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Recent advances in wearable sensor technologies have led to a variety of approaches for detecting physiological stress. Even
with over a decade of research in the domain, there still exist many significant challenges, including a near-total lack of
reproducibility across studies. Researchers often use some physiological sensors (custom-made or off-the-shelf), conduct a
study to collect data, and build machine-learning models to detect stress. There is little effort to test the applicability of the
model with similar physiological data collected from different devices, or the efficacy of the model on data collected from
different studies, populations, or demographics.

This paper takes the first step towards testing reproducibility and validity of methods and machine-learning models for
stress detection. To this end, we analyzed data from 90 participants, from four independent controlled studies, using two
different types of sensors, with different study protocols and research goals. We started by evaluating the performance of
models built using data from one study and tested on data from other studies. Next, we evaluated new methods to improve
the performance of stress-detection models and found that our methods led to a consistent increase in performance across all
studies, irrespective of the device type, sensor type, or the type of stressor. Finally, we developed and evaluated a clustering
approach to determine the stressed/not-stressed classification when applying models on data from different studies, and found
that our approach performed better than selecting a threshold based on training data. This paper’s thorough exploration
of reproducibility in a controlled environment provides a critical foundation for deeper study of such methods, and is a
prerequisite for tackling reproducibility in free-living conditions.
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1 INTRODUCTION
Stress is a dynamic process that reflects the brain’s response to internal and external factors: characteristics of
a person and her circumstances, as well as the interactions between them [8]. Short-term stress, also known
as acute stress, can be a positive force by motivating a person to perform well, e.g., before an exam or a job
interview, thus leading to positive outcomes. Prolonged periods or frequent occurrence of acute stress may lead
to episodic acute stress, causing emotional (anger, irritability, anxiety or depression), cognitive (compromised
attention/concentration, compromised processing speed, compromised learning and memory) and physical
distress (high blood pressure, headaches, digestive problems) [1, 12, 44, 57].
Left untreated, long-term exposure to stress can lead to chronic stress, which may significantly and often

irreversibly damage a person’s physical and mental health. Chronic stress can have a domino effect on other
mental and behavioral outcomes, e.g., smoking, drug use, and depression. In fact, the 2019 “Stress in America”
survey conducted by the American Psychology Association (APA) found that more than three-quarters of adults
reported physical or emotional symptoms of stress, such as headache, feeling tired or changes in sleeping habits;
nearly half of adults laid awake at night because of stress in the month prior to the survey; and nearly 3 in 5
adults said they could have used more emotional support in the past year [2]. Hence, stress can be thought of as
a fundamental condition, proper management of which can lead to an improvement and balance in the physical,
mental, emotional, and behavioral health of an individual.
The current standard method for measuring stress is either via self-reports, like the Perceived Stress Scale

(PSS) [14], or by cortisol level measurement [36]. These methods, however, provide momentary insights and
cannot be used to monitor or measure stress continuously over an extended period of time, and require a person
to go “out-of-their-way”, to a clinician or psychologist. Fortunately, recent improvements in wearable sensors and
sensing capabilities have enabled researchers to investigate the potential of continuous and passive detection and
monitoring of stress in controlled, semi-controlled, and free-living conditions [27, 34, 35, 38–40, 46, 47, 52, 61],
leading to over a decade’s worth of research and effort in detecting stress using physiological signals.

Despite extensive research, the community is still a long way from producing a validated stress-detection model
to deliver interventions and help manage stress. While there are a variety of technical and implementational
challenges, there remain several fundamental challenges:

• Lack of a universally-accepted definition of “stress” : different people may have a different physiological
response to the same “stressor”, or report different perceptions of their reaction to stress; in fact, different
stressors might result in different physiological responses from the same person.

• Lack of a “stress signal” : signals like Electrocardiography (ECG), respiration, or Electro-dermal Activity
(EDA) simply capture the physiological response caused by stress. Other aspects of a person’s life can cause
a similar physiological response, e.g., physical activity, drinking coffee, or engagement in the classroom,
thus confounding a stress-detection model.

• Lack of reproducibility: researchers often create (or use) custom hardware, conduct a study, and build
models. There is little effort to test the applicability of the model with similar physiological data collected
from different devices, or the efficacy of the model on data collected from different studies, populations, or
demographics.

In this paper, we delve deeper into the third challenge listed above – the lack of reproducibility. In the past,
researchers have used a variety of different devices and sensors to record physiological signals; for example,
Plarre et al., Hovsepian et al. and Sarker et al., used the custom-made AutoSense system for detecting stress in
lab and free-living conditions [19, 38, 52, 61], Gjoreski et al. used the commercially available Empatica E4 device
for detecting stress in the lab and free-living conditions [27, 28], similarly, Mishra et al. used a commercially
available commodity sensor, Polar H7, along with a custom-made EDA sensor, to detect stress in the lab and
free-living conditions [46, 47]. While there is an overlap in the physiological signals measured in the different
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studies, there has been no exploration of whether the machine-learning models built using data collected from
one device can apply to the same physiological signal collected from a different device type.
Further, in most of the prior works, the researchers build stress-detection models using data collected from

participants belonging to a particular demographic, in a specific setting, using a particular device. Such an
approach makes it difficult to evaluate the efficacy of the models applied to a broader population, or to compare
with the methods used in other studies. The model reproducibility is either assumed or left as future work,
without any quantifiable evidence.

In this work, we take a step towards testing reproducibility of machine-learning models for stress detection.
We look at data collected from 90 participants, in four independently conducted studies, with different participant
demographics (including high-school students, university students, and corporate employees), using two different
types of sensors, with different study protocols and research goals. In all of the studies, the data was collected
in a controlled setting, so our work in testing reproducibility and validity of models is limited to controlled
settings. However, we argue that testing reproducibility in a controlled environment is a foundational step before
reproducibility in free-living conditions can be ensured.

While our initial goal was to test reproducibility, we further discuss and evaluate new methods and techniques
to improve the performance of detecting stress, and test the reproducibility of those methods across the four
studies. In prior work, the basic “framework” for detecting stress has largely been the same: (1) clean the signal, (2)
normalize the data, (3) break the signal into fixed-time windows, (4) compute features over individual windows,
(5) train classifiers with the computed features, and (6) measure performance on a test dataset or with some
form of cross-validation. Most of the prior work has focused on optimizing and improving the various steps, by
testing different normalization techniques, different cleaning techniques, different features, different size time
windows, and different machine-learning models. None of these prior works, however, account for the temporal
dynamics of stress across time windows, and thus miss out on potentially important information that could
improve detection performance. Mishra et al. proposed a two-layered approach, in which they account for the
stress in the previous minute while making an inference about the stress in the current minute, and observed a
significant boost in performance, as compared to the standard single-model classification [47]. We evaluate the
effectiveness of the modeling strategy proposed by Mishra et al., across the different studies, and compare it with
other approaches to leverage the temporal dynamics of stress.
Further, we propose a new method to determine the stressed/not-stressed classification threshold. In the past,

researchers have either used direct binary classifications, or a probabilistic threshold to determine what is
classified as “stress”. To maximize detection performance, this threshold is either optimized to the study or to
the individual. In this paper, we test the effectiveness of a threshold learned from one study when evaluating
the model with data collected from another study, and show that such a “fixed” threshold does not work across
different studies. We thus propose an unsupervised method to determine the classification threshold that does
not require “hard-wired” thresholds and adjusts the threshold according to measured stress probabilities.
Finally, we do recognize that our work is focused on controlled studies only, and does not account for the

challenges and complexities in free-living conditions. We discuss how to deploy models trained in the lab studies
to real-life situations, however, and share insights on how to improve performance.

1.1 Defining Repeatability, Replicability, and Reproducibility
It is important to note that there are no “fixed” definitions for the terms “repeatability," “replicability," and
“reproducibility" [54]. As highlighted by Hans Plesser, researchers have used contradictory definitions for these
terms for many years [54]. For our context of stress detection, we take inspiration from the definitions proposed
by Crook et al. [15], and the ones adopted by ACM in 2016 [20], to define the terms as follows.
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Repeatability (i.e., same team, same experimental setup): when the same team of researchers can get the
same/similar results (as the original study) in later studies using models or methods from the original study.1

Replicability (i.e., different team, same experimental setup): when a different team of researchers conducts an
independent study by following the experimental setup of a previous study and can achieve similar results (as
the original study) by using the models or methods from the original study.

Reproducibility (i.e., different experimental setup): when a team of researchers use models or methods from a
previous study and achieve similar results from an independent study with a different experimental setup.

Under these definitions, a machine-learning model built on Study X can be considered repeatable if it achieves
similar results when tested on data from Study Y (where Studies X and Y were conducted by the same researchers
and had the same research protocol). A model from Study X would be reproducible if it achieves similar results
when tested on data from Study Z (where Studies X and Z followed different research protocols). In similar vein,
methods for detecting stress from Study X would be reproducible if their application on train/test data collected
from Study Z results in similar results or outcomes.

It is important to note that reproducibility is different from generalizability. A model trained on Study X could
be reproducible on data from Study Z, and still not be generalizable. We argue that reproducibility is the first step
towards generalizability. To be considered generalizable, models should be consistently reproducible across a large
number of studies with varying characteristics (sensors, devices, and demographics). Testing for generalizability
would involve several years of reproducible research and is clearly beyond the scope of this work.

