
Controlling access to pervasive information
in the “Solar” system

Kazuhiro Minami and David Kotz

Dept. of Computer Science, Dartmouth College
Hanover, NH, USA 03755

{minami, dfk }@cs.dartmouth.edu
http://www.cs.dartmouth.edu/˜solar/

Dartmouth Computer Science Technical Report TR2002-422
February 28, 2002

Abstract. Pervasive-computing infrastructures necessarily collect a lot of con-
text information to disseminate to their context-aware applications. Due to the
personal or proprietary nature of much of this context information, however, the
infrastructure must limit access to context information to authorized persons. In
this paper we propose a new access-control mechanism for event-based context-
distribution infrastructures. The core of our approach is based on a conservative
information-flow model of access control, but users may express discretionary re-
laxation of the resulting access-control list (ACL) by specifyingrelaxation func-
tions. This combination of automatic ACL derivation and user-specified ACL re-
laxation allows access control to be determined and enforced in a decentralized,
distributed system with no central administrator or central policy maker. It also
allows users to express their personal balance between functionality and privacy.
Finally, our infrastructure allows access-control policies to depend on context-
sensitive roles, allowing great flexibility.
We describe our approach in terms of a specific context-dissemination frame-
work, the Solar system, although the same principles would apply to systems
with similar properties.

1 Introduction

Many pervasive-computing applications automatically adapt to the changing conditions
in which they execute. Thesecontext-awareapplications take account of information
about the context, such as the location of the user and relevant devices, the presence
of other people, light or sound conditions, or available network bandwidth. While the
necessary sensors are increasingly available, particularly for location [9], we note that
mostsensor datamust be processed into higher-levelcontext informationbefore use by
applications. It is unreasonable to expect every application to work with the raw sensor
data, and it is unscalable to expect a single “context server” to support the diversity of
transformations and the scale of numerous applications and users [2].

We gratefully acknowledge the support of the Cisco Systems University Research Program,
IBM, Microsoft Research, DoD MURI contract F49620-97-1-03821, and the Dartmouth Cen-
ter for Mobile Computing.

http://www.cs.dartmouth.edu/~solar/
David Kotz
© Copyright 2002 by the authors�



We therefore need an infrastructure to aggregate and transform low-level sensor
data for context-aware applications, while remaining flexible and scalable [5]. Many
such systems use an event-flow model, in which sensor data are represented as events,
and a graph of operators transform these event streams into the event streams desired by
the applications. Our Solar system, described in a companion paper [4], is one example.
Gryphon [1] is another.

Any such infrastructure must allow many applications and many users to share sen-
sor data and context information. On the other hand, the context often includes infor-
mation considered “private” by many users, such as their location, or “proprietary”
by organizations, such as the marks written on a shared whiteboard or the calendar
of meetings for product teams. A context-information infrastructure must, therefore,
control access to the information it disseminates. Although researchers often note the
importance of privacy and security in context-aware computing [7,13,14,10], there is
surprisingly little literature about access control in context-information systems.

In this paper we propose an access-control mechanism for protecting context infor-
mation in an infrastructure for collecting, processing, and disseminating context in-
formation. The mechanism must support a variety of, and large number of, sources,
policies, and applications. In an infrastructure like Solar, context information is derived
from numerous sources through a wide variety of operations. Applications and users can
dynamically request new derivative information, and supply new operations. In such a
dynamic environment it is unreasonable to expect a system administrator, or the users,
to manually specify an access-control list for each event or event stream.

In our approach, each event is tagged with an access control list (ACL). Each opera-
tor in the event-flow graph automatically tags the events it produces based on the ACLs
of its input events, on an optional restriction rule provided by the operator programmer,
and on optional relaxation rules provided by users. In this way, operators that derive
information from sensor data also derive the necessary ACL.

Our approach is discretionary, in that users may use their discretion to explicitly
relax ACLs to grant access to other users. Where there is no explicit relaxation, however,
we derive a conservative default access-control policy using principles borrowed from
information-flow theory [6]. By convention, sources publish information with narrow
ACLs, so by default personal information remains private until users explicitly release
it in an explicit and structured fashion.

Our system also allows ACLs to includecontext-sensitive roles; for example, a ther-
mostat application may allow access to anyone currently in the room, by specifying a
role whose membership changes as people come and go. Thus, the access-control poli-
cies are themselves context-aware.

