis, Thacker, Beatty, & Lockhart, 2014); however, con-
sistent with the focus of this journal Special Issue, this article focuses on
the breadth of work within the CTN.

Collectively, this research within the CTN is focused on addressing
important scientific questions such as how to use digital health to
routinize and standardize validated SUD screening in health care set-
tings; how to use digital health to detect substance use in real time and
in “the wild”; how to implement and scale up effective SUD treatment;
and how to leverage social media for recruitment and intervention.

2. Methods

We reviewed the study designs and resulting publications from all
studies (past and active) conducted on the CTN platform since its in-
ception in 1999 (n = 107 CTN studies at the time of this writing).
Studies that centrally included any of the following types of digital
health technologies as a key part of the study aims or methods were
identified and included in this overview: (1) digital SUD screening and/
or assessment (n = 6), (2) digital therapeutics (n = 2), (3) telehealth
(n = 2), (4) EMA and passive sensing technologies (n = 2, 5) social
media platforms (n = 1). This manuscript is not intended to provide a
comprehensive literature review of all the digital health studies con-
ducted within the CTN but rather to provide an overview of the breadth
and impact of the CTN's work in the digital health space. For detailed
information on every study within the CTN, the interested reader
should visit: https://www.drugabuse.gov/about-nida/organization/
cctn/ctn.

3. Results

3.1. CTN studies that employed digital SUD screening and/or assessment

The majority of digital health studies in the CTN have focused on
the use of electronic health records (EHRs) for SUD screening and/or
assessment. One of the earliest projects in this area was the develop-
ment and validation of a brief screening and assessment instrument, the
Tobacco, Alcohol, Prescription Medication, and Other Substance Use
(TAPS) Tool, for use in primary care patients (CTN-0059). The TAPS
tool is comprised of a 4-item screening survey, followed by a more
detailed, substance-specific assessment of risk for any substances for
which an individual has a positive initial screen (Wu et al., 2016). An
early multi-site CTN trial with 2000 adult patients in 5 adult primary
care clinics compared an interviewer-administered version of the TAPS
tool to a version of the tool that was self-administered on a tablet
computer (in which individuals had the option to hear questions read to
them by a recorded voice on the computer) (McNeely et al., 2016).
Results demonstrated that the interviewer- and self-administered ver-
sions of the TAPS tool had comparable diagnostic characteristics, but
the self-administered version yielded higher rates of reporting of past
year alcohol, illicit drug and prescription medication misuse
(Gryczynski et al., 2017). The most notable discrepancy was for reports
of prescription medication misuse, such that disclosure rates were 50%
higher on the self-administered version. In addition, the tool showed
promising sensitivity and specificity for detecting several types of
substance use disorders, including tobacco and alcohol. It also identi-
fied adult primary care patients with high risk scores on the World
Health Organization's Alcohol, Smoking and Substance Involvement
Screening Test (ASSIST) as well as moderate risk scores for tobacco,
alcohol and marijuana (Schwartz et al., 2017). Overall, the TAPs tool
showed a more modest ability to identify some illicit and prescription
medication SUDs in comparison to the ASSIST. Despite this, the TAPS
tool is much briefer than the ASSIST and provides primary care pro-
viders with information about current substance use, thus underscoring
its strong appeal for use in primary care. Given that visits to primary
care represent an important window of opportunity to systematically
screen and identify SUDs among a broad population (John et al., 2018;
John et al., 2019; Wu et al., 2017), the TAPS tool is an example of a
validated, brief and practical resource that can be routinely delivered,
including in a digital format, in general medical settings. The TAPS tool
is now available online for widespread use at: https://www.drugabuse.
gov/taps/.

