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Abstract
Timely detection of an individual’s stress level has the po-
tential to expedite and improve stress management, thereby
reducing the risk of adverse health consequences that may
arise due to unawareness or mismanagement of stress. Re-
cent advances in wearable sensing have resulted in multiple
approaches to detect and monitor stress with varying levels
of accuracy. The most accurate methods, however, rely on
clinical grade sensors strapped to the user. These sensors
measure physiological signals of a person and are often bulky,
custom-made, expensive, and/or in limited supply, hence limit-
ing their large-scale adoption by researchers and the general
public. In this paper, we explore the viability of commercially
available off-the-shelf sensors for stress monitoring. The idea
is to be able to use cheap, non-clinical sensors to capture
physiological signals, and make inferences about the wearer’s
stress level based on that data. In this paper, we describe
a system involving a popular off-the-shelf heart-rate monitor,
the Polar H7; we evaluated our system in a lab setting with
three well-validated stress-inducing stimuli with 26 partici-
pants. Our analysis shows that using the off-the-shelf sensor
alone, we were able to detect stressful events with an F1
score of 0.81, on par with clinical-grade sensors.

Author Keywords
Stress detection, mobile health (mHealth), commodity wear-
ables, mental health
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Introduction
Stress is defined as the brain’s response to any demand or
change in the external environment [15], and has the potential
to actuate changes within an individual’s lifestyle. When an
individual experiences sustained stress over long periods
of time, it could lead to chronic stress, which is severely
detrimental to both physical and mental health [1]. Hence,
timely detection and intervention is extremely important.

With recent advancements in sensor and wearable technolo-
gies, researchers are beginning to make progress on contin-
uous and passive measurement of stress [8,10–12,16,18].
While this prior work introduces and studies a variety of wear-
able devices and sensors to capture physiological data with a
focus on detecting or predicting stress (or stressful events), it
relies on custom-made, or clinical-grade sensors, which are
often bulky, uncomfortable, inaccessible and/or expensive,
making them unappealing or out of reach for many. These
limitations have prevented large-scale adoption of such sen-
sors by (a) researchers who want to observe participant stress
in real or near-real time, (b) researchers who want to study
interventions and their effect on other behaviors such as anx-
iety, smoking cessation or drug abuse, and (c) consumers
who want to monitor their stress level beyond the clinical set-
ting, in free-living conditions. In this work, we aim to answer
the following question: Can a commodity device be used to
accurately measure stress?

To answer this question, we conducted a study with 26 par-
ticipants using an off-the-shelf commodity device heart-rate
monitor (Polar H7 [17]). Our analysis shows that the features
computed from data collected by a commodity heart-rate sen-

sor show statistically significant differences between baseline
rest and stressed periods. Furthermore, the features also
show significant difference across several types of stress-
inducing stimuli.

Further, by performing a thorough evaluation in the lab setting
(18 hours of data), we demonstrate methods for accurately
detecting stress with an F1 score of 0.81. The results are
on-par with results attained in prior research that uses clinical-
grade Electrocardiography (ECG) sensors to identify stressful
periods in the lab [11].

These results give us confidence about the usability of com-
modity heart-rate monitors (in this case the Polar H7). While
more analyses with a varied user-base is required, we believe
this is a strong step in the direction of eliminating researchers’
dependence on custom or expensive clinical-grade ECG mon-
itors for stress measurement, and possibly to other mental
and behavioral health outcomes.

Background
In several past work, the researchers developed their own
custom-fitted sensing system [4, 10, 11, 16, 18]. While the
benefits of using a custom sensor-suite may include – higher-
quality signals, control over signal type/frequency, control
over battery life, and so forth, they also have some major
limitations, i.e., lack of reproducibility by other researchers,
lack of large-scale deployments, and unavailability to other
researchers who want to use similar sensors for detecting
other health outcomes.

There are some work that have used a commercially avail-
able sensor/device. Muaremi et al. used a combination of
the Zephyr BioHarness 3.0 [22] and an Empatica E3 [7] for
monitoring stress while sleeping [14]. Gjoreski et al. used the
Empatica E3 to detect stress in a lab and an unconstrained
field (free-living) setting [8]. These devices, however, are very
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expensive (the Zephyr BioHarness sells on Amazon for over
$650, Empatica E3 has been replaced with E4, which sells
for over $1600 and has a 2–6 week shipping time). The high
cost of these sensors limit large-scale deployments of these
devices in studies not only for stress detection, but also for
other mental and behavioral health outcomes.