In the next section, we briefly describe the event-distribution infrastructure in the
Solar system. Section3 describes our design objectives, and Section4 explains the
semantics of our access-control mechanism. In Section5, we explain some key imple-
mentation issues in our system. We discuss related work in Section6 and future work
in Section7, and then summarize in Section8.

2



2 Solar

Our access-control mechanism is designed for the Solar system, which is under devel-
opment at Dartmouth College, and for systems like Solar. In this section we summarize
the features of Solar needed to understand this paper. For more information on Solar
see the companion paper [4] or our earlier paper [3].

Solar is middleware that supports the collection, processing, and dissemination of
context information for context-aware applications. In Solar, sensor data and context
information are represented aseventsflowing from sourcesthroughoperators(which
filter, transform, or aggregate events into new events) to applications. Solar uses a pub-
lish/subscribe model of event flow. Sources and operators each publish a single stream
of events; operators and applications may subscribe to many streams of events. Unlike
some systems, each Solar publisher produces one event stream and each event stream
has only one publisher. An operator subscribing to multiple event streams receives one
event at a time, as if the streams were (arbitrarily) interleaved: events from a given pub-
lisher are delivered in the order they were published, but no ordering is defined between
events from different publishers.

Operator graph.An operator is an object that subscribes to and processes one or more
input event streams, and publishes another event stream. Since the inputs and output
of an operator are all event streams, the operators can be connected recursively. When
an application wants a flow of context information, it asks Solar to instantiate asub-
scription treethat describes the flow of events from a set of sources (leaves of the tree)
through a set of operators to the application (the root of the tree). Solar re-uses exist-
ing sub-trees where possible, so that applications and users may (transparently) share
operators and their event streams. The overlapping subscription trees form a directed
acyclic graph we call theoperator graph.

Example. Consider the example in Figure1, which might be used in an office build-
ing with a location-tracking system. Each room has a location sensor that periodically
reports the identification number for the badge(s) it detects in that room.Transformop-
erators map the badge ID to the name of the person or device attached to that badge, and
themergeoperator combines these streams into one event stream. Anaggregatoroper-
ator uses internal state to detect location changes, emitting an event only when a person
or device changes location. The Active Map application uses the resulting stream to
display the current location of tracked objects. Another application is a “tour guide” for
Bob, which uses afilter to obtain only events about Bob’s movements. Note that both
applications can share many of the operators and streams.

This example demonstrates the four varieties of Solar operators: Filter, Transform,
and Merge operators are stateless; Aggregation operators may have internal state. Ulti-
mately, though, operators are simply objects implementing an Operator interface. Solar
allows applications to use operators instantiated from classes found in a library of com-
mon operators or from classes provided by the application programmer. As a result, the
functionality of an operator is opaque to Solar. Solar asks the operator to handle a new
event, and the result is that the operator publishes zero or more events.

3



Fig. 1.A sample operator graph. T are transformers, M are mergers, A are aggregators,
and F are filters.

ID
Transformer

Merger

Location
Change

Aggregator

Active
Map

Application

Bob’s
Guide

Location
sensors

S2

S1

S3 T

T

T

AM

F

Architecture. The Solar system is distributed across many hosts, although the only
abstraction presented to operators and applications is the operator graph [3,4]. Appli-
cations run outside the Solar system, on any platform, using a small Solar library that
allows them request subscriptions and to receive events over standard network proto-
cols.

Summary. Although we describe our access-control mechanism in terms of the So-
lar infrastructure, most of its features are not dependent on the specifics of Solar. Ul-
timately, our mechanism suits any event-based context-dissemination infrastructure in
which events are produced by sources, are processed by a shared collection of operators
that subscribe, process, and publish derived events, and are consumed by applications.
In particular our approach does not depend on Solar’s graph structure or model of event
streams.

3 Design goals

We have four objectives in our design of system for controlling access to context infor-
mation in Solar-like systems.

Our primary objective is to limit application access to events, because events often
contain information considered private by certain individuals or proprietary to certain
organizations. We assume that applications run on behalf of a specific principal,1 so this
objective means that applications must only receive events to which their principal is
allowed access.