The CTN's work has extended beyond development and validation
of the TAPS SUD screening tool to evaluate the feasibility of embedding
SUD screeners into EHRs in primary care and integrating screening into
the primary care workflow. One trial (CTN-0065) evaluated how im-
plementation of drug screening in primary care impacts rates of SUD
assessment and subsequent care and demonstrated that screening led to
an increase in SUD diagnoses, particularly cannabis use disorder diag-
noses (Richards et al., 2019). Another multi-site study (CTN0062) being
conducted in both urban primary care and rural Federally Qualified
Health Centers (FQHCs) has identified barriers and facilitators of em-
bedding screening into these settings and underscored the importance
of clearly communicating with patients about the goals of screening to
counteract stigma, addressing staff concerns regarding time and
workflow, and providing SUD education and treatment resources to
primary care clinicians (McNeely et al., 2018; Saunders et al., 2019).
Several ongoing CTN projects have further extended this work to
evaluate the feasibility, usability, acceptability (CTN-0076 and CTN-
0090) and impact (CTN-0095) of OUD clinical decision support tools
embedded in EHRs to help guide primary care providers in evidence-
based treatment of OUD. Of considerable promise, and influenced by
the research conducted within the CTN, the U.S. Preventive Services
Task Force has just released a draft recommendation to screen for drug
use among adults in general medical settings (U.S. Preventive Services
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Task Force (USPSTF), 2019).

3.2. CTN studies that employed digital therapeutics

The CTN has had a marked impact in the field of digital therapeutics
for SUDs – interactive software used to treat SUDs. The most impactful
clinical trial with a digital therapeutic conducted within the CTN
evaluated the clinical effectiveness of the web-based Therapeutic
Education System (TES) (CTN-0044) (Campbell et al., 2014). TES is a
web-based, self-directed version of the strongly evidence-based Com-
munity Reinforcement Approach (CRA) to behavior therapy (Bickel
et al., 2008) developed by Azrin (1976). This intensive behavioral
treatment is designed to teach individuals with SUDs how to better
understand and disrupt harmful behaviors and cognitions related to
their drug-taking behavior and to develop new skills to restructure their
lives. In this pivotal CTN trial, the CRA-based behavioral treatment was
offered along with incentives targeting drug abstinence and treatment
participation. In this trial, conducted in partnership with 10 SUD
treatment sites, individuals in outpatient SUD treatment were randomly
assigned to receive either 12 weeks of standard outpatient SUD treat-
ment or a treatment model in which TES partially replaced 2 h of pa-
tient-clinician therapy time or psychoeducation (approximately 2 h
weekly). This study found that participants who received TES as part of
their care model had a markedly lower rate of treatment dropout (ha-
zard ratio = 0.72, 95% CI = 0.57, 0.92) and a higher rate of drug
abstinence (odds ratio = 1.62, 95% CI = 1.12, 2.35), an effect that was
most evident among patients who had a drug-positive urine and/or
alcohol-positive breath screen at the time of entering the study (odds
ratio = 2.18, 95% CI = 1.30, 3.68). This pattern highlighting the ef-
fectiveness of TES was evident across diverse groups of patients, in-
cluding those with stimulant, cannabis and alcohol use disorders
(Cochran et al., 2015), those with and without criminal justice in-
volvement (Lee et al., 2017) those with and without Internet access
(Tofighi et al., 2016), and across both males and females (Campbell
et al., 2015) and diverse racial and ethnic groups (Campbell et al.,
2017). TES was also found to have promising cost-effectiveness
(Murphy et al., 2016).

This CTN trial built on a prior body of NIDA-funded single site trials
showing, for example, that adding TES to buprenorphine treatment
produces synergistic treatment effects; that replacing part of counselor-
delivered treatment with TES treatment in methadone treatment sys-
tems greatly improves patients' treatment outcomes, and that TES of-
fered to incarcerated individuals can produce comparable treatment
outcomes to those produced by exclusively clinician-delivered care
(Bickel et al., 2008; Chaple et al., 2014, 2016; Christensen et al., 2014;
Marsch et al., 2014). By conducting a national, highly rigorous multi-
site trial, the CTN study was well-poised to demonstrate the safety and
effectiveness of the TES digital intervention when reviewed by the FDA,
leading to the very first FDA-authorized prescription digital therapeutic
in the U.S. (now called re-SET®, Pear Therapeutics). This reflects a new
category of FDA-regulated devices and allows for digital therapeutics to
be prescribed by clinicians, in a manner similar to FDA-approved
medications. This is a compelling example of how CTN research can
change the landscape of care to scale-up access to evidence-based
treatments for SUDs.