In contrast, we use a commodity device, the Polar H7 heart-
rate monitor [17], which is available on Amazon for just under
$70, and has been recently updated with the newer Polar H10
which is available for $89.

Data Collection and Processing
We now discuss our data collection, followed by methods for
processing the data, which includes data cleaning, normaliza-
tion, and feature computation and selection.

Data Collection
We conducted a study comprising lab and field components.
All participants completed both the lab and field components
and were compensated with $50 for their time. The analysis
and results discussed in this work is only from the lab compo-
nent of the study; the data analysis from the field component
is currently underway. The study description, along with the
lab protocol is as follows –.

Participants: n = 26 participants (14 females, 12 males; 12
undergraduate and 14 graduate students), with a mean age
of 23± 3.24 years.
Data Types: Heart-rate and R-R intervals.
Device used: Polar H7 [17]. We conducted a preliminary
test to choose between the Polar H7 and the Zephyr HXM.
We compared both these devices alongside a clinical ECG
device, the Biopac MP150 [3], and found that as compared
to Zephyr HXM, the features computed from Polar H7 had a
stronger correlation with those computed from the Biopac.

Lab Protocol: After signing the consent form, the partici-
pants experienced three types of stressors – mental arith-
metic, startle response, and cold water – all well-validated
stimuli known to induce stress.

Specifically, the protocol was:

(1) Resting baseline – participant sat in a resting position
for 10 minutes.
(2) Mental arithmetic task – participant counted backwards
in steps of 7 (4 minutes).
(3) Rest period – participant sat in a resting position for
5 minutes, to allow him/her to return to baseline.
(4) Startle response test – participant faced away from the
lab staff and closed his/her eyes; staff then dropped a book
at an several random and unexpected moments, startling
the participant (4 minutes).
(5) Rest period – 5 minutes, as before.
(6) Cold water test – participant submerged his/her right
hand in a bucket of ice water for as long as tolerable (up to
4 minutes).
(7) Rest period – 5 minutes, as before.

At the end of the initial baseline rest period and after each
stressor, we asked the participant to verbally rate their stress
level on a scale of 1–5; this was the stress perceived by the
user. As the ground truth, we labeled each minute of data
collected in the lab as stressed (class = 1) or not stressed
(class = 0), based on whether the participant was experienc-
ing a stressor stimulus within that minute. This study was
approved by our Institutional Review Board (IRB).

Data Cleaning
We begin with preliminary data cleaning, to filter out invalid
data points. In this step we are not trying to handle out-
liers (which may or may not be valid readings), but remove
obviously erroneous data readings. This step is important
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because the sensors used for physiological measurements
are not clinical quality, and may need a few seconds to ac-
quire stable heart-rate readings. We noticed these erroneous
readings usually occurred when a participant was trying to put
on or remove the device, or when the device did not snugly fit
the participant.

If the heart-rate value was outside a pre-determined range,
we dropped both the heart-rate value and any R-R interval
(i.e., the time interval between two consecutive R peaks in
the QRS complex of an ECG wave. R-R interval is a measure
of inter-beat variability, also known as Heart-rate Variability
(HRV), and has been shown to be a marker for stress and
health.) values received in that second. Based on previ-
ous research conducted to find the maximum human heart
rate [6, 20], we set our upper bound to 220 bpm. To deter-
mine the lower bound, we inspected heart-rate data of all
the participants (visually) to find any noticeable value that
would seem invalid. The resulting range [30:220] bpm is very
conservative; we are confident that any data point outside
this range is invalid.

Feature Computation
We next use the data remaining after the previous steps to
compute features to quantify heart-rate variability (HRV). We
split the data into one-minute intervals, and compute a set of
features for each interval. However, before we compute some
features for further analyses, it is critical that we (1) handle the
effect of outliers in the data and (2) remove any participant-
specific effects on the data, so as to create a generalized
model, without any participant dependency. These issues
would significantly impact the computed features, and even-
tually the accuracy of the results obtained. We thus look at
each in more detail to understand how the results change with
different methods for handling outliers and normalization. All
of the previous works we reviewed seem to have just selected

some method for handling outliers (if any) and normalization,
without taking into account the effect of their choice on the
outcome of the metrics under study.