2 RELATED WORK
Many prior works have aimed to detect stress. Although there have been efforts to use ‘contact-less’ strategies for
detecting stress, like using smartphone data (e.g., call/SMS logs, app usage, or motion [23, 23, 68]), or by processing
a user’s voice [42], or by processing facial expressions [21], or by analyzing keyboard typing behaviors [58], in this
paper we focus only on methods that employ wearable devices to measure physiological signals to study stress.
While such contact-less methods have some advantages, they cannot provide a fine-grained – minute-by-minute –
continuous assessment of stress, and some methods induce privacy risks.
In the domain of physiological stress sensing, prior works have used a variety of wearable sensors, e.g., ECG

sensor [28, 38, 39, 47, 52], EDA sensor [11, 17, 28, 35, 47, 66], Respiratory Inductance Plethysmography (RIP)
sensor [28, 35, 38, 52, 61], Blood Volume Pulse (BVP) sensor [28], or Electromyogram (EMG) sensor [35]. Some
studies employed these sensors alone; others explored combinations of two or more sensors.

Further, these sensors have been used in a variety of conditions: (a) stress induced in a lab situation, where the
participants undergo some well-validated stress-inducing task, e.g., mental arithmetic, public speaking, stroop test,
startle response test, or cold-pressor test, along with some restful periods to serve as baseline [17, 28, 38, 39, 47];
(b) constrained real-life activities, where researchers could monitor participants’ stress levels as they engaged in
a particular activity, e.g., driving [35], in a call center [37], or while sleeping [48]; (c) in free-living conditions,
where the participants wear the sensors as they continue with their daily lives [28, 38, 39, 47, 52].

For clarity, we summarize the various prior works in Table 1. We report the type of environment/situation(s)
where the study was conducted, the type of data collected in those studies, the types of sensors/devices used, the
number of participants, and the results obtained by the authors.

From Table 1, we observe that (in almost every case) the machine-learning models and subsequent evaluations
have been based on a relatively small number of participants belonging to a narrow set of demographics. Each
study resulted in the building and evaluation of some machine-learning model. There has been little effort to
evaluate models over a larger population and broader demographic. Hence, it is unrealistic to compare the

1Given the natural variability in human-sensing research, same results can be construed as similar results, i.e., the results are not significantly
different.
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methods, devices or model performances across different studies. Only a few of the prior works have looked
into the validation of their model. Hovsepian et al. built a stress-detection model using data from a lab study
with 21 participants [38]. They further evaluated the repeatability of their model on another in-lab study with 26
participants. Both in-lab studies followed the same study protocol, used the same sensor-suite with ECG and
respiration sensors (AutoSense [19]), and included participants belonging to the same demographic (university
students). They found that the model performance with data from the new studywas similar to the cross-validation
performance in the initial study (i.e., the model was repeatable). Hovsepian et al. also conducted a field study
with 20 participants and adapted their in-lab model to detect stress in the free-living conditions and developed
the cStress model.

Further, Sarker et al. used the cStress model to detect stress among the 38 polydrug users in their independently
conducted field study [61]. The authors used the same sensor-suite as Hovsepian et al. and found that they
were able to detect self-reported stress with an F1-score of 0.717, which was similar to the F1-score achieved
by Hovsepian et al. in their field study. However, in their work, Sarker et al. followed extensive methods to
filter the data and impute missing data before computing features to be used by the cStress model. Even the
model was modified to provide outputs at a much faster frequency than the original model. Given the significant
difference in the methods used for feature calculation before the model was applied, it is unknown what role the
different methods had in the stress-detection performance. Thus, the reproducibility of the model itself cannot be
evaluated.

Hence, there is a clear need to evaluate how models built using data from one study translate to data collected
from a different study with different participant demographics and research protocols. In this paper we take a step
in this direction. We evaluate the reproducibility of stress-detection models across four independently conducted
studies. The studies were conducted using two different types of devices, with different research protocols, and
include data from 90 participants belonging to different demographics.
Another key observation from Table 1 is that stress-detection models based on physiological sensing work

reasonably well in lab-based or constrained situations, but they perform poorly when deployed in free-living
conditions – a pattern consistent across studies. One key reason is that the wearable sensors used in these
studies do not really measure stress, they simply measure the body’s physiological response to stress. As noted
above, free-living conditions can cause physiological responses that confound stress-detection models. Several
prior works try to account for physical activity in free-living conditions to remove such confounds, which
does help improve the model performance [28, 38, 47, 61]. Accounting for physical activity alone, however,
might not be sufficient. Researchers use self-reports to collect ground-truth for detecting stress in free-living
conditions. Self-reports capture a person’s perception of stress, which could be quite different from a physiological
measure of stress, or the actual underlying condition of stress. It is possible that a person does not perceive
a scenario as stressful and even though they are physically inactive, their physiological response could show
that they are stressed. In some preliminary results, Mishra et al. show that taking the high-level context of an
user into consideration (e.g., working, sleeping, eating, in a meeting, or resting) could help improve detection of
physiological stress [45].

3 THE DATA
In this paper we evaluate data collected from four different and independently conducted studies, and a total
of 100 participants (in this work we used data from 90 participants). All the studies were conducted between
2017 and 2019. We conducted one of the studies and data from the other three were graciously shared by their
respective authors. In this section, we discuss the different studies, the respective study protocols, and the type
of devices used. All the studies were approved by their respective Institutional Review Board (IRB) or Ethics
Committee.
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Table 1. Summary of Related Work

Setting # of Participants Data used Devices used Results

Choi et al. [11] Lab 10 HRV, RIP, EDA and
EMG

Custom chest–
strapped sensor suite

Binary classification with 81%
accuracy

Hernandez et al. [37] Call Center 9 EDA Affectiva Q Sen-
sor [30]

Personalized model: 78.03% accu-
racy.
Generalized model: 73.41% accu-
racy

Egilmez et al. [17] Lab 9 Heart-rate, EDA,
Gyroscope

Custom EDA sensor,
with LG Smartwatch

Binary classification with F1 score
of 0.888

Sano et al. [60] Field 18 EDA and Smartphone
usage

Affectiva Q sen-
sor [30], and smart-
phones

Binary classification using 10-
Fold cross-validation resulted in
75% accuracy.

Plarre et al. [52] Lab, Field 21 ECG and RIP AutoSense sensor
suite [19]

Lab: Binary classification of stress
with 90.17% accuracy
Field: High correlation (r=0.71)
with self-reports

Hovsepian et al. [38] Lab, Field Lab Train: 21
Lab Test: 26
Field: 20

ECG and RIP AutoSense sensor
suite [19]

Binary classification:
Lab Train LOSO CV F1 score: 0.81
Lab Test F1 score: 0.9
Field self-report prediction F1
score: 0.72

Sarkar et al. [61] Field 38 ECG and RIP AutoSense sensor
suite [19]

Field self-report prediction F1
score of 0.717 by using the cStress
model.

Sun et al. [66] Lab 20 ECG and EDA Custom chest- and
wrist-based sensor
suite

Binary classification accuracy by
10-fold CV was 92.4%.
Accuracy for cross-subject classifi-
cation was 80.9%.

Gjoreski et al. [27] Lab, Field Lab: 21
Field: 5

BVP, EDA, HRV,
Skin Temperature,
Accelerometer

Empatica E3 [22] and
E4 [18]

Lab: LOSO accuracy of 72% when
classifying between no stress, low
stress and high stress.
Field: Binary classification for
detecting stress with F1 score of
0.81

King et al. [39] Lab, Field Lab: 18
Field: 17

ECG BioStampRC [43] Binary classification of stress:
Lab LOSO CV F1 score: 0.70
Field Accuracy: 62%

Mishra et al. [47] Lab, Field 26 ECG and EDA Polar H7 [55] and cus-
tom EDA sensor [56]

Binary classification of stress:
Lab LOSO CV F1 score:
ECG only: 0.87, ECG+EDA: 0.94
Field LOSO CV F1 score:
ECG only: 0.66, ECG+EDA: 0.73

3.1 Study 1 (S1)
This study was conducted with 26 participants by Mishra et al., using the Polar H7 heart-rate monitor with
the Amulet device [6, 46, 55]. All the participants were students at a US university, and included a mix of
undergraduate and graduate students.
In this study, the participants went through three different stress-inducing tasks: (a) mental arithmetic task,

in which the participants were asked to count backwards in steps of 7; (b) a startle response test, in which
participants faced away from the research staff with their eyes closed, and the staff then made a loud sound at
several random times to startle the participants; (c) the cold pressor task, in which the participants were asked
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Rest

Stressor

Mental 
Arithmetic

Startle
Response

Cold
Pressor

10 4 5 4 5 4/? 10

Duration in Minutes

Fig. 1. Lab protocol timeline for Studies 1 and 2. In Study
2, however, the order of the stressors was randomized.

Rest

Stressor

Mental 
Arithmetic

20 6 5 6 20

Duration in Minutes

Mental 
Arithmetic

Fig. 2. Lab protocol timeline for Study 3.

to submerge their hand in a bucket of ice water for four minutes or as long as tolerable. A timeline of the lab
protocol is shown in Figure 1.

3.2 Study 2 (S2)
We conducted this study following a protocol similar to the one used by Mishra et al. [46], with 13 participants at
a US university. We used the Polar H10 heart-rate monitor (an updated version of the Polar H7). The participants
underwent the same three stress-inducing tasks, as in 𝑆1: (a) mental arithmetic task, (b) startle response test,
and (c) the cold pressor task. Unlike 𝑆1, however, we randomized the sequence of the tasks, i.e., each participant
underwent a different sequence of stressors. The timeline of the lab protocol is shown in Figure 1.