This work led to several ancillary CTN studies focused on enhancing
TES (in the form of a mobile app) to be modified for American Indians
and Alaskan Natives (Campbell et al., 2015). And, several mobile digital
therapeutics will be included in a new national CTN trial that will test
strategies to improve treatment retention in medication treatment for
OUD and to improve outcomes among individuals who are stabilized on
OUD medications but wish to discontinue such medications (CTN-100).

3.3. CTN studies that employ telehealth

Although treatments for SUDs, including OUD, have been shown to

be life-saving (Larochelle et al., 2018), many communities across the
nation are challenged by not having sufficient clinician capacity to
conduct universal screening and medication induction and maintenance
to the large population who may need it. This is particularly challen-
ging in rural contexts which have lower capacity for evidence-based
opioid treatment, including fewer waivered buprenorphine prescribers,
behavioral health clinicians, and opioid treatment programs and often
lack of a widespread public transportation system. To address this
challenge, the CTN is launching a large multi-site trial to evaluate the
effectiveness of a tele-health model of care for the medication treatment
of OUD (MOUD), designed to help ensure sufficient and sustainable
capacity to offer evidence-based opioid treatment in rural communities
(CTN-102). This cluster-randomized, comparative effectiveness trial
will examine the utility of adding tele-MOUD to outpatient MOUD
treatment compared to outpatient MOUD treatment alone in rural areas
highly impacted by the U.S. opioid crisis. Tele-MOUD will flexibly offer
patients remote access (via video) to a core team of OUD experts who
can assess and prescribe medications to individuals with OUD, provide
therapy, and/or provide remote urine and/or saliva drug testing. An-
other new primary care-based CTN trial (CTN-101), which seeks to
identify an effective strategy to address unhealthy opioid use and pre-
vent escalation to an opioid use disorder, will also offer remote tele-
counseling to participants to enhance onsite care centrally led by a
nurse care manager. The collective learning from this research will
inform innovative models that can scale access to a suite of evidence-
based treatment for OUD in high need, low resource settings.

3.4. CTN studies that employ ecological momentary assessment (EMA) and
passive sensing technologies

Two CTN trials have employed EMA and passive sensing technolo-
gies. The first of these studies (CTN-0073-Ot) developed and evaluated
the ability of a wrist-worn sensor suite (embedded in a smartwatch) to
detect cocaine use (Holtyn et al., 2019). This work builds on prior
promising work demonstrating that a chestband with electrodes can
detect cocaine use via a computational model that uses heart rate (in-
terbeat intervals) and physical activity data (Hossain et al., 2014;
Kennedy et al., 2015). The present study seeks to evaluate whether
similar cocaine detection algorithms will work, that have been modified
for use with sensor data collected via a less obtrusive, more user-
friendly smartwatch that can be worn in daily life. Data from the
smartwatch is compared to chestband data (because prior work de-
monstrated the chestband can detect cocaine use) as well as EMA re-
ports of cocaine use (as “ground truth”) of cocaine use.

Cocaine use is often measured via self-report, which can be in-
accurate, and/or use is measured via urine drug tests which can be
intrusive and may not capture the temporal granularity of cocaine use
patterns (Donovan et al., 2012). If smartwatch sensing is determined to
be an acceptable and accurate way to measure cocaine use, it may offer
rich information about the precise timing and duration of use events
and could allow us to glean new insights into contextual factors that
may serve as triggers for use events. Additionally, detecting cocaine use
with greater precision may enhance our outcomes measurement in
clinical trials that evaluate potential therapeutics for cocaine use dis-
order.