In accomplishing this first objective, consider several properties of the operator
graph. First, each node in the operator graph may be shared by many applications and
users. Second, there are a variety of information sources and of applications, so there
many operators are needed to derive the desired event streams from the sources. It is

1 We imagine a special principalanonymousthat could represent applications running on a pub-
lic display, kiosk, or other unauthenticated device.

4



infeasible to manually specify an access-control list for each event stream. Third, the
operator graph changes as applications and sensors come and go; we cannot know the
topology of the operator graph in advance. Fourth, for scalable performance the opera-
tor graph is likely to be deployed across many servers.

The second objective is avoid the use of any central authority that defines the access-
control policies. By generating access-control lists automatically using principles from
information flow, then giving users discretion to relax ACLs where they deem appropri-
ate, we empower users and reduce management overhead. We accommodate personal
differences in privacy policies, and encourage users to contribute new sources, opera-
tors, and applications, and to define their access-control policies, without requiring the
blessing of any central authority.

The third objective is to allow users to specify somecontext-sensitiveaccess-control
policies. For example, Bob may not release his current location to anyone, but lets
others receive events about his location if they are currently in the same room. Since
presumably they can see Bob, physically, these events do not significantly reduce Bob’s
privacy, but may allow the other user to implement many context-aware applications
mentioned in the literature (e.g., an application that reminds you to “mention the party
the next time I see Bob.”).

The fourth objective (specific to Solar) is to maintain the transparency of operator
sharing. Solar may overlap subscription trees to produce a graph with shared operators,
transparently to the operators and applications.

Finally, there are certain features that are explicitlynot an objective of our current
research.

First, we do not want to enforce a strict information-flow policy, because it is in-
sufficiently flexible. It is also impractical: we cannot assume that all computations will
occur inside a trusted environment that maintains information-flow principles. Once an
application (outside Solar) has an event, we cannot stop the application from giving
away the information. We prefer to directly support limited forms of ACL relaxation,
to allow most reasonable information sharing to occur explicitly within the framework.

Second, we do not address covert channels.
Third, we do not protect against any data-mining effort to infer sensitive information

from information legitimately obtained.
Finally, this paper is about access control, not about authentication or trust. That

said, we do assume that the Solar system authenticates application users sufficiently
to attach a principal to each running application. We also assume that communications
with Solar, and among the hosts constituting the Solar infrastructure, use encrypted
channels. Thus our focus is on limiting the set of events receivable by legitimate prin-
cipals, rather than on protection against eavesdroppers. Finally, we assume that appli-
cations, users, and operators trust the Solar infrastructure, although Solar does not trust
applications or operators.

4 Access-control semantics

In this section, we describe our approach to access control, which is based on principals
and access-control lists. Each user is represented by a namedprincipal. A principal may

5



be in one or more namedroles. A role contains a list of principals and other roles. An
access-control list (ACL)is a list of principal and role names. In our notation,p is a
principal,r is a role, andU is the universal set of all principals and roles.

We must first decide whether to attach an ACL to eacheventor to eachevent stream.
Note that some operators, such as most of those in Figure1, may publish events that
reasonably should have different ACLs. In that example, an event about Bob’s loca-
tion should have ACL{Bob}, while an event about Alice’s location should have ACL
{Alice}. We thus choose to attach a separate ACL to each event. Every eventei has two
parts:

ei = (di, ai), wheredi is the data field andai is the ACL field.

An application executes on behalf of one principal. An application may subscribe to
any event stream, but may receive an event if, and only if, the application’s principal is
a member of the event’s ACL or a holder of a role mentioned in the ACL. Specifically,
for principal p and an eventei with ACL ai, we allow access iffp ∈∗ ai, defined as
follows:

p ∈∗ ai ⇔ [(p ∈ ai) or (r ∈ ai andp ∈∗ r)].

Notice that this definition is recursive, when roles are defined hierarchically. (An
implementation must take care, in recursion, to avoid any cycles in role definitions.)

4.1 ACL derivation

An operator may receive events from many different publishers, and produce many
different events. It is often inconvenient or impossible for the operator programmer
to determine the appropriate ACL for each output event (consider a generic operator
that filters room-temperature events). And, since an operator may be shared by many
applications and users, it is not possible for any one of them to define the ACL of each
published event. So, we wish to derive the ACL for each output event as a function of
the ACL of incoming events, the desires of the operator programmer, and the desires
of any interested user. We call our approach ACL propagation, because access-control
information propagates through the operator graph.