Outliers
While dealing with outliers in data, the common approaches
are (a) leave them in the data, (b) reduce the effect the outliers
might have, or (c) remove them completely. In our work
we look at each of these approaches and their effect on
model training and evaluation. For the first approach, we do
nothing to the data, i.e., leave it as-is. In the second approach,
we use winsorization to reduce the effect of outliers on the
dataset [21]. This approach was also used by some previous
work, e.g., cStress [11] and Gjoreski et al. [9]. For the third
approach (c), we simply remove (trim) data points that we
deem as outliers.

We define outlier as a point that lies beyond a certain thresh-
old above or below the median of the data. For our purposes
we choose the threshold as three times the median absolute
deviation (MAD) within that participant’s data. This choice en-
sures that we considered only the extreme values as outliers,
and over 99% of the data is unaltered. Having defined outlier,
we establish the bounds as median± 3×MAD

The next steps are straightforward; when winsorizing, we
replace any value greater than the upper bound with the
upper bound value, and any value lesser than the lower bound
with the lower bound value. Alternately, for trimming we just
drop the values less than the lower bound or greater than
the upper bound.

It is important to note that handling outliers by both winsoriza-
tion and trimming is done individually for each participant.
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Normalization.
is important to remove participant-specific effects on the data,
so as to make the model generalizable to any participant.
We tried two different methods for data normalization. With
physiological data (e.g., heart rate, Galvanic Skin Response
(GSR), skin temperature) each participant has a different
natural range. Hence, the first normalization method we try is
minmax normalization, which simply transforms the values
into the range [0, 1]. Given a vector x = (x1, x2, . . . , xn),
the minmax normalized value for the ith element in x is given
by,

zi =
xi −min(x)

max(x)−min(x)O
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Further, there might be more intrinsic participant effects –
participant-specific mean and standard deviation, hence as
the second normalization technique, we tried z-score nor-
malization. In case of z-score normalization, the normalized
value zi is denoted by,

zi =
xi − µ
σ

where, µ is the mean of x and σ is the standard deviation of x.
It would be interesting to observe the role participant-specific
effects have on model training and validation. We go through
both of the normalization steps individually for all three ways
of handling outliers. Table 1 provides our nomenclature for
each of the methods we used.

Feature computation
We grouped the normalized data into one-minute windows.
Given the short duration of our lab experiments, we wanted
to select the shortest possible window size. Esco and Flatt
demonstrated that as compared to 10- or 30-second windows,
the features computed in the 60-second window size had the
highest agreement with the conventional 5-minute window

size [5]. Furthermore, the one-minute window has been
common in physiological monitoring [10,11,16].

For the HRV data, we selected only the time-domain fea-
tures for our work, as shown in Table 2. All of these time-
domain features have been shown to be effective in predicting
stressful periods by other researchers [11]. Unlike earlier
work, however, we avoided frequency-domain features (e.g.,
low-frequency (LF) bands, high-frequency (HF) bands, and
low:high frequency (LF:HF) ratio) for the following reasons.

The RMSSD (root mean square of successive differences of
successive R-R intervals) is associated to short-term changes
in the heart, and is considered to be a solid measure of
vagal tone and parasympathetic activity, similar to HF [13].
Several studies have also shown that RMSSD and HF are
highly correlated [19]. Further, unlike HF, RMSSD is easier
to compute, and is not affected by other confounding factors
such as breathing. Hence, we felt RMSSD a good alternative
to HF, thereby nullifying the need to compute HF.

Unlike HF, which represents parasympathetic activity, LF is
less clear. While some researchers believe LF represents
sympathetic activity, others suggest it is a mix of both sym-
pathetic and parasympathetic activities [2]. Furthermore, the
rationale behind using LF:HF ratio is that since HF represents
parasympathetic activity, a lower HF will increase the ratio,
suggesting more stress; but, since the role of LF is not really
clear, looking at the ratio might be misleading as well [2].
Also, for computing LF, we need a window size of at least
2 minutes, which would reduce our data size by half. Further-
more, earlier work like cStress found that compared to other
time-domain features, and HF, the feature importance of LF
and LF:HF is extremely low [11]. Hence we decided to leave
out LF and LF:HF features from our work, thus not requiring
us to calculate any frequency-domain features.
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Evaluation
In this section we evaluate our approach. We begin by deter-
mining whether we were able to capture a significant differ-
ence between the resting and stress-induced periods of the
lab component, followed by building and evaluating machine-
learning models from the lab dataset, and finally using the
models built in the lab to infer stress/not-stress in the field.