The second of these CTN studies (CTN-0084-A2) is, to our knowl-
edge, the first study to employ passive mobile sensing, social media
data, and active responses to queries on mobile devices using EMA to
obtain moment-by-moment quantification of individual-level data (in-
cluding contextual and momentary factors) that may lead to opioid use
events, medication non-adherence and/or MOUD treatment dropout/
retention (as measured via EHR data) in a population of persons with
OUD in buprenorphine treatment.

In this study, participants are asked to wear a smartwatch and carry
a smartphone continuously for a period of 12 weeks. The smartwatch
passively collects data regarding location and distance traveled,

L.A. Marsch, et al. Journal of Substance Abuse Treatment 112 (2020) 4–11

7



physical activity (including metrics of energy expenditure and steps),
sleep, and heart rate. Participants are also prompted to respond to
questions (EMA) through a smartphone multiple times per day.
Questions assess sleep, stress, pain severity, pain interference, pain
catastrophizing, craving, withdrawal, substance use risk context, mood,
location, substance use, self-regulation, and MOUD adherence. In ad-
dition to the EMA prompts, individuals are asked to self-initiate EMAs if
substance use occurred. App usage, audio/conversation, call/text, GPS,
screen on/off, phone lock/unlock, phone notification information, Wi-
Fi & Bluetooth logs, sleep, ambient light, and proximity are passively
collected via smartphone. Participants are also asked if they are willing
to share their social media data from any social media platforms they
may use (e.g., Facebook, Instagram, Twitter). Sharing social media data
is an optional component of study participation. The primary objective
of the study is to evaluate the feasibility of utilizing digital health
technology with OUD patients as measured by a 12-week period of
continuous assessment using EMA and digital sensing. A secondary
objective of this study is to examine the utility of EMA, digital sensing,
and social media data (separately and compared to one another) in
predicting OUD treatment retention and buprenorphine medication
adherence.

Overall, this line of research may inform which subset(s) of digi-
tally-derived data (digital biomarkers) may be most useful to employ as
part of outcome measurement in future clinical trials research. Digital
data that capture the richness of clinical status and clinically trajec-
tories as individuals go about their daily lives may greatly complement
and enhance the learning from standardized, clinical outcomes assess-
ment. And predicting OUD treatment retention and medication ad-
herence via continuous digital assessments may be used to identify
early (and with relatively low participant burden) those participants
who show signs of non-adherence and trigger additional intervention to
prevent ultimate non-response to treatment.

3.5. CTN studies that employ social media platforms

In addition to the CTN-0084-A2 study referenced above which in-
cludes social media data as part of a broader set of digitally-derived
data, the CTN supports a trial that centrally evaluates the relative utility
of various social media platforms in recruiting a national sample from a
hard-to-reach population. Specifically, this trial (CTN-0083) compares
the relative effectiveness of using social media sites vs. online in-
formational sites vs. online dating sites to promote HIV self-testing and
seamless linkage to pre-exposure prophylaxis (PrEP) medication among
young (aged 18–30), racial/ethnic minority, high-risk men who have
sex with men (MSM). In this study, individuals in the targeted sample
who click on culturally-tailored study advertisements and who provide
online consent will be offered a free HIV self-test kit (OraSure®) to be
discreetly sent to their home with seamless linkage to PrEP for those
who test HIV-negative, and linkage to HIV care resources for those who
test positive. Among other outcomes, the primary outcome is the
monthly rate (number of study participants requesting an HIV home
self-test kit per 30-day period) by promotional platform (social media,
informational, dating sites). The modifying role of substance use on
observed outcomes will also be examined.