In the discussion that follows, we focus on a single operator. Over its lifetime it
has received a series of eventse1, e2, ..., ei. Events from a given subscription arrive in
the order they were published, but events from multiple subscriptions are arbitrarily
interleaved into the sequence. The operator is allowed to execute its handler once for
each eventei. The handler’s result is to publish zero or more new events{eij}, although
the handler only produces the data field:

{dij} = handleEvent(di).

We now show how to derive the ACLs{aij} from ai in three stages. First, Solar
computes a default ACL using a conservative information-flow approach. Second, the
operator programmer may further restrict the ACL. Third, any principal in that ACL
may relax the ACL.

6



Default ACL. After receiving the set{dij}, Solar computes a default ACLDEFij for
each event. The computation depends on whether the operator’s handler read or wrote
any internal state in computing the event.

For stateless operators, there is no concern about whether sensitive information in
earlier events may “leak” into this event. The default output ACL is the same as the
input ACL.

DEFij = ai, if no state read

For operators with internal state, Solar computes a default ACL using principles
from information-flow control systems [6]. Since operators are opaque, we cannot ap-
ply information-flow principles inside the operator, and we conservatively derive each
output event’s ACL as the intersection of the ACLs of every event ever received by this
operator. Thus,DEFij = ∩ak for k = 0 to i. This policy is too restrictive in some
cases. Consider the Merge operator in Figure1, which receives an event about Bob’s
location tagged{Bob}, then an event about Alice’s location tagged{Alice}. Because
of the intersection rule, every event published after the arrival of Alice’s event has the
empty ACL{}.

Thus, Solar forces operators to represent any internal state as a set of state objects,
each associated with a simple keyk (e.g., a string). The key’s meaning is determined
by the operator programmer; for example, the key may be a principal’s name. Think
of the set of states as a hash table with methodss=get(k) andput(k,s) and the
following rules apply within the handling of a given event: 1) the operator may callget
at most once andput at most once. 2) The state retrieved byget is unchanged unless
followed by aput ; that is,get retrieves a copy of the state. 3) If it calls bothget and
put , both calls must be for the same key. 4) A call toput(k,s) creates statesk if it
does not exist. These rules prevent information from “leaking” across states.

Solar maintains an accumulated ACL for each state. Informally, since the state may
contain information gathered from all prior events, its accumulated ACL must be the
least upper bound (intersection) of the ACLs on those prior events. After each input
eventei, we define the accumulated ACL for each states to be

ACCis =

ACC(i−1)s if no put
ai if put only, orput followed byget
ACC(i−1)s ∩ ai if get followed byput

whereACC0s = U for all s.
Now we update our definition ofDEFij

DEFij =
{

ACCis ∩ ai if the handler read states
ai otherwise

An intuitive reading of this rule is that the output event inherits its ACL from the
input event, unless its computation was “polluted” by state information that may contain
information that should remain private.

Restriction rule. The operator programmer may wish to restrict the ACL of output
events, perhaps because the operator’s parameters may contain sensitive information

7



that affects the output results, or because the operator contains an algorithm that com-
putes valuable information from less-valuable input data. Therefore, the developer has
the option to include a function Restrict(ei, dij) that computes the list of principals to
be removed fromDEFij . The default Restrict(ei, dij) returnsU . We use this function
to compute the “output ACL suggested by the operator:”

OPij = DEFij ∩ Restrict(ei, dij)

Although we anticipate few situations where it would be helpful, we allow the Re-
strict() function toget any state, because it cannot change the datadij and it can only
narrow the eventual ACLaij .

Relaxation rule.We allow users to attach their ownrelaxation functionto any opera-
tor, to relax the ACL for events output by that operator. Each principalp may specify
their own access-control policy by defining and attaching their own relaxation function,
Relaxp(ei, dij). We expect that in many cases the user may supply a constant rather than
a function, that is, Relaxp(ei, dij) = RLXp, but the function allows more flexibility. If
neither is supplied, the default Relaxp(ei, dij) = {}.

Solar computes only those relaxation functions contributed by principals who al-
ready have access to the event, according toOPij . The rationale is that any of those
principals may subscribe directly to this operator, receive the events, and pass them to
their friends anyway. The relaxation function allows a more structured solution.

We compute the set of principals added by all eligible principals,

USRij =
⋃
{Relaxp(ei, dij) | p ∈∗ OPij}.