Figure 1: Participant self-reports after
each lab period.

Significant features
We first determined whether we could distinguish between
resting state and stressful states, in the lab data. To this end,
we use features computed from the first 10 minutes of the
initial rest period and compare them individually to the fea-
tures computed from the Math Test, Book Test, and Cold Test
respectively. We used Welsh’s t-test of unequal variances to
determine which features showed any statistically significant
differences between the resting baseline period and each of
the stress-induction periods. As described above, we followed
three ways of handling outliers and two ways for data normal-
ization, leading to a total of six combinations, as shown in
Table 1. Across all the six combinations, we observed the
maximum number of features showing significant differences
in the trim zscore combination, and for the sake of space,
we report results only for that one combination, i.e., trimmed
outliers and z-score normalization.

The results for the heart-rate features are shown in Table 3.
It is evident that for the Math Test and the Book Test, there
are several features that showed statistically significant differ-
ences.

This is, however, not the case for the Cold Test, where we
found no feature showing statistically significant difference
from the initial 10-minute rest baseline. This result was unex-
pected, which suggested that the Cold Test was not affecting
(i.e., stressing) the participants significantly from the base-
line resting period. This result prompted us to look at the

Features Math Test Book Test Cold Test
t-stat p-value t-stat p-value t-stat p-value

mean HR −14.170 <0.001 7.490 <0.001 −1.420 0.159
standard deviation HR −0.560 0.579 −0.810 0.419 −1.300 0.198
median HR −13.970 <0.001 7.670 <0.001 −1.240 0.217
20th percentile HR −12.540 <0.001 7.710 <0.001 −0.930 0.355
80th percentile HR −13.750 <0.001 6.380 <0.001 −1.770 0.080
mean R-R 7.020 <0.001 −5.830 <0.001 −0.770 0.443
standard deviation R-R 0.220 0.830 −0.350 0.726 1.140 0.254
median R-R 6.870 <0.001 −6.760 <0.001 −0.380 0.704
max R-R 6.790 <0.001 −6.740 <0.001 0.200 0.843
min R-R 2.650 0.009 0.180 0.858 0.680 0.496
20th percentile R-R 3.630 <0.001 −3.270 0.001 −1.780 0.076
80th percentile R-R 10.680 <0.001 −7.860 <0.001 0.180 0.856
RMSSD −0.470 0.637 −0.780 0.436 0.300 0.765

Table 3: Significant heart-rate based feature differences from initial
rest period of 10 minutes. Significant scores (p < 0.05) are shown
in bold.

self-reports the participants answered (on a scale of 1 to 5),
during the lab study, after the baseline rest period, and after
each of the stress tests, as shown in Figure 1. We observed
that most participants gave a lower stress score after the Cold
Test, as compared to the previous two tests.

A two-tailed unpaired t-test between the self-reported scores
after the baseline rest period and the Cold Test across all
participants, however, revealed a statistically significant differ-
ence: t stat = 3.4734; p = 0.001.

Due to this significant difference between the participants’
responses, we hypothesized that participants may have been
physically active upon arriving in the room; then signing the
consent form, learning about the sensors and devices they
would be wearing, may have caused some stress. Hence,
when we started the study immediately after, some of the
residual physiological responses being experienced by the
participants may have continued during the baseline rest
period of the study.
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Features Math Test Book Test Cold Test
t-stat p-value t-stat p-value t-stat p-value

mean HR −13.230 <0.001 5.970 <0.001 −1.740 0.084
standard deviation HR −1.270 0.204 −1.530 0.129 −1.710 0.090
median HR −13.060 <0.001 6.080 <0.001 −1.620 0.107
20th percentile HR −11.640 <0.001 6.240 <0.001 −1.160 0.249
80th percentile HR −12.810 <0.001 5.030 <0.001 −2.040 0.044
mean R-R 13.920 <0.001 −6.380 <0.001 2.110 0.037
standard deviation R-R 0.350 0.725 −2.440 0.015 −0.790 0.428
median R-R 14.150 <0.001 −6.250 <0.001 1.970 0.052
max R-R 6.760 <0.001 −4.960 <0.001 1.130 0.262
min R-R 8.730 <0.001 −1.760 0.080 2.460 0.015
20th percentile R-R 13.440 <0.001 −4.420 <0.001 2.410 0.017
80th percentile R-R 11.160 <0.001 −6.430 <0.001 1.210 0.228
RMSSD 0.420 0.676 −2.670 0.008 −1.200 0.231

Table 4: Significant heart-rate based feature differences from the
last 4 minutes of the initial rest period. Significant scores (p < 0.05)
are shown in bold.