Online recruitment strategies allow for targeted recruitment of se-
lect audiences. The CTN-0083 study will target recruitment in the states
that have hard-to-reach, high risk populations and limited availability
of risk reduction services (e.g., Georgia, Louisiana, Maryland,
Mississippi, and Nevada). This study illustrates how a targeted national
sample can be recruited for clinical trials participation and how all
intervention delivery and data collection in a clinical trial can be con-
ducted remotely online.

4. Discussion

This manuscript provides an overview of the breadth and impact of

research conducted within the U.S. National Drug Abuse Treatment
Clinical Trials Network in the realm of digital health. This work has
included the CTN's efforts to systematically embed digital screeners for
SUDs into general medical settings to increase the diagnosis and
treatment of SUDs across the nation. This work has also included a
pivotal multi-site clinical trial conducted on the CTN platform, whose
data led to the very first “prescription digital therapeutic” authorized
by the U.S. Food and Drug Administration (FDA) for the treatment of
SUDs. Further CTN research includes the study of telehealth to increase
capacity for science-based SUD treatment in rural and under-resourced
communities. In addition, the CTN has supported an assessment of the
feasibility of detecting cocaine-taking behavior via smartwatch sensing.
The CTN has also supported the conduct of clinical trials entirely online
(including the recruitment of national and hard-to-reach/under-served
participant samples online, with remote intervention delivery and data
collection). Further, the CTN is conducting innovative work focused on
the use of digital health technologies and data analytics to identify
digital biomarkers and understand the clinical trajectories of in-
dividuals with OUD in buprenorphine medication treatment for OUD.

Given its unique national research infrastructure and access to a
broad array of community and healthcare partners, the CTN is uniquely
poised to accelerate the scope and impact of its work applying digital
health to the assessment and treatment of SUDs. Among these oppor-
tunities, the CTN is positioned to evaluate the role of digital technol-
ogies in SUD care transitions. For example, offering persons with SUDs
access to a digital therapeutic and/or telehealth when they transition
from a period of incarceration, hospitalization, or inpatient SUD care to
the community would provide them with 24/7 access to therapeutic
support as they reintegrate into the community and/or community-
based care. Digital tools may also be offered directly to individuals
recruited online who are not engaged, and do not wish to engage in
SUD care within the health care system. Given that only about 10% of
persons with SUDs are engaged in treatment, there is tremendous op-
portunity to creatively use digital technology to provide the other 90%
with evidence-based SUD resources (Center for Behavioral Health
Statistics and Quality, 2016).

The CTN is optimally poised to conduct national implementation
science trials and/or hybrid implementation-effectiveness trials to
evaluate optimal strategies to implement and sustain digitally-en-
hanced models of care. Such trials could integrate the various digital
health tools and approaches that the CTN has previously studied in
separate studies to instead embed a suite of complementary digital tools
spanning an entire model of care within an integrated implementation
strategy. That is, a digitally-enhanced model of care could include di-
gital screeners and assessments in medical settings, linkage to electronic
clinical decision support tools to enhance providers' ability to deliver
state-of-the-science care, as well as provision of digital therapeutics that
are available directly to patients to ensure evidence-based care is
available to them anytime and anywhere and can complement the care
they receive in the healthcare sector. Importantly, digital therapeutics
offered to patients do not need to reflect static models of behavioral
treatment that work exactly the same way with every end user. Rather,
these tools can be adaptive and flexibly offer evidence-based ther-
apeutic resources to individuals that are responsive to their changing
clinical needs, preferences, and goals.

There is tremendous opportunity to integrate the science of digital
assessment and digital therapeutics for SUDs to help us understand (in
real time) when individuals may be most receptive to health promotion
interventions. They can, in turn, inform optimal delivery of “Just-in-
Time Adaptive Interventions” or in-the-moment interventions for SUDs
that provide the right type/amount of therapeutic support at the right
time (Nahum-Shani et al., 2015; Nahum-Shani et al., 2018). The large
and diverse samples that can be recruited within the CTN offer many
opportunities to conduct novel experimental approaches (e.g., Micro-
Randomized Trials, Sequential Multiple Assignment Randomized Trials,
Factorial Designs) to systematically investigate who would benefit from
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which intervention and when (i.e., under what conditions), as well as to
apply novel statistical machine learning methods to personalize SUD
interventions at the individual level (Dempsey, Liao, Kumar, & Murphy,
2017; Walton, Nahum-Shani, Crosby, Klasnja, & Murphy, 2018).