3.3 Study 3 (S3)
This study was conducted by Hao et al., with 19 participants, all of whom were employees at a corporate
organization [32, 33]. The participants were asked to wear an Empatica E4 wrist sensor [18] as they underwent
some mental arithmetic tasks. The lab session started with a 20-minute relaxation period, followed by two
6-minute periods of mental arithmetic tasks with a 5-minute break in between. For each of the stressful periods,
the participants were verbally asked non-trivial mental arithmetic tasks (e.g., 2010 − 37 =?), every 10 seconds. A
visual representation of the stages in the lab session is shown in Figure 2.

3.4 Study 4 (S4)

Control

Stressor

5 5 5 5

Duration in Minutes

Mental 
Arithmetic

M1

M2

M3
Lisening to Music
Rest

Fig. 3. Lab protocol timeline for Study 4.

This study was conducted by Chen et al. with 42 partic-
ipants from a US high school [10]. The goal of this study
was to understand the effect of listening to music on phys-
iological stress. In this study, Empatica E4 wrist devices
were used to collect physiological data. This study pro-
tocol included only one 5-minute-long mental arithmetic
stressor, in which the participants were asked to count
backwards in steps of 13.

Given the goal of the study, the participants were ran-
domly divided into four groups: the control group (C) did
not listen to music, one experimental group (M1) listened
to music for 5 minutes before the stressor, the second
experimental group (M2) listened to music for 5 minutes after the stressor was applied, and the final experimental
group (M3) listened to music for 10 minutes after the stressor was applied. A timeline of the lab protocol split by
the different groups is shown in Figure 3.
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3.5 Data Summary
The four datasets mentioned above (a) use two different types of devices for collecting physiological signals: a
commodity chest-based heart-rate monitor (Polar H7/H10) and a research-grade wrist-based wearable (Empatica
E4), (b) target different demographics, (c) follow different protocols, and (d) were collected at different times, thus
making it a heterogeneous collection of data. While some aspects vary, e.g., in 𝑆4 participants were listening to
music at different times, or in 𝑆1 & 𝑆2, participants underwent different types of stress tests, all the datasets have
a well-defined baseline (rest) period and at least one stress-induction period, thus enabling us to effectively build
stress-detection models and compare performance across studies.
In S4, according to the study protocol designed by Chen et al., the M1 group (10 participants) listened to

music during the baseline rest period [10]. In their analysis, the authors found that the average detected stress
probability during baseline rest period for the M1 group was significantly higher than the C, M2, and M3 groups.
Since listening to music caused some physiological arousal for the M1 group, we decided to discard the M1 group
from our analyses. Ultimately, we included a total of 90 participants in our analysis across the four studies.
We used the baseline (rest) and stress-induction periods as the ‘ground truth’ to evaluate the performance of

the models by categorizing them as not-stressed (class=0) or stressed (class=1), respectively.

4 METHOD
In this section, we discuss our choice of physiological signals, methods for processing data, feature selection,
classification tasks and evaluation criteria.

4.1 Choice of Physiological Signals
Across the four studies, we considered data from the Polar H7, Polar H10, and the Empatica E4. The Polar H7
and H10 are chest-based heart-rate monitors. They do not provide raw ECG data; instead they directly provide
the heart-rate and R-R interval data. Empatica E4 is a wrist-based sensor and relies on BVP to calculate heart-rate
and R-R interval data. Empatica E4 provides both the raw BVP data and the processed heart-rate and Inter-Beat
Interval (IBI) data.2 Although many approaches exist for processing raw BVP data, we use only the heart-rate
and R-R interval (IBI) data provided by the E4. This approach can enable other researchers to directly use our
methods. Furthermore, this approach is consistent with our use of the data from the Polar H7/H10; in each case
we use the processed data produced from a commercially engineered device. We were thus able to use the same
downstream processing pipeline for both device types.

Further, the E4 also measures EDA3 and skin-temperature data. Some prior work has used IBI or EDA sensors –
sometimeswith other sensor streams, like EMG, RIP, or skin temperature – to detect stress [17, 28, 35, 37, 38, 47, 52].
While the Empatica provides IBI, EDA, and skin-temperature data, we only use the former two sensor streams,
and ignore the skin temperature data because prior work has found skin temperature from the Empatica E4 to be
a poor indicator of stress [28, 62].
In summary, we use two different physiological signals: heart rate (and R-R interval) in all four studies, and

EDA in the two studies using Empatica.

4.2 Data Processing
Because we used two types of physiological signals, we followed methods suitable for each signal rather than a
common approach for both.

2For practical purposes, the R-R interval and IBI are the same thing. IBI represents the time between two beats, and R-R interval represents
the time between two consecutive R peaks in an ECG.
3The terms EDA and GSR are often used interchangeably. In this paper, we use the term EDA.
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4.2.1 Data Cleaning. The goal of this step was to remove clearly erroneous data points. For heart-rate data,
we followed the criteria used by Mishra et al. [46]: if the heart-rate value was not within the range [30:220] we
discarded the heart-rate and any R-R interval values received during that second [46]. Similarly, for EDA data,
we discarded values below 0.01𝜇𝑆 and above 100𝜇𝑆 .

4.2.2 Outlier Handling. Although the participants were sitting in a controlled enviroment, sudden hand or body
movements could introduce outliers in the data. For heart-rate and R-R interval data, there are two popular
strategies for handling outliers: winsorization [28, 38] and trimming [46]. Mishra et al. found trimming led to
better classification results than winsorization, so we adopt that strategy for heart-rate and R-R interval data: we
set the threshold at 3 times the Median Absolute Deviation (MAD). Thus, we trimmed any data points outside the
𝑚𝑒𝑑𝑖𝑎𝑛±3×𝑀𝐴𝐷 . We took a slightly different approach for EDA data, however. Prior research has found filtering
techniques to be effective at handling outliers or artifacts in EDA signals from the Empatica E4 device [16, 25, 62].
Although there are a variety of filtering methods, we used a median filter with a 5-second window as used by Di
Lascio et al. [16]. Median filters help reduce artifacts while preserving the edges of the signal.

4.2.3 Data Normalization. Normalization is a important step to remove participant-specific effects (like mean
or standard deviation), and potentially make the same model generalizable to other users, without needing to
create personalized models. For heart-rate and R-R data, we used 𝑧-score normalization as recommended by
Mishra et al. [46]. For EDA signals, given that individuals tend to have different natural EDA ranges, we used
min-max normalization to bring the signals into the range [0, 1].

4.2.4 EDA Decomposition. EDA data requires an additional processing step. There are two main components
to the overall EDA signal: tonic and phasic, and it is common practice to decompose the EDA signal into these
components [7, 16, 25, 62]. The tonic component relates to the slowly varying signal and measures physiological
arousal. The phasic component represents the faster-changing elements and is characterized by rapid changes
and spike-like features [65]. To decompose the EDA signal, we used the cvxEDA method by Greco et al., which
uses convex optimization to decompose the signal [13, 29].

4.3 Feature Extraction
In the past researchers have commonly used a 60-secondwindow for detecting stress with physiological signals [17,
38, 39, 46]. In fact, Esco et al. demonstrated that, when compared to 10- or 30-second window size, the features
computed on a 60-second window size had the highest agreement with the conventional 5-minute window. Hence,
for feature extraction, we grouped the data into 60-second sliding windows with 75% overlap, i.e., windows
overlapped by 45 seconds.4 We outline below the features collected from the different signals.

For heart-rate and R-R interval signals, we computed several time-domain features, as listed in Table 2. Prior
works have demonstrated that these features show significant differences between stress and non-stress periods,
and can be used to detect stress. In our work, we avoided using frequency-domain features for several reasons.

• Prior work has shown that RMSSD (root mean square of successive differences of successive R-R intervals)
is a solid measure of vagal tone and parasympathetic activity [41]; much like HF (High Frequency energy).
Further, Shaffer et al. show that RMSSD and HF are strongly correlated [63]. Further, RMSSD is easier to
compute and is not confounded by breathing.

• While HF represents parasympathetic activity, the role of LF is unclear. Some researchers believe that
LF represents sympathetic activity, thus making the LF:HF ratio a representation of the sympatho-vagal
balance. Other researchers, however, argue that the LF is not a pure index of sympathetic activity, but instead

4Prior works have evaluated different lengths of sliding windows, like overlap [38, 47], 50% overlap [39], 75% overlap [17], and even 92%
overlap [61]. During some preliminary evaluations with the 𝑆2 data, we found that 75% overlap resulted in the highest F1-score, when
compared to other overlap periods (25%, 50%, and 92%). Thus we chose 75% for all the evaluations in this paper.
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is a non-linear combination of sympathetic and parasympathetic activities [5, 63]. Thus the usefulness of
LF as an indicator for detecting stress is not clear. Further, work done by Hovsepian et al. found that LF
and LF:HF features had very low importance [38].

• Finally, to reliably calculate LF features, a minimum time window of 2 minutes is required [64]. This would
reduce our sample size by half.

Hence, given the lack of a clear benefit of using frequency-domain features, we used just the time-domain
features in our work.

For EDA data, we calculated various statistical features as mentioned by Lascio et al. [16]. These features are
calculated for the overall EDA signal, as well as the tonic and the phasic components. These features have been
shown to capture general arousal of a person [16]. The EDA features are listed in Table 2.