Note that we use∈∗, but it is computationally expensive in the presence of context-
sensitive roles (see Section5.3), so we expect many implementations to use∈.

Finally, we can define the ACL of the output event:

aij = OPij ∪ USRij

Sources.Although we discuss operators above, these rules apply to sources as well.
The difference is that sources have no input events. All of the above equations hold,
then, if we apply them fori = 0 anda0 = U , as the source publishes a sequence of
eventse0j . By definition,ACC0s = U for all s, soDEF0j = U . So

OP0j = Restrict(e0, d0j)

(thoughe0 is null), anda0j is computed as above fromOP andUSR. Thus, the pro-
grammer of the source can use Restrict() to define any output ACL, and that ACL may
be relaxed by users according to the same rules as for operators.

4.2 Example

In Figure2, the location sensors use Restrict() to define the ACL on their raw sensor data
to be{locsensor}, a principal representing the administrator of the location-sensing sys-
tem. On the “ID Transformer” operator, which translates badge IDs into person names,

8



the locsensor principal adds a relaxation function that adds principalp to any location
event about personp (assuming a clear mapping between people and principals). This
approach is conservative: the raw sensor data remains private to the administrator, and
the named sensor data is private to the individual.

Fig. 2. An example of ACL propagation. The arrows are labeled with the event repre-
sented by a tuple in which the first item denotes the principal name in the data field, and
the second item denotes the ACL field. The data field also contains the location, but for
brevity we omit that information here.

ID
Transformer

Merger

Location
Change

Aggregator

Bob’s
Active Map
Application

Location
sensors

S2

S1

Sn T

T

T

AM

215 Monitor

A

Relaxation function  

Dave’s
Meeting

Application
(Alice, {Alice, locsensor})

(Bob, {Bob, locsensor})
215 

Location
Sensor

locsensor    f: badge id −> name

RLX

Bob        Dave
Alice      Dave

(015, {locsensor})

(232, {locsensor})

(Alice, {Alice, locsensor})

(Bob, {Bob, locsensor})

(Alice, {Alice, locsensor})

(Bob, {Bob, locsensor})

(Alice, {Dave, Alice, locsensor})

(Bob, {Dave, Bob, locsensor})

(Bob, {Bob, locsensor})
(Alice, {Alice, locsensor})

Notice that events pass through the stateless Merge operator with unchanged ACLs.
The Location-Change Aggregator takes care to use a separate state objectsp for each
principal p, so thatACCisp

= {p} and those location events can pass through with
unchanged ACLs. Although the aggregator publishes events about Alice, tagged with
ACL {Alice}, Solar does not deliver those events to the Active Map application run by
Bob (see Section5.2).

It is left to individuals to decide when to relax the ACL on events about them.
Assume that Alice does not want to be visible to most applications, but she is willing
to allow Dave’s Meeting application (run by Dave) to see that she is in the meeting
room 215. She adds Dave to her relaxation list on the aggregator “215 monitor,” which
outputs arrival and departure events about people in room 215.

4.3 Context-Sensitive Roles

There are many instances where the policy itself should be context-sensitive, that is,
where the access list produced by a relaxation function depends on the current context
beyond the information available in the event. Furthermore, it is difficult for most users
to write relaxation functions. For both reasons, we allow ACLs to contain the name
of roles. In Role-Based Access Control (RBAC) [12], permissions are associated with
roles, not directly with principals. Roles usually have semantics that are meaningful to

9



ordinary users, such as “people in room 215” or “chairperson of the meeting”. If a role
is defined elsewhere to be a context-sensitive set of principals, then any ACL including
that role will itself be context-sensitive.

For example, in Figure3, suppose Alice allows people in the meeting room (215) to
receive her location information only when she is there, too. So, she adds a relaxation
function (in this case, a constant) that outputs the role name “In215.” The role “In215”
is defined elsewhere to contain the set of principals corresponding to people currently
in room 215; if Bob and Dave are in room 215, their applications can receive the event
about Alice (see Section5.2).

Fig. 3.An example context-sensitive policy.

S T

215 Monitor

A

Bob’s
Meeting

ApplicationAlice:{Alice}

Bob:{Bob}

215 Location
Sensor

Alice  In215

Alice:{Alice, In215}

Bob:{Bob}

Dave:{Dave, In215}

R L X

Dave  In215

Dave {Dave}

5 Implementation issues

In this section, we describe several important implementation issues.