Importantly digital therapeutics do not need to have a siloed focus
on SUD treatment (Marsch, 2014). Indeed, we have the opportunity to
maximally benefit from what digital technology offers to embrace the
co-occurring needs of patients. Digital therapeutics can arguably em-
brace whatever combination of needs a patient may have. They may
focus on, for example, SUD and mental health care, SUD and chronic
pain management, SUD and infectious diseases such as HIV and hepa-
titis, and/or SUD care and care for chronic physical health conditions.
Because patients typically do not experience SUD in isolation but often
have many care needs and because various comorbidities interact in
clinically meaningful ways (Druss & Walker, 2011; Hooten, 2016;
Onyeka, Hoegh, Eien Em, Bi, & I., 2019; Schulte & Hser, 2014), digital
technologies can transcend the artificial constraints of siloed care
models to provide therapeutic resources across many health domains
and disease states. Digital health offers great promise for increasing the
breadth and potency of models of SUD healthcare delivery.

Although applying digital health to the assessment and treatment of
SUDs offers great promise, many challenges remain in this work.
Indeed, there is tremendous opportunity for expanding research fo-
cused on how to best balance the promise of digital health with its
potential limitations. For example, we can examine ethical questions
(Capon, Hall, Fry, & Carter, 2016; Labrique, Kirk, Westergaard, &
Merritt, 2013) such as “how do we best ensure that the benefit of digital
tools outweighs potential risks?” And “how do we best ensure protec-
tions of patient privacy and sensitive information while still allow for
data to be shared (e.g., between persons in SUD treatment and their
providers and/or support network) in accordance with patient pre-
ferences and treatment goals?” Additionally, some sources of digitally-
derived data, although rich and often voluminous, may contain biases
and/or methodological challenges (Codella, Partovian, Chang, & Chen,
2018; Olteanu, Castillo, Diaz, & Kiciman, 2019). For example, data
collected via EMA questions on mobile devices or via computerized
SUD screeners are based on individuals' self-report and may be subject
to reporting bias. Additionally, identifying the optimal source of
“ground truth” when making inferences about behavior using mobile
sensing data remains a challenge (National Academies of Sciences,
2018). And best practices in preserving privacy when capturing and
analyzing sensitive data (e.g., para-linguistic aspects of speech captured
on mobile devices; consumer-generated social media data) need to
prioritized (Pentland, Lazer, Brewer, & Heibeck, 2009). Further, al-
though many populations across the world are increasingly getting
access to mobile devices, some populations (such as some populations
with SUDs) may have inconsistent access to mobile technology and/or
live in communities (e.g., rural settings) with limited connectivity
(Collins et al., 2016). And, patient engagement with digital therapeutic
tools is an ongoing challenge (Wagner et al., 2017). Further, although
interest in digital therapeutics among providers and healthcare systems
has markedly increased in recent years, challenges remain with im-
plementation and sustainability as well as payment models of digital
health tools in many health care contexts (Messner et al., 2019). Indeed,
as the application of digital health to SUDs continues to expand, it is
important that we have a parallel examination of ways in which to
support the optimal and pragmatic measurement of patient privacy and
ethics and widespread implementation in digital health research.

Digital health and data analytics are transforming our world. As we
consider the striking unmet SUD treatment needs as well as the varia-
bility in quality of SUD care across the national and global landscape,
digital technologies promise to extend and enhance our SUD clinical
workforce to make on-demand, state of the science SUD treatment a
reality worldwide.
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