Table 2. Features from Heart-rate, R-R interval, and EDA data.

Signal Type Features

Heart-rate
mean, median, max, min, standard deviation, kurtosis,
skew, slope, 80th percentile, 20th percentile

R-R interval
mean, median, max, min, standard deviation, kurtosis,
skew, slope, 80th percentile, 20th percentile, RMSSD

EDA
EDA mean, max, min, standard deviation,

number of peaks, area under curve (AUC)Tonic
Phasic

4.4 Data Labeling
All three datasets from prior studies (S1, S3, and S4) were divided in two classes: stressed and not-stressed. The
time windows representing the baseline period for all datasets were labeled as not-stressed (class 0), since the
participants were not undergoing any stress tasks. Any time window during which a participant was experiencing
a stressor was labeled as stressed (class 1). To be able to effectively compare performances across datasets, we
followed the same labeling strategy for the data collected from study 𝑆2.

Further, Mishra et al. found that there might be some residual physiological stress in the baseline rest period,
and observed that considering only the last 4 minutes (i.e., discarding the first 6 minutes of the 10-minute initial
rest period) as the not-stressed labels led to a significant improvement in classification performance [46]. Based on
this empirical evidence, in our work, we decided to exclude some windows at the beginning of the the baseline
rest period to remove any residual physiological stress.5,6
Further, the 𝑆1 and 𝑆2 studies included three different types of stressors: mental arithmetic, startle response,

and cold pressor, whereas the 𝑆3 and 𝑆4 studies included just the mental arithmetic stressor (twice in 𝑆3 and once
in 𝑆4). Mishra et al. observed that different stressors might have different physiological responses, evidenced by
the fact that the authors were able to distinguish among stressor types with an average F1-score of 0.71 [46].
Hence, to ensure a direct comparison between the four studies, we built models and compared the performance

5We excluded first 6 minutes for studies 𝑆1 to 𝑆3, and the first minute for study 𝑆4. Since study 𝑆4 had a baseline rest duration of only
5 minutes, dropping longer windows from 𝑆4 would adversely affect the amount of “rest” periods.
6Consistent with prior work, we do not include the “intermediate” rest periods (between or after stressors) in our model building or
evaluation [46, 47, 52]. We argue that such rest periods will contain some residual physiological arousal of the preceding stressor, and hence
labeling them not-stressed might not be appropriate. While these “intermediate” periods can potentially provide insights about stress recovery,
we focus our current work only on detection of stress.
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with only the mental arithmetic task(s) as the stressed label, and the baseline rest period as the not-stressed label.
For distinction, we name the subsets 𝑆1𝑚𝑎𝑡ℎ and 𝑆2𝑚𝑎𝑡ℎ , respectively. For completeness, however, we believe it is
important to evaluate the performance of the models across the different types of stressors. Thus, we also discuss
the performance of the models built using just the mental arithmetic stressor on the 𝑆1𝑎𝑙𝑙 and 𝑆2𝑎𝑙𝑙 datasets,
which include the time windows for all three stressors as stressed.

Finally, two of the studies (𝑆1 and 𝑆2) did not have any EDA data. Hence, we decided to split the datasets from
𝑆3 and 𝑆4 into two categories, one that included only heart-rate and R-R interval features, and the other with
heart-rate, R-R interval, and EDA features. The models built with the combination of heart-rate, R-R interval,
and EDA features – henceforth named 𝑆3𝑒𝑑𝑎 and 𝑆4𝑒𝑑𝑎 – could only be evaluated and compared with models
from the 𝑆3 and 𝑆4 studies; whereas the subsets of 𝑆3 and 𝑆4 with just the heart-rate and R-R interval features –
named 𝑆3ℎ𝑟 and 𝑆4ℎ𝑟 – can be evaluated and compared with models built on 𝑆1, 𝑆2, 𝑆3, and 𝑆4 studies.

4.5 Machine Learning Models
Researchers have used a variety of machine-learning algorithms to detect stress, e.g., Naive Bayes, KNN, Decision
Trees, Support Vector Machines (SVM), Random Forests (RF), Multi-layer Perceptron, AdaBoost, and Logistic
Regression; however, several studies have found that SVM and RF perform better than other models [17, 28, 38,
39, 46]. Both SVM and RF tend to limit over-fitting and reduce the bias and variance of the resulting models.

While there is no clear consensus as to which classifier performs best, Mishra et al. noted that SVM performs
better for models including just heart-rate and R-R interval features, whereas RF performs better when the models
included heart-rate, R-R interval, and EDA features [46]. In our work, we compare performance from both types
of model, and choose the better performing model to continue our analysis.
Most prior works in stress detection have used Radial Basis Function (RBF) as the kernel for their SVM

models [28, 38, 39, 46]. Based on preliminary cross-validation evaluations with data from study 𝑆2, we found
that RBF SVM performed substantially better than Linear SVM. Hence, we decided to use RBF kernel. It has
two hyper-parameters: 𝐶 and 𝛾 , the choice of which can significantly affect the results of the SVM algorithm.
The usual approach is to conduct an exhaustive grid-search evaluated using Leave-One-Subject-Out (LOSO)
cross-validation to find the values of the hyper-parameters that maximize a performance metric like F1-score. In
prior work, Hovsepian et al. reported that setting 𝐶 = 724.077 and 𝛾 = 0.022097 led to the best performance of
their model built with Heart Rate Variability (HRV) data [38]. In later work, King et al. did an exhaustive grid
search and found that 𝐶 = 107 and 𝛾 = 0.001 led to best performance in their model with HRV data [39], even
when compared with the parameters reported by Hovsepian et al.

In our work, we began with the same approach – conducting an exhaustive grid-search to build models for our
various datasets – and compared the results with the hyper-parameters reported by King et al. and Hovsepian et al.
Although we found different values of the hyper-parameters, we found no significant difference between the
performance achieved by our “tuned” hyper-parameters and those reported by King et al. Because we compare
multiple models over four different studies, for consistency we set the hyper-parameters for all SVM models to
what was reported by King et al.: 𝐶 = 107 and 𝛾 = 0.001.

For each input observation, the SVM and RF models output the probability of the stressed class. We used the
LibSVM library for building the SVM model [9]. LibSVM uses Platt’s scaling to transform the canonical distance
between of input observation from the hyper-plane into a conditional probability [53]. For Random Forests, we
used the Scikit-learn library, which can output the predicted class probabilities of an input sample by “computing
the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction
of samples of the same class in a leaf” [51].
In the next section, we outline our iterative process for building machine-learning models and discuss the

results obtained by evaluating each model type.
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5 MODEL BUILDING & EVALUATION
In this section we discuss the machine-learning models we built along with the evaluation of those models. We
start by discussing study-specific models, which were evaluated by LOSO cross-validation. We then discuss
‘cross-study’ models – trained using data from one study and evaluated on data from other studies – along with
methods to improve the model performance.

5.1 Study-specific Models
In the first step of our analysis, we built models specific to each study and performed LOSO cross-validation
within each of the four studies (six models trained using the mental arithmetic stressor). This process established
a reference to compare performance of models built using training data from a different study. Ideally, it is desired
that the performance of models built using data from a different study remains close to (if not better than) the
performance of the LOSO cross-validated model.

As we mention in Section 4.5, to compare the utility of SVM and Random Forests, we built both types of model
for each of the datasets and evaluated them through LOSO cross-validation. In total, we built two models for each
of the following datasets: 𝑆1𝑚𝑎𝑡ℎ , 𝑆2𝑚𝑎𝑡ℎ , 𝑆3ℎ𝑟 , 𝑆3𝑒𝑑𝑎 , 𝑆4ℎ𝑟 , and 𝑆4𝑒𝑑𝑎 . For completeness we also report the LOSO
cross-validation results for the models built on 𝑆1𝑚𝑎𝑡ℎ and 𝑆2𝑚𝑎𝑡ℎ , and evaluated on 𝑆1𝑎𝑙𝑙 and 𝑆2𝑎𝑙𝑙 , respectively.
In such cases, the model was trained using only the mental arithmetic stressor, but evaluated on the mental
arithmetic, startle response, and cold pressor stressors of the left-out user.
Both SVM and RF models output a probability of stress. Prior works by Hovsepian et al. and Mishra et al.

used a threshold-based approach, such that any instance with a probability of stress greater than a particular
threshold was classified as stressed [38, 47]. In both of the prior works, the threshold was chosen on the basis
of maximizing the F1-score in LOSO cross-validation. We followed the same approach for determining the
threshold(s). Based on the threshold, we classify each 60-second window as stressed or not-stressed. We report the
following metrics: precision, fraction of instances labeled “positive” that were actually positive; recall, the fraction
of positive instances correctly labeled as positive; and F1-score, the harmonic mean between precision and recall,
which is a popular metric in classification problems with one primary class of interest.

Based on our evaluations, we observe that SVM performed better for datasets that only had heart-rate and
R-R interval features, whereas Random Forest performed better for datasets that also included EDA features (in
addition to heart-rate and R-R interval features), consistent with findings by Mishra et al. [47]. Hence, we only
report the results from best-performing models for each data subset in Table 3. We also list the classification
threshold for each model.

Table 3. LOSO cross-validation results for the different data subsets.