5.1 Operator state

As we discuss in Section4, it is necessary to insist that operators have no internal state
other than that managed by Solar, through theget(k) andput(k,s) functions. The
implementation, which in our case is in Java, must provide four properties. First, the
operator can have no other state: each operator class defineshandleEvent() and
Restrict() as static methods, and is not allowed to use static fields, to access files,
to open network connections, and the like.2 Second, we ensure that the operator can
read Solar-managed state only withget , by hiding that state in a Solar object that
offers onlyget andput as public methods. Third, the state can be created or updated
only by callingput , becauseget returns a copy of the state, rather than a reference
to Solar’s copy of the state. Fourth, theget/put rules described in Section4.1 are
enforced by the implementations ofget andput .

5.2 Access-control enforcement

Ultimately, the point of computing an event’s ACL is to limit the set of applications that
may receive the event. For this purpose, Solar adds a specialACL operatorat the root of

2 We can enforce these properties through byte-code analysis.

10



every subscription tree, as shown in Figure4. For an eventei = {di, ai}, this operator’s
special event-handling methodaccessAllowed( ai) returns a boolean indicating
whether to passdi on to the application. The ACL operator, constructed with parameter
p wherep is the principal running the application, returns true iffp ∈∗ ai. To evaluate
that expression, an ACL operator must recursively checkp’s membership in any roles
named inai, as we describe below.

Fig. 4.Solar inserts a special ACL operator at the root of every subscription tree.

ACL
Operator Application

Event 
(d, a)

Operator Graph

Event
(d)

5.3 Evaluation of role names

Our approach allowsroles to be named in ACLs, and for those roles to be defined in a
context-sensitive way. Thus, we need efficient mechanisms a) to define context-sensitive
roles, and b) to test role membership.

To define a new context-sensitive role, any user may ask Solar to deploy (and name)
a subscription tree whose root operator publishes events listing the current set of mem-
ber principals.3 Anyone may keep up-to-date on the role membership, as it changes,
simply by subscribing to the role’s root operator, by name. (Solar’s name space is be-
yond the scope of this paper; see [3].)

There are two instances in which Solar needs to evaluate role membership: when
filtering events in an ACL operator and when computing relaxation functions in every
publisher. Consider the ACL operator, which needs to testp ∈∗ ai. It needs to evaluate,
for a single principalp, membership in any role that is attached to an incoming event.
The simplest approach is to query each role’s operator aboutp’s membership. Oper-
ators do not have a query interface, however, and this approach requires a round-trip
message for each role for each event, so we prefer subscription-based approaches that
allow the ACL operator to maintain a list ofp’s current roles. For example, for any
principalp with active applications, Solar deploys a trusted aggregator that subscribes
to all roles, publishing an event wheneverp joins or leaves a role. ACL operators forp

3 For efficiency, most implementations would allow three types of events:set list , which
announces the full membership,add list , which announces additions to the membership,
and del list , which announces deletions from the membership. Any subscribers would
maintain the current list in their state.

11



subscribe to this operator. (This approach explains why we chose to implement access-
control enforcement as an operator; its normalhandleEvent( d) method processes
the incoming role updates, while its specialaccessAllowed( a) method processes
incoming data events.)

Consider an ordinary publisher, which needs to testp ∈∗ OPij for all p that have
registered relaxation functions. The simplest approach is to subscribe to the same per-
principal aggregator mentioned above, for each principal that registers a relaxation func-
tions. If there are many, it may be more efficient to monitor all the roles directly. To
avoid the overhead of monitoring role membership, we expect that many implementa-
tions will narrow the test top ∈ OPij .

6 Related work

There is little published about access control in event-distribution systems for perva-
sive computing. Spreitzer and Theimer [14] discuss privacy issues involved in location-
aware applications, and developed a mechanism to encode a user’s privacy policy in
the “user agent” that collected and disseminated the user’s personal context informa-
tion. Their approach is limited to location context and does not generalize to derived
context information. Ebling [7] also uses role-based access control to protect the pri-
vacy of users in context-aware applications, but provides no details. Our system in-
troduces context-sensitive roles, whose membership is computed from context infor-
mation, and the use of context-sensitive roles allows us specify flexible access-control
rules for many applications.