To test our hypothesis, we discarded the first 6 minutes of
the initial rest period and marked it as a “settle-down” period
for the participants. We then used only the last 4 minutes
of the rest period as our baseline. We computed features
from this baseline rest period, and ran Welsh’s t-test. Table 4
clearly shows certain features had a statistically significant
difference for the Cold Test, as well, suggesting there may
be some truth to our hypothesis. One can also see that
the significant features for the Math Test were the same as
in Table 3, but the Book Test had another feature showing
statistical significance – that is, RMSSD.

It is interesting to see that RMSSD (which correlates strongly
with High Frequency (HF) bands of heart-rate), is a significant
feature for only the Book Test. To understand this, we go back
to what RMSSD represents, i.e., the parasympathetic activity,
which is the branch of autonomic nervous system in charge
of rest functions and recovery.

Here, recovery is the key. In the Book Test, we were startling
the participants by randomly dropping a heavy book behind

them every 30-45 seconds. While the book drop creates an
immediate startle response, the participants start recovering
from the startled/shocked state immediately after; which is
not the case with the Math Test, and the Cold Test, in which
the stressors are applied continuously, without giving the par-
ticipants time for recovery. It is this recovery in the Book Test
that is being captured by RMSSD, and likely why it shows a
significant difference. We believe this observation is important
and may help future researchers working on stress inference
and interventions to quantify how well their interventions are
working.

Having determined that the features computed from heart-
rate data (as measured by a readily available, commercial,
off-the-shelf, heart-rate monitor (the Polar H7)) showed sig-
nificant differences between rest and stress-induced periods,
we next used these features (mentioned in Table 2) to build
machine-learning models designed to infer whether the per-
son is stressed or not stressed . Further, during a stressful
period, we look at the feasibility of differentiating among the
three types of stressors, i.e., Math, Book, and Cold tests.

Inferring ‘stressed’ vs. ‘not stressed’
We computed features on each one-minute window, and then
labeled the window as either 1 (stressed) or 0 (not stressed),
based on whether the participant was undergoing a stress
induction task during that minute.

In the past, researchers have used several machine-learning
algorithms for stress detection; two are widely used and have
also been shown to consistently perform better in compari-
son to others: Support Vector Machines (SVM) and Random
Forests (RF) [4,9,11,16,18]. We used both of these popular
machine-learning algorithms in our work, compare their per-
formance, and evaluate how the performance metrics change
with different combinations of outlier handling and normaliza-
tion methods. All the evaluation results reported are using
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Leave One Subject Out (LOSO) cross-validation.

For each algorithm (SVM and RF), we output a probability that
the instance belonged to the stressed class. We then thresh-
old the result: if the probability was greater than the threshold,
the instance was classified as positive (1), i.e., stressed, else
it was classified as negative (0), i.e., not stressed. This
approach allowed us to adjust the threshold to achieve the
highest predictive power; in the future, we may consider using
the probability to infer the level of stress the participant is
experiencing instead of a binary classification.

While we did the training and evaluation for each of the six
combinations of outlier handling and normalization methods,
we observed that outlier minmax and outlier zscore consis-
tently performed worst (on all three metrics – precision, re-
call and F1 score) across all six combinations (which was
expected, since we did not handle outliers in these two com-
binations, and leaving them as-is in the data could have in-
troduced a bias). Hence, we do not report results from those
two combinations, and show comparisons among the other
four options.