Metrics 𝑆1𝑚𝑎𝑡ℎ

(SVM)
𝑆1𝑎𝑙𝑙

(SVM)
𝑆2𝑚𝑎𝑡ℎ

(SVM)
𝑆2𝑎𝑙𝑙

(SVM)
𝑆3ℎ𝑟

(SVM)
𝑆3𝑒𝑑𝑎
(RF)

𝑆4ℎ𝑟
(SVM)

𝑆4𝑒𝑑𝑎
(RF)

Precision 0.87 0.78 0.82 0.79 0.65 0.79 0.63 0.84
Recall 0.86 0.70 0.76 0.72 0.66 0.82 0.83 0.85
F1-score 0.86 0.74 0.79 0.75 0.66 0.80 0.72 0.85

Threshold 0.39 0.21 0.45 0.24 0.51 0.50 0.41 0.49

We observe that the performance and threshold of cross-validation using 𝑆1𝑚𝑎𝑡ℎ was quite different than the
model built on 𝑆2𝑚𝑎𝑡ℎ . This is an interesting observation, since both studies had similar protocol and sensors. We
believe it is because of the randomized order of the stress induction tasks. Further, when we evaluated models
built using just the mental arithmetic stressor from 𝑆1 and 𝑆2, on the other stressors in their respective studies,
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we found that the recall of the models dropped. This suggests that the model was not able to identify all stressed
periods. It could be because the other stressors (startle response and cold pressor) might not result in a similar
physiological response as the mental arithmetic test.
We further observe that the performance of the models built using the heart-rate features from Empatica E4

(𝑆3ℎ𝑟 and 𝑆4ℎ𝑟 ), perform substantially worse than models built using the Polar H7 and H10 devices, at similar stress
detection tasks (mental arithmetic vs. baseline rest). One reason could be that while Polar H7 and H10 sensors
are one-lead ECG devices that measure the electrical activity of the heart (and are known to be accurate [26]),
Empatica E4 uses a Photoplethysmogram (PPG) sensor to measure blood-volume changes to calculate heart-rate
and IBI data, and the Empatica has recently been shown to have errors when compared with an ECG patch [3].
Upon adding the the EDA features, however, there is an improvement in performance.
During our initial evaluations, we made an important observation: the performance of the model changes

substantially with the classification threshold. Further, this threshold changes with device type (i.e., data quality)
and the data distribution in training and test sets. For example, the threshold (0.39) for 𝑆1𝑚𝑎𝑡ℎ is very different
than the threshold (0.21) for 𝑆1𝑎𝑙𝑙 (which includes all three stressors in the study). As in most prior works, we
chose a threshold based on LOSO cross-validation, and it works well because of homogeneity in the data: each
participant’s data is expected to have a similar class distribution as they all underwent similar study procedures.
However, using the same threshold for classification on independent and unseen test users with no a priori
knowledge of the data distribution is a challenge. Tuning the threshold (or any hyper-parameter) using the test
set will violate the independence of the data and the results will be optimistically biased.
In the next section, we build models using data from one study and evaluate using data from another study,

without making any assumptions about the data distributions of the test set. Hence, to evaluate the model
performance, we use the Area Under the Receiver Operator Characteristics curve (AUROC) as the performance
metric [31]. The Receiver Operator Characteristics (ROC) curve plots the True Positive Rate (TPR) against False
Positive Rate (FPR) for different classification thresholds. The AUROC is a metric that summarizes the ROC curve,
and represents the ability of the model to distinguish between the two classes. The AUROC ranges from 0.5 to
1.0; an AUROC of 1.0 means the classifier is able to perfectly separate between the two classes, and a score of
0.5 means the classifier is no better than a random guess. Technically, AUROC could also have a value less than
0.5; a value of 0.0 means that the classifier is able to separate between the classes, but it flipped the labels (i.e.,
marked positive as negative and vice-versa). Also, since AUROC is based on TPR and FPR, it does not vary with
changes in class distribution of the test set, unlike precision and recall. Hence, AUROC is widely used to compare
performance of binary classifiers [31].

We argue that building a model and choosing a decision (classification) threshold are two separate components.
Model building ends with a probability output, and then based on the application domain, a decision threshold
may be selected. We argue it is important to build good robust models, before tuning or selecting a decision
threshold. In the next sections, we discuss how cross-study models perform, how we might be able to improve
model performance, and finally how to make a decision about stressed or not-stressed without a pre-defined
threshold.

5.2 Cross-study Models
Given the diversity in sensors and stress-inducing tasks in our dataset, we built different models for each of our
data subsets, and evaluated the performance on different data subsets containing the same features. Specifically,
we built models trained on: 𝑆1𝑚𝑎𝑡ℎ , 𝑆2𝑚𝑎𝑡ℎ , 𝑆3ℎ𝑟 , 𝑆3𝑒𝑑𝑎 , 𝑆4ℎ𝑟 , and 𝑆4𝑒𝑑𝑎 . We trained SVM and Random Forest (RF)
models for each data subset. All models were evaluated on each participant in the evaluation set, and generated
participant-level AUROC. We present the median scores (along with the Interquartile Range) from the best
performing models (SVM or RF) in Table 4. Each cell in Table 4 represents the median AUROC when a model

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 147. Publication date: December 2020.



147:14 • Mishra et al.

Table 4. Cross-study Evaluations: Each cell represents the median AUROC for a model built on the training set and tested
on the evaluation set. The Interquartile Range (IQR) is shown in square brackets. In case the training and evaluation datasets
are from the same study, we report the results of a LOSO cross-validation. The blue cells show results from a SVM model;

the yellow cells show results from a Random Forest (RF) model. As data from studies 𝑆1 and 𝑆2 did not include any EDA
data, models built with the combination of heart-rate, R-R interval, and EDA features – specifically 𝑆3𝑒𝑑𝑎 and 𝑆4𝑒𝑑𝑎 – could
only be evaluated and compared with models from the 𝑆3 and 𝑆4 studies.

Evaluation DatasetTraining
Dataset 𝑆1𝑎𝑙𝑙 𝑆1𝑚𝑎𝑡ℎ 𝑆2𝑎𝑙𝑙 𝑆2𝑚𝑎𝑡ℎ 𝑆3ℎ𝑟 𝑆3𝑒𝑑𝑎 𝑆4ℎ𝑟 𝑆4𝑒𝑑𝑎

𝑆1𝑚𝑎𝑡ℎ
0.67

[0.48 − 0.77]
0.98

[0.93 − 1.00]
0.62

[0.57 − 0.72]
0.93

[0.81 − 0.97]
0.75

[0.62 − 0.89]
0.80

[0.50 − 0.94]

𝑆2𝑚𝑎𝑡ℎ
0.61

[0.46 − 0.74]
0.99

[0.93 − 1.00]
0.63

[0.55 − 0.72]
0.97

[0.88 − 0.99]
0.68

[0.63 − 0.86]
0.80

[0.58 − 0.94]

𝑆3ℎ𝑟
0.68

[0.51 − 0.80]
0.98

[0.93 − 1.00]
0.70

[0.61 − 0.80]
0.97

[0.88 − 0.98]
0.86

[0.67 − 0.90]
0.75

[0.59 − 0.86]

𝑆3𝑒𝑑𝑎
0.94

[0.79 − 0.99]
0.97

[0.87 − 1.00]

𝑆4ℎ𝑟
0.61

[0.45 − 0.76]
0.98

[0.91 − 1.0]
0.59

[0.23 − 0.68]
0.93

[0.76 − 0.98]
0.72

[0.59 − 0.84]
0.84

[0.54 − 0.94]

𝑆4𝑒𝑑𝑎
0.93

[0.82 − 1.00]
0.98

[0.91 − 1.00]
SVM RF

trained on the training dataset was tested with an evaluation dataset. All SVM models were trained using the
same hyper-parameters we used for LOSO cross-validation (𝐶 = 107, 𝛾 = 0.001). We found that the change in
AUROC by using individually tuned parameters was negligible (less than .02 in all cases). Thus, for brevity, we
only present results using constant hyper-parameters.

For comparison, along with the cross-study evaluations, we also report the LOSO cross-validation results when
the training dataset and evaluation dataset were from the same study. For example, cell(𝑆1𝑚𝑎𝑡ℎ , 𝑆1𝑎𝑙𝑙 ) shows
the median AUROC of LOSO cross-validation, where at each iteration of the cross-validation, the model was
evaluated on baseline and mental arithmetic, startle response, and cold pressor tasks of the left-out user.
We make several observations from Table 4:
• Models built using 𝑆1𝑚𝑎𝑡ℎ and 𝑆2𝑚𝑎𝑡ℎ (the baseline and mental arithmetic stressor subsets of 𝑆1 and 𝑆2
respectively), performed quite well when tested with each other and resulted in similar AUROC scores.
When tested using the heart-rate and R-R interval features of datasets 𝑆3 (𝑆3ℎ𝑟 ) and 𝑆4 (𝑆4ℎ𝑟 ), the AUROC
scores were lower when compared with 𝑆1 and 𝑆2. Even though the participants experienced a similar
stressor (mental arithmetic) in the training and test sets, we believe the discrepancy is because of the quality
differences between sensors in Polar H7/H10 and Empatica E4.