Our ideas are substantially influenced by recent work on information-flow models
of access control. Since the traditional information-flow policy is too restrictive, sev-
eral projects provide ways to “declassify” information. Ferrari [8] is an object-oriented
system that controls access to objects using information-flow principles, but provides
trusted functions that can relax the strict information-flow policy. That is, a principal
with no rights to access some object directly can access it through the trusted function.
They, like us, use ACLs to define the security level in their flow policy. Although their
trusted function does allow access to objects by principals not in the ACL, it is not clear
how their mechanism could be used in our situation, in which we relax an event’s ACL
so it can be accessed, later, by applications downstream. Furthermore, in their paper it is
not clear whether ordinary users would have the power to implement trusted functions
or contribute to the relaxation listsRW (m) andIW (m) for the methodm.

Myers et al. [11] extend the Java programming language to allow variables to be
tagged with labels. Labels contain an access-control policy (essentially, an ACL) for
each “owner” of that variable. Variables computed from others are given a label com-
puted from the labels of operands in the computation, according to information-flow
principles. An owner principal may declassify a variable by extending its own ACL
in the label, but other owner’s ACLs are unchanged. A principal may only obtain the
value of the variable if it is in theintersectionof the owners’ ACLs. Our relaxation
semantics are more liberal than their declassification semantics, as we allow anyone
with current access to add any other principal to the ACL. Although their approach is
intended for compile-time analysis of fine-grained information-flow in Java programs,
it may be possible to apply the same concepts to events and operators, at run-time.

12



7 Future work

We plan to prototype our proposed access-control mechanism within the Solar system,
and apply it to some realistic applications. Our goal is to to evaluate the efficiency of the
mechanism, its flexibility in expressing realistic policies, and the amount of administra-
tive overhead involved in management. We need to investigate alternatives for testing
membership in context-sensitive roles.

Our approach attaches an ACL to each event, to control application access to event
data. We wonder whether it may be useful to attach trust or integrity information to each
event, so that subscribers can interpret the event’s data in terms of their willingness to
trust the source or intermediate operators.

This paper focuses on controlling access to context information. We believe there
is potential to use context information to control access to a wide variety of services,
whether computational (such as access to a database) or physical (such as access to a
locked room). Although our framework allows context-sensitive access-control deci-
sions through the use of context-sensitive roles, we plan to study a wider variety of uses
for context-sensitive authorization under a more general model.

8 Summary

Security is a critical component in any realistic deployment of pervasive computing.
A pervasive-computing infrastructure necessarily collects a lot of context information
to disseminate to its context-aware applications, but due to the personal or proprietary
nature of much of this context data, the infrastructure must limit access to context infor-
mation to authorized persons. We propose a new access-control mechanism for event-
based context-distribution infrastructures. Our approach is based on ACL propagation,
in which each evente is tagged with an ACL derived automatically from the ACL
on events that contributed to the production ofe. Our approach is based on a conser-
vative information-flow model of access control, but we allow users to express their
access-control policies through relaxation functions. This combination of automatic
ACL derivation and user-specified ACL relaxation allows access control to be deter-
mined and enforced in a decentralized, distributed system with no central administrator
or central policy maker. It also allows users to express their personal balance between
functionality and privacy. Finally, our infrastructure allows access-control policies to
depend on context-sensitive roles, allowing great flexibility.

We met our four objectives: 1) applications may only receive events to which their
principal has access, 2) access-control policies are determined by information-flow
principles and relaxed where appropriate by request of users, 3) the access-control poli-
cies can themselves be context-aware, through the use of context-sensitive role defini-
tions, and 4) operators and their event streams may be shared by multiple users and
applications, while this sharing remains transparent to the users and applications. The
result is an approach that is secure, flexible, distributed, and (we believe) scalable.

Finally, although this paper describes our work in the context of the Solar system,
we believe that our ACL-propagation technique would also apply to many other event-
based context-dissemination infrastructures.

13



Acknowledgements

We are grateful to Guanling Chen for his design and development of the Solar system,
to Sean Smith and Chris Hawblitzel for many helpful discussions about security, and to
Chris Masone and Chris Hawblitzel for their feedback on drafts of this paper.

References

1. Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert E. Strom, Daniel C. Sturman, and
Wei Tao. Information flow based event distribution middleware. In Proceedings of the
Middleware Workshop at the 19th IEEE International Conference on Distributed Computing
Systems, pages 114–121, Austin, Texas, May 1999. IEEE Computer Society Press.

2. Guanling Chen and David Kotz.Context aggregation and dissemination in ubiquitous com-
puting systems. Technical Report TR2002-420, Dept. of Computer Science, Dartmouth Col-
lege, December 2001. Submitted toWMCSA 2002.

3. Guanling Chen and David Kotz.Supporting adaptive ubiquitous applications with the SO-
LAR system. Technical Report TR2001-397, Dept. of Computer Science, Dartmouth Col-
lege, May 2001.

4. Guanling Chen and David Kotz.Solar: A pervasive-computing infrastructure for context-
aware mobile applications. Technical Report TR2002-421, Dept. of Computer Science,
Dartmouth College, February 2002. Submitted toPervasive 2002.

5. Norman H. Cohen, Apratim Purakayastha, John Turek, Luke Wong, and Danny Yeh.Chal-
lenges in flexible aggregation of pervasive data. Technical Report RC21942, IBM Research
Division, Thomas J. Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598,
January 2001.

6. Dorothy Elizabeth Robling Denning.Cryptography and Data Security. Addison-Wesley
Publishing Company, 1982.

7. Maria R. Ebling, Guerney D. H. Hunt, and Hui Lei.Issues for context services for pervasive
computing. In Proceedings of the Workshop on Middleware for Mobile Computing 2001,
Heidelberg, Germany, November 2001.

8. Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajodia.Providing flexibility in
information flow control for object-oriented systems. In Proc. IEEE Symposium on Security
and Privacy, pages 130–140, May 1997.

9. Jeffrey Hightower and Gaetano Borriello.Location systems for ubiquitous computing. IEEE
Computer, 34(8):57–66, August 2001.

10. Marc Langheinrich.Privacy by design— principles of privacy-aware ubiquitous systems. In
Proceedings of UbiComp 2001: International Conference on Ubiquitous Computing, volume
2201 ofLecture Notes in Computer Science, pages 273–291. Springer-Verlag, 2001.

11. Andrew C. Myers and Barbara Liskov.Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.

12. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.Role-based
access control models. IEEE Computer, 29(2):38–47, Feb 1996.

13. M. Satyanarayanan.Pervasive computing: Vision and challenges. IEEE Personal Commu-
nications, 8(4):10–17, August 2001.

14. Mike Spreitzer and Marvin Theimer.Providing location information in a ubiquitous com-
puting environment. In Proceedings of the 18th ACM Symposium on Operating Systems
Principles(SOSP’93), pages 270–283, Ashville, NC, 1993. ACM Press.

14

http://www.research.ibm.com/gryphon/Our_Research/Research_Papers/ICDCS_99_Middleware_Workshop_Final.pdf
http://www.cs.dartmouth.edu/reports/abstracts/TR2002-420/
http://www.cs.dartmouth.edu/reports/abstracts/TR2002-420/
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-397/
http://www.cs.dartmouth.edu/reports/abstracts/TR2001-397/
http://www.cs.dartmouth.edu/reports/abstracts/TR2002-421/
http://www.cs.dartmouth.edu/reports/abstracts/TR2002-421/
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/071dab93d3fe4a72852569de0056508a
http://domino.watson.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/071dab93d3fe4a72852569de0056508a
http://www.cs.arizona.edu/mmc/Program.html
http://www.cs.arizona.edu/mmc/Program.html
http://citeseer.nj.nec.com/ferrari97providing.html
http://citeseer.nj.nec.com/ferrari97providing.html
http://www.computer.org/computer/co2001/r8057abs.htm
http://link.springer-ny.com/link/service/series/0558/bibs/2201/22010273.htm
http://portal.acm.org/citation.cfm?id=363526
http://portal.acm.org/citation.cfm?id=363526
http://www.list.gmu.edu/journal.htm
http://www.list.gmu.edu/journal.htm
http://ieeexplore.ieee.org/iel5/98/20430/00943998.pdf?isNumber=20430
http://www.acm.org/pubs/citations/proceedings/ops/168619/p270-spreitzer/
http://www.acm.org/pubs/citations/proceedings/ops/168619/p270-spreitzer/

	Controlling access to pervasive information in the ``Solar'' system