Detecting Stress Events
We began by considering the whole 10 minutes of the base-
line rest period as not stress, and each of the three 4-minute
stress-induction periods as stress (we ignored the resting
periods between two stress induction tasks, to allow the par-
ticipants’ physiology to return to baseline). These cross-
validation results are shown in Table 5. We then considered
only the last 4 minutes of the baseline resting period as not
stress, ignoring the first 6 minutes. The cross-validation re-
sults are shown in Table 6. On comparing the values reported
in Table 5 and Table 6, we observe the inference results res-
onate with the findings in the previous section, i.e., ignoring
the first 6 minutes of the initial rest period led to better results.
This result strengthens our initial hypothesis about residual

trim zscore trim minmax wins zscore wins minmax
Metrics SVM RF SVM RF SVM RF SVM RF
Precision 0.64 0.62 0.60 0.66 0.68 0.61 0.61 0.62
Recall 0.72 0.66 0.52 0.70 0.59 0.66 0.48 0.68
F1 score 0.68 0.64 0.56 0.68 0.63 0.63 0.53 0.65

Table 5: LOSO Cross-validation results from the different datasets,
using SVM and RF, and considering the entire rest baseline of 10
minutes as not stressed

trim zscore trim minmax wins zscore wins minmax
Metrics SVM RF SVM RF SVM RF SVM RF
Precision 0.80 0.78 0.70 0.81 0.79 0.78 0.76 0.78
Recall 0.81 0.70 0.59 0.67 0.69 0.68 0.59 0.67
F1 score 0.81 0.73 0.69 0.73 0.73 0.72 0.66 0.72

Table 6: LOSO Cross-validation results from the different datasets,
using SVM and RF, and considering only the last 4 minutes of the
rest baseline as not stressed

stress in the initial minutes of the resting baseline.

In Table 6, we observe that the best result was achieved by
SVM on the trim zscore combination, i.e., trim outliers, then
z-score normalization. It is interesting to note that while Ran-
dom Forest produced a consistent F1 score of approximately
0.73 (with varying precision and recall) across the different
datasets, SVM showed a wide variation of F1 scores: from
0.66 to 0.81. Note also that trim zscore obtained a recall and
F1 score slightly better than what was obtained using the
ECG-only data in cStress, one of the leading methods in prior
stress-detection research [11].

Our result suggests that it is possible to detect stress using a
commodity heart-rate sensor, at least in the lab setting.

To further understand the role of different features in the
model performance, we present a ranking of the features (in
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(a) Feature importance using Random Forest: The
green bars represent the feature importance in the
forest, along with their inter-tree variability.

(b) Feature importance using Linear SVM: The green
bars represent positive feature coefficient, whereas
the blue bars represent negative coefficients.

Figure 2: Feature Importance representation using Random Forest
and Linear SVM, only with heart-rate features, sorted from highest
to lowest. For the sake of space, we only show the top seven
features.

Features
Book Test &
Math Test

Cold Test &
Math Test

Book Test &
Cold Test

t-stat p-value t-stat p-value t-stat p-value
mean HR −18.160 <0.001 −8.760 <0.001 −6.080 <0.001
standard deviation HR 0.300 0.762 0.690 0.491 −0.430 0.671
median HR −18.260 <0.001 −8.760 <0.001 −6.010 <0.001
20th percentile HR −16.850 <0.001 −8.320 <0.001 −5.720 <0.001
80th percentile HR −16.720 <0.001 −7.990 <0.001 −5.750 <0.001
mean R-R 18.510 <0.001 7.970 <0.001 6.350 <0.001
standard deviation R-R 2.900 0.004 1.150 0.250 1.490 0.137
median R-R 18.110 <0.001 8.120 <0.001 6.090 <0.001
max R-R 10.810 <0.001 4.580 <0.001 4.860 <0.001
min R-R 11.150 <0.001 5.050 <0.001 4.120 <0.001
20th percentile R-R 17.290 <0.001 8.170 <0.001 5.940 <0.001
80th percentile R-R 16.200 <0.001 7.180 <0.001 5.540 <0.001
RMSSD 2.770 0.006 1.470 0.145 1.200 0.231

Table 7: Significance Test between different stress induced minutes.
Significant scores (p < 0.05) are shown in bold.

Figure 2) based on the feature importance scores obtained
from the Random Forests classifier, and a Linear SVM classi-
fier (since RBF Kernel SVM does not provide a mean to rank
feature importance). The features are shown from the highest
rank to the lowest.

Now that we have demonstrated that it is possible to train a
classifier to detect stress, we next seek to determine whether
it is possible to distinguish between the different stress in-
ducing tasks. If so, it may eventually be possible to provide
meaningful interventions according to the stressor.

We begin by determining which features might best differenti-
ate stressors. We show the results of Welsh’s t-test for each
feature for each pair of stressors in Table 7. We observe sta-
tistically significant differences among the stressors, for many
of the features, implying that the different stressors may lead
to different physiological responses from the participants.