• The converse, however, is more interesting. Models built using 𝑆3ℎ𝑟 and 𝑆4ℎ𝑟 performed quite well when
tested with 𝑆1𝑚𝑎𝑡ℎ and 𝑆2𝑚𝑎𝑡ℎ , with AUROC scores significantly higher than the models’ own cross-
validation scores. This suggests that even though there may be noise in the Empatica E4 data, the model
was accurately able to learn the decision boundaries between stressed and non-stressed periods, thus leading
to high AUROC scores when tested with 𝑆1𝑚𝑎𝑡ℎ and 𝑆2𝑚𝑎𝑡ℎ . Further, we observe that for LOSO cross-
validation of 𝑆3ℎ𝑟 and 𝑆4ℎ𝑟 , SVM performed better than RF. However, when we applied a model built on
𝑆3ℎ𝑟 to 𝑆4ℎ𝑟 and vice-versa, we observe that RFs led to much better performance than SVMs.
Further, when we included the EDA features, the performance of model trained using 𝑆3 on 𝑆4 (and
vice-versa), improved significantly. The performance with EDA features is similar to the cross-validation
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performance of the individual models. As in Section 5.1, we observe that RFs performed significantly better
than SVM when the EDA features were included along with the heart-rate and R-R interval features.

• We observe that all models performed poorly when tested with 𝑆1𝑎𝑙𝑙 and 𝑆2𝑎𝑙𝑙 . One potential reason could
be that all models were tested only using the mental-arithmetic task as the stressor, whereas 𝑆1𝑎𝑙𝑙 and
𝑆2𝑎𝑙𝑙 subsets include two additional stressors: startle response and cold pressor, and models built using just
mental arithmetic task are not able to identify the physiological response due to the other tasks. Further,
Mishra et al. reported that in their study (𝑆1), participants’ perception of stress was different for the different
tasks [47]. Most participants did not find the startle response test and the cold-pressor test to be as stressful
as the mental-arithmetic task. This observation might help explain our results. It is possible that during
the mental-arithmetic task, participants experience a physiological response which is significantly higher
than the physiological response at the baseline rest condition. During the other stressors, the participants’
physiological response may not be as profound as the response to the mental arithmetic task. This could
mean that models built using the mental-arithmetic task and baseline rest have distinct boundaries, which
in turn results in high performance of all models on 𝑆1𝑚𝑎𝑡ℎ and 𝑆2𝑚𝑎𝑡ℎ .

Next, we discuss methods for improving the efficacy of the stress-detection models discussed in this section.

5.3 Improving Model Performance
Until now, all research in the domain of physiological stress sensing has focused on calculating some physiological
features (HRV, ECG, EDA, RIP, etc.) in a given time window and building models to detect “stress” in that window.
To simplify model building and evaluation, most prior works assume that these time-windows are independent,
thus missing out on the temporal characteristics of stress. Stress (or the physiological response to stress) does not
randomly change with each time-window; instead, it exhibits some temporal characteristics: gradual increase,
gradual decrease, staying constant. Rarely are there rapid fluctuations across consecutive time windows. In
this section we evaluate whether the temporal characteristics of physiological signals can be used to improve
stress-detection models.
Before we discuss the different methods to account for temporal characteristics, however, it is important to

address the different circumstances where stress-detection models might be useful, because our approach could
potentially change with type of application. We broadly categorize the application of stress-detection models
into three groups:

• In-the-moment detection: This is probably the most discussed potential application of stress detection
models: to enable real-time in-the-moment detection. Accurate in-the-moment detection of stress could
enable delivery of Just-in-Time Adaptive Interventions (JITAI) to help people manage their stress levels [59,
61].

• Batch detection of past stress: This is a less-frequently discussed application of stress detection, which
we argue is also important. In this scenario, a clinician or therapist might be interested in a quantitative
understanding of the stress episodes experienced by a person or a patient with anxiety disorder over a
period of time; e.g., for the past month, what was the frequency, duration, and recovery period for each
stressful episode? This could help clinicians customize treatment options for that patient.

• Stress prediction: This is an ambitious application in which the goal is to predict future stress episodes
to enable delivery of an intervention even before the person experiences stress. However, given that
physiological signals are non-stationary, it may not be feasible to forecast precise stress periods based
on physiological signals alone. In the past, Umematsu et al. used a combination of smartphone sensors,
surveys, and physiological signals (EDA and skin temperature) to forecast the “overall” stress in the evening
of the next day [67].
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Layer 1: Machine
Learning Models
(e.g., SVM, RF)

Features

Layer 2
p(Si=1)

p(Di-1=1)

p(Di=1)

Fig. 4. Visualization of a two-layer approach for stress detection in a given time window 𝑖 .

In our work, we discuss methods to improve stress-detection models focused on the first two scenarios: in-the-
moment detection and batch detection of past stress. We hope to leverage different temporal characteristics for
the two application scenarios. To detect stress in-the-moment, we can leverage information about prior stress
to inform in-the-moment stress. For the second application, where the goal is to detect stress in a previously
collected data, we can leverage the stress classifications around the current window (before and after) to better
inform the stress level in the current window.

5.4 In-the-moment Detection
We discuss and evaluate two different approaches towards incorporating information about prior stress: a time-
series approach and a stochastic-process approach (initially proposed by Mishra et al. [47]). In either case, the
eventual outcome is a two-layer approach that for each time window decides on a final detected stress state by
fusing the sensed stress state (for the current time window) from a regular machine-learning model, along with
the detected stress state of the previous time window. Figure 4 illustrates this two-layered approach.

To leverage the temporal characteristics of the stress signal, we had to slightly modify our evaluation process.
In Section 4.5, we discuss how we extracted windows of time from a physiological signal, labeled them as ‘1’
(stressed) or ‘0’ (not-stressed) to train a machine-learning model, which was then used to classify similarly extracted
windows of physiological signals from other users (LOSO or cross-study). While the model-building part of the
process stays the same, we no longer extracted windows of physiological signals from the test users. To use
the temporal characteristics of stress, we classified the entire time-series signal of the test users in 60-second
windows, rather than using only those time windows where the participant was in a stressful or rest condition.
The output of the model was then a time series of stress probability numbers. For evaluation, we compared the
performance of the models in the windows of time for which we have a ground-truth label, i.e., windows when
the participants were experiencing a stressor or undergoing a rest period.

5.4.1 Time-series Approach. We used exponential smoothing [24] to incorporate the effect of prior stress to
detect current stress. Although exponential smoothing is typically used for time-series forecasting, we can also
leverage it for our use case. As shown in Figure 4, let us assume that for a time window 𝑖 , the 𝑠𝑖 is the probability
of stress from the machine-learning model, and 𝑑𝑖 is the final stress probability from the second layer; then, using
exponential smoothing, we can define a simple recurrence relationship,

𝑑𝑖 = 𝛼𝑠𝑖 + (1 − 𝛼)𝑑𝑖−1 (1)
where 𝑑𝑖−1 is the final detected stress probability from the previous window, and 0 < 𝛼 < 1. To initialize the

recurrence, we set 𝑑0 = 𝑠0. We used a linear search to optimize for 𝛼 based on LOSO cross-validation performance.

5.4.2 Stochastic-process Approach. We used a Bayesian network model to account for the detected stress state
from the previous window along with the sensed stress state (from layer 1 model) in the current time win-
dow to output the final detected stress state for the current window. We used the approach proposed by
Mishra et al., which had significant performance improvements over a single-model approach in their experiments.
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Table 5. Conditional Prob-
ability Table (CPT) for the
Bayesian Network model

𝑫 𝒊

𝑫 𝒊−1 𝑺𝒊 0 1
0 0 1 0
0 1 1 − 𝛾 𝛾

1 0 1 − 𝛿 𝛿

1 1 0 1

For a given window 𝑖 , the Bayesian network model formalizes a recursive relationship
between the sensed stress state in the current window (𝑆𝑖 ), and detected stress state
in the previous window (𝐷𝑖−1) to detect the final stress state in (𝐷𝑖 ), such that for any
given window, we need to calculate 𝑝 (𝐷𝑖 |𝐷𝑖−1, 𝑆𝑖 ).

To simplify the parameterization of 𝑝 (𝐷𝑖 |𝐷𝑖−1, 𝑆𝑖 ), Mishra et al. made the following
assumptions: (1) if the binary stress state at 𝑆𝑖 and 𝐷𝑖−1 are both true, then set the
final detected stress (𝐷𝑖 ) as true; and (2) if the binary stress states at 𝑆𝑖 and 𝐷𝑖−1 are
both false, then set 𝐷𝑖 as false [47]. These assumptions are logical and help simplify
the model to two parameters, 𝛾 and 𝛿 , as shown in the conditional probability table
in Table 5.
The joint probability distribution for our model is

𝑃 (𝐷𝑖 , 𝐷𝑖−1, 𝑆𝑖 ) = 𝑃 (𝐷𝑖 |𝐷𝑖−1, 𝑆𝑖 ) · 𝑃 (𝐷𝑖−1) · 𝑃 (𝑆𝑖 ) (2)

Next, we can marginalize the 𝑝 (𝐷𝑖 = 1) at any given window 𝑖 from the joint distribution as

𝑝 (𝐷𝑖 = 1) =
∑

𝑘,𝑙={0,1}
𝑝 (𝐷𝑖 = 1|𝐷𝑖−1 = 𝑘, 𝑆𝑖 = 𝑙) · 𝑝 (𝐷𝑖−1 = 𝑘) · 𝑝 (𝑆𝑖 = 𝑙) (3)

Considering 𝑝 (𝐷𝑖 = 1) as 𝑦𝑖 , and 𝑝 (𝑆𝑖 = 1) as 𝑥𝑖 , along with the CPT in Table 5, we can simplify the above
equation as the following recurrence relation

𝑝 (𝐷𝑖 = 1) = 𝑦𝑖 = 𝛾 (1 − 𝑦𝑖−1)𝑥𝑖 + 𝛿𝑦𝑖−1 (1 − 𝑥𝑖 ) + 𝑦𝑖−1𝑥𝑖 (4)

At 𝑖 = 0, we assume 𝐷0 is the same as 𝑆0, thus the recurrence can be initialized as

𝑝 (𝐷0 = 1) = 𝑦0 = 𝑝 (𝑆0 = 1) = 𝑥0 (5)
Now, using Equations 4 and 5, 𝑝 (𝐷𝑖 = 1) can be marginalized for any window 𝑖 . Here 𝛾 and 𝛿 can be treated as

hyper-parameters, which we tuned to maximize LOSO cross-validation performance. We used the Hyperopt [4]
package to optimize parameters.

5.4.3 Model Comparison. We can now compare the efficacy of both approaches using LOSO cross-validation.
We built models for each of the eight data subsets, like in Section 5.1. Initially we did a parameter search for each
method – 𝛼 for exponential smoothing, and 𝛾 and 𝛿 for the Bayesian network model – on each data subset. In
both cases, however, we noticed that the optimal parameters were quite similar across all the data subsets. The
linear search revealed that 𝛼 fell between 0.54 and 0.55 for all eight subsets, so we chose 𝛼 = 0.54 for reporting
results from all the models based on exponential filtering. The parameter optimization for 𝛾 and 𝛿 revealed that
for all models, 𝛾 ∈ [0.31, 0.34] and 𝛿 ∈ [0.85, 0.87]. Again, to simplify model building, comparison, and reporting,
we set 𝛾 = 0.33 and 𝛿 = 0.86 for all data subsets. We found only minor differences in performance between our
chosen hyper-parameters and the optimal parameters for each dataset.

We list the median AUROC scores for LOSO cross-validation using both the exponential filtering approach and
the Bayesian network model in Table 6. These results can be compared with the LOSO cross-validation results
reported in Table 4, since the layer 1 models are exactly the same ones used for the respective cross-validation in
Section 5.2. For each evaluation, we also list the absolute change in median AUROC from Table 4. It is evident
from Table 6 that both two-layer approaches led to a performance increase over a single-layer approach. Overall,
the Bayesian network model leads to a higher improvement in performance than the exponential filtering model.

Next, we build the two-layered Bayesian network models for each subset and evaluate with another subset for
cross-study evaluation. We summarize the results in Table 7. The results presented in each cell of Table 7 can
directly be compared with the results in Table 4 to evaluate the efficacy of the two-layer approach with Bayesian
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Table 6. LOSO cross-validation results for the different data subsets using the two-layered stress detection approach. The
cells represent the median AUROC from LOSO cross-validation for each data subset. The round brackets highlight the
absolute increase in AUROC score when compared with the LOSO cross-validation results in Table 4; the square brackets
show the IQR.

𝑆1𝑚𝑎𝑡ℎ 𝑆1𝑎𝑙𝑙 𝑆2𝑚𝑎𝑡ℎ 𝑆2𝑎𝑙𝑙 𝑆3ℎ𝑟 𝑆3𝑒𝑑𝑎 𝑆4ℎ𝑟 𝑆4𝑒𝑑𝑎
Exponential
filtering

1.00 (+0.02)
[0.98 − 1.00]

0.70 (+0.03)
[0.54 − 0.93]

0.97 (+0.00)
[0.86 − 1.00]

0.64 (+0.01)
[0.53 − 0.71]

0.89 (+0.03)
[0.66 − 0.97]

0.98 (+0.04)
[0.81 − 1.00]

0.87 (+0.02)
[0.55 − 0.98]

1.00 (+0.02)
[0.95 − 1.00]

Bayesian
network model

1.00 (+0.02)
[0.99 − 1.00]

0.83 (+0.16)
[0.61 − 1.00]

0.98 (+0.01)
[0.91 − 1.00]

0.76 (+0.13)
[0.62 − 0.81]

0.91 (+0.05)
[0.70 − 0.98]

0.96 (+0.02)
[0.86 − 0.99]

0.95 (+0.11)
[0.73 − 0.98]

1.00 (+0.02)
[0.92 − 1.00]

Table 7. Cross-study evaluation using the two-layered approach with Bayesian network model: Each cell represents the
median AUROC for a model built on the training set and tested on the evaluation set. The round brackets highlight absolute
increase in AUROC score when compared with the same cells in Table 4. The Interquartile Range (IQR) is shown in square
brackets. In case the training and evaluation datasets are from the same study, we report the results of a LOSO cross-validation.
The blue cells show results from a SVM model; the yellow cells show results from a Random Forest (RF) model. As data
from studies 𝑆1 and 𝑆2 did not include any EDA data, models built with the combination of heart-rate, R-R interval, and EDA
features – specifically 𝑆3𝑒𝑑𝑎 and 𝑆4𝑒𝑑𝑎 – could only be evaluated and compared with models from the 𝑆3 and 𝑆4 studies.

Evaluation DatasetTraining
Dataset 𝑆1𝑎𝑙𝑙 𝑆1𝑚𝑎𝑡ℎ 𝑆2𝑎𝑙𝑙 𝑆2𝑚𝑎𝑡ℎ 𝑆3ℎ𝑟 𝑆3𝑒𝑑𝑎 𝑆4ℎ𝑟 𝑆4𝑒𝑑𝑎

𝑆1𝑚𝑎𝑡ℎ
0.83 (+0.16)
[0.54 − 0.93]

1.00 (+0.02)
[0.98 − 1.00]

0.81 (+0.19)
[0.65 − 0.95]

0.98 (+0.05)
[0.93 − 1.00]

0.87 (+0.12)
[0.56 − 0.94]

0.84 (+0.04)
[0.60 − 0.97]

𝑆2𝑚𝑎𝑡ℎ
0.73 (+0.12)
[0.55 − 0.98]

1.00 (+0.01)
[0.96 − 1.00]

0.76 (+0.14)
[0.62 − 0.81]

0.98 (+0.01)
[0.91 − 1.00]

0.80 (+0.12)
[0.55 − 0.92]

0.84 (+0.04)
[0.63 − 0.96]

𝑆3ℎ𝑟
0.85 (+0.12)
[0.75 − 0.99]

0.99 (+0.01)
[0.95 − 1.00]

0.84 (+0.14))
[0.73 − 0.98]

0.99 (+0.02))
[0.92 − 1.00]

0.91 (+0.05)
[0.70 − 0.98]

0.89 (+0.14)
[0.62 − 0.96]

𝑆3𝑒𝑑𝑎
0.96 (+0.02)
[0.86 − 0.99]

0.99 (+0.02)
[0.88 − 1.00]

𝑆4ℎ𝑟
0.80 (+0.19)
[0.63 − 0.94]

1.00 (+0.02)
[0.96 − 1.00]

0.74 (+0.15)
[0.67 − 0.85]

0.99 (+0.06)
[0.96 − 1.00]

0.80 (+0.08)
[0.55 − 0.93]

0.95 (+0.11)
[0.73 − 0.98]

𝑆4𝑒𝑑𝑎
0.95 (+0.02)
[0.88 − 1.00]

1.00 (+0.02)
[0.92 − 1.00]

SVM RF

network models. The machine-learning models (SVM or RF) in layer 1 remained unchanged between the two
evaluations. From Table 7, we observe that the two-layered approach improved the AUROC score for all models.
Thus, the improvement is observed not just for LOSO cross-validation of an individual model, but also when a
model is tested with data from different studies.
A drastic improvement is observed for the models that performed poorly in Table 4, suggesting that the

two-layered approach improved the base classifier’s ability to separate between the stressed and not stressed
classes. For instance, when we trained an SVM using 𝑆1𝑚𝑎𝑡ℎ and tried to detect stressful episodes in 𝑆2𝑎𝑙𝑙 – which
included the mental arithmetic, startle response, and cold-pressor stressors – the AUROC score of the model was
0.62. Using the two-layer approach, however, the performance improved to 0.81 – an improvement of over 31%.
On average, the two-layered approach led to an AUROC improvement of 0.07 over a single-model approach.

5.5 Batch Detection of Past Stress
In the previous section, we evaluated the potential of leveraging prior stress to detect in-the-moment stress.
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Table 8. Condition Probability Ta-
ble (CPT) for the extended Bayesian
network model

𝑫 𝒊

𝑫 𝒊−1 𝑺𝒊 𝑺𝒊+1 0 1
0 0 0 1 0
0 0 1 1 − 𝛼 𝛼

0 1 0 1 0
0 1 1 1 − 𝛽 𝛽

1 0 0 1 − 𝛾 𝛾

1 0 1 0 1
1 1 0 1 − 𝛿 𝛿

1 1 1 0 1

Our results suggest that performance improvement due to a two-layered ap-
proach is consistent across studies, irrespective of the device type, sensor type,
or the type of stressors. There could, however, be applications where the goal
is to detect stress instances or episodes on some previously collected data. For
such cases, we explore the feasibility to leverage stress classifications around
the current window, i.e., before and after the current window to better in-
form the stress level in the current window. The assume that since the data
has already been collected, we can iterate over the signals to make a robust
classification.
Since a stochastic-process approach worked better than a timeseries ap-

proach for in-the-moment detection, we decided to try a stochastic-process
approach here as well. To this end, we expanded the Bayesian network model
discussed in Section 5.4.2. We now include another stress state, 𝑆𝑖+1, which is
the sensed stress state at time 𝑖 + 1. Hence, now for any given window, we need
to calculate 𝑝 (𝐷𝑖 |𝐷𝑖−1, 𝑆𝑖 , 𝑆𝑖+1). Again, we make some assumptions to simplify
the model to four parameters: 𝛼 , 𝛽 , 𝛾 , and 𝛿 , as illustrated in the CPT in Table 8.

Following an approach similar to Section 5.4.2, we were able to marginalize 𝑝 (𝐷𝑖 = 1) from the joint distribution
𝑃 (𝐷𝑖 , 𝐷𝑖−1, 𝑆𝑖 , 𝑆𝑖+1), and simplify it as
𝑝 (𝐷𝑖 = 1) = 𝑦𝑖 = 𝑥𝑖+1 (1 − 𝑦𝑖−1) [𝛼 (1 − 𝑥𝑖 ) + 𝛽𝑥𝑖 ] + 𝑦𝑖−1 [(1 − 𝑥𝑖 ) (𝛾 (1 − 𝑥𝑖+1) + 𝑥𝑖+1) + 𝑥𝑖 (𝛿 (1 − 𝑥𝑖+1) + 𝑥𝑖+1)] (6)
where 𝑦𝑖 = 𝑝 (𝐷𝑖 = 1) and 𝑥𝑖 = 𝑝 (𝑆𝑖 = 1). Further, for a signal with 𝑛 time windows, we assume 𝑦0 = 𝑥0 and

𝑦𝑛 = 𝑥𝑛 .
We used the Hyperopt [4] package to tune the four parameters by optimizing for AUROC in LOSO cross-

validation. We found that, unlike the approach discussed in Section 5.4.3, we could not find a common range for
the hyperparameters 𝛼, 𝛽,𝛾 , and 𝛿 that performed well for each cross-validation. In fact, our results showed that
while 𝛾 and 𝛿 were consistent across each model, the 𝛼 and 𝛽 values varied significantly. We report the results
obtained by a LOSO cross-validation for each data subset in Table 9 using the optimal hyperparameters for each
model.

We found that – even with optimal parameters – the performance was marginally better than the performance
achieved in Section 5.4.2. It seems that the likelihood of stress in the current window is more influenced by the
likelihood of stress in the previous window, as compared to the next window. Thus, given the lack of substantially
better results with this approach, along with the added complexity of having different hyperparameter for each
model, we did not conduct a cross-study evaluation for this approach.

Table 9. LOSO cross-validation results for the different data subsets for “batch detection of past stress” using Bayesian
network model. The cells represent the median AUROC from LOSO cross-validation for each data subset. The round brackets
highlight the absolute difference in AUROC score when compared with the LOSO cross-validation results of the Bayesian
network model in Table 6; the square brackets show the IQR.

𝑆1𝑚𝑎𝑡ℎ 𝑆1𝑎𝑙𝑙 𝑆2𝑚𝑎𝑡ℎ 𝑆2𝑎𝑙𝑙 𝑆3ℎ𝑟 𝑆3𝑒𝑑𝑎 𝑆4ℎ𝑟 𝑆4𝑒𝑑𝑎
Batched Bayesian
network model

1.00 (+0.00)
[0.97 − 1.00]

0.85 (+0.02)
[0.61 − 1.00]

0.99 (+0.01)
[0.93 − 1.00]

0.74 (-0.02)
[0.63 − 0.77]

0.92 (+0.01)
[0.68 − 0.98]

0.98 (+0.02)
[0.84 − 0.99]

0.96 (+0.01)
[0.69 − 0.99]

1.00 (+0.00)
[0.93 − 1.00]

5.6 Finding Threshold for Classification
Having improved the performance of the machine-learning models, we now discuss the actual decision-making
component, i.e., when should the model classify an instance as stressed? Either a binary (not stressed, stressed)
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or a ternary (low, medium, high) output are over-simplifications of stress detection, a practice consistent across
prior works that empirically evaluate stress-detection models [28, 38, 39, 47, 52, 61, 66]. Most machine-learning
classifiers used for detecting stress, including SVM and RF, output a probability of stress. By default, the classifiers
assume a 0.5 threshold, such that output instances with probability greater than 0.5 are classified as stress. In the
past, researchers have used a custom threshold to determine when an instance is classified as stress [38, 47, 61]. To
find such a threshold, the usual approach has been to tune it like a hyper-parameters using LOSO cross-validation
that optimizes some performance metric, usually the F1-score [38, 47]. This method works relatively well in
homogeneous datasets in which each participant’s data has a similar distribution because they all underwent the
same study procedure. As shown in Table 3, however, the optimal threshold can vary across datasets.

To dig deeper, we evaluated the models built for each dataset (𝑆1𝑚𝑎𝑡ℎ , 𝑆2𝑚𝑎𝑡ℎ , 𝑆3ℎ𝑟 , 𝑆4ℎ𝑟 ) on the 𝑆2𝑎𝑙𝑙 dataset.
For each model, we searched for the optimal threshold that maximized the F1-score. We report the results in
Figure 5. The immediate observation from Figure 5 is the improved performance, which is even better than
the LOSO performance of just a single model reported in Table 3, once again highlighting the efficacy of the
two-layered approach. The more important observation, however, is the drastic variation in thresholds. Even
models built on 𝑆1𝑚𝑎𝑡ℎ and 𝑆2𝑚𝑎𝑡ℎ , which had similar sensor types and study protocol, there was a variation in
the optimal threshold. To gain more insight, we explored the minute-by-minute stress likelihood scores of each
model on a random participant 𝑋 from 𝑆2, which we present in Figure 6. We observe that this participant started
with some residual stress that declined during the baseline period. During the startle response test (T1), we made
a loud sudden noise behind the participant, which may have created the first spike in the likelihood of stress; we
made another loud noise just before the end of T1, which may have caused the spike in stress likelihood at the
start of the recovery period. Next, during the mental arithmetic task (T2), the likelihood of stress stayed elevated
for the entirety of the session, and started to decline during the recovery period. Finally, for the cold pressor
test (T3) the participant’s stress levels spiked initially, but (as they became accustomed to the cold) the stress
level started to recover, with it finally returning to baseline during the final recovery period. Further, we observe
that the trends for the models seem similar, albeit with different amplitudes. The baseline stress likelihood from
𝑆ℎ𝑟 seems to be more elevated than the others. Although there is a separation between the baseline and stress
periods, it is not as pronounced as in the other models. This higher baseline is why the classification threshold for
𝑆4ℎ𝑟 was significantly higher than the other models; although the other models are similar they do vary slightly
in their amplitudes, resulting in different “optimal” thresholds.
The fact that different models can have different optimal thresholds – and that the threshold can depend on

the test dataset – makes it challenging to deploy or even test models built using one dataset on independent
and unseen test users with no a priori knowledge of the data distribution. For real-world use, the threshold
cannot be tuned for each dataset or user since no ground-truth labels will be available. Hence, we believe the only
possible solutions are to use a “fixed” threshold selected using the training data – and sacrifice performance – or
to develop an adaptive or unsupervised method to select the threshold for new users or groups.

We next explore one such unsupervised method. The AUROC score for most of the models we evaluated was
high, which suggests that there exist a high level of separation between the stressed and baseline rest conditions.
We thus explore the feasibility of clustering methods to assign stressed and non-stressed labels to our data. To
this end, we configured a K-Means algorithm with two clusters; we initialized the clusters’ centers at 0 and 1, to
denote the rest and stressed periods, respectively. We then fit the K-Means algorithm with the stress probabilities
(predicted by a stress-detection model) of each participant. Once the clustering was complete, we did a final
iteration through each minute (four stress probabilities) and if the four probabilities belonged to different clusters,
we assigned all four points to the majority cluster; in case of a tie, we assigned all four points to the cluster of the
previous minute. We fit a different K-Means model to each participant; hence, the final cluster centers could be
different for each user.
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Fig. 5. Performance comparison for the different models
on 𝑆2𝑎𝑙𝑙 , along with the respective classification thresh-
olds.
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Fig. 6. Stress likelihood estimated by the different mod-
els on a participant from 𝑆2. The region marked as 𝐵𝑅
represents the baseline rest period, region 𝑇 1 represents
the startle response task, region𝑇 2 represents the mental
arithmetic task, and 𝑇 3 represents the cold pressor task.
The dashed-lines represent the model specific thresholds
(same as Figure 5).

To evaluate the efficacy of a cluster-based classification, we compare the results of the clustering with two
thresholds: a ‘fixed threshold’ learned during the model’s training phase, and an ‘optimized threshold’ learned
from the testing data. In real-world stress detection applications, however, an ‘optimized’ threshold cannot be
learned as the test data has no ground-truth labels. We report the F1-score, precision, and recall metrics for each
model in Tables 10 & 11. In situations where the training dataset and evaluation dataset were exactly the same,
the optimized threshold was the same as the fixed threshold.

We found the performance of the clustering-based approach always resulted in better classification performance
than the ‘fixed threshold’, and at times even better than the ‘optimized threshold’. Since choosing an optimal
threshold using each test set violates the independence of data, and since no labels will be available when
stress-detection models are deployed, we recommend this clustering-based classification approach be used for
deployments of stress-