Differentiating types of stressor
Given these promising results, we next trained models that
seek to classify the type of stressor experienced. Specifically,
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SVM Random Forest
Metrics ‘Math’ ‘Book’ ‘Cold’ ‘Math’ ‘Book’ ‘Cold’

Precision 0.79 0.72 0.94 0.78 0.72 0.63
Recall 0.85 0.76 0.34 0.83 0.77 0.51
F1 Score 0.82 0.74 0.50 0.80 0.74 0.56

Table 8: LOSO Cross-validation results for a multi-class
classification amongst stress induced periods, with the trim zscore
dataset, using Linear SVM and Random Forest classifiers.

when a particular window is known to be stressful, we trained
models that aim to classify the window based on which stres-
sor was experienced during that window. We thus annotated
each stress-induction period with a different label: Math Test
as 1, Book Test as 2 and the Cold Test as 3. This task was
now a three-class classification, and we trained Linear SVM
and Random Forest models for a LOSO cross-validation. Ta-
ble 8 shows the results. From the table we observe that while
we obtained high F1 scores for inferring the Math Test and
Book Test, that was not the case for the Cold Test. Also, while
SVM and Random Forest both produced similar prediction
metrics (precision, recall, and F1 score), for Math and Book
Tests, they produced widely varying results for the Cold Test:
SVM leads to high precision with low recall, whereas Random
Forest does not show such a large difference between pre-
cision and recall. We need to look further into the modelling
of different kinds of stressful periods (beyond the Math Test,
Book Test and Cold Test discussed here) to understand this
difference, which we leave to future work. Out of curiosity,
we considered a two-class classification between Math Test
and Book Test, and ignore the Cold Test completely from the
evaluation (from both training and testing). We observed that
the F1 score improved significantly for both the classes, with
values greater than 0.90 for both.

Discussion and Conclusion
While we have affirmed the possibility of using cheap com-
modity devices to detect stress, several additional issues
need to be explored. We discuss some of these issues in this
section.

Order of stress-induction tasks in the lab: Although none of
our participants knew what stress-induction tasks would occur
during the lab session, the sequence of tasks was the same
for all participants, i.e., the Math test, followed by the Book
drop test, and finally the Cold water test. While the decision to
follow the same sequence of tasks is consistent with previous
work [11,16], some researchers claim that randomizing the
order is required to avoid a carry-over effect of previous tasks.
Further exploration is required to observe whether and how
the order affects the results.

Scalability of the stress detection model: To observe the sen-
sitivity of our model to the number of users used for training
the model, we modelled performance for different subsets
of users. Considering n to be the number of users in the
model, where n ∈ [3, 26], all the possible combinations of
users for each n is 26Cn. For each n, we randomly selected
200 combinations1 out of the 26Cn possible combinations
and ran a LOSO cross-validation for each combination. We
show the mean and standard deviation of F1 score, Precision
and Recall2 in Figure 3. It is interesting to observe that the
metrics, the F1 score for example, varies only slightly after
15–16 participants, with substantial reduction in the standard
deviation. While we realize that the convergence at n = 26 is
because there is only one combination, it is re-assuring to see
that the model performance does not vary substantially with
different participant combinations. This is, of course, just for a

1For n = 25 and n = 26, we had 26 and 1 combinations respectively.
2The results reported are using the trim zscore combination of the Lab

HR data.
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college-student population; we plan to evaluate this in greater
detail for a broader population in lab and field situations in
future work.

Figure 3: Performance of LOSO
cross-validation for detecting stress
periods using n number of
participants, where n ∈ [3, 26]. The
points represents the mean of 200
randomly selected combinations of
participants, and the error bars
represent standard deviation across
different combinations.

Need for further multi-scale deployment and evaluation: In
our work, we looked at the performance of the Polar H7 on
26 participants, in the lab. We recently collected three days
of free-living data, and hope to report those results in the
future; we believe further research with more participants and
for longer durations of time is required. In previous work, the
cost and availability of custom or clinical-grade commercial
devices have limited the reproducibility of studies and large-
scale deployments of such devices. We believe the use of
cheap commodity devices will help overcome these short-
comings. To this end, we plan on releasing an open-source
smartphone app that can collect data from Polar H7 HRM
and apply the models described in this paper to infer stress
and not-stressed.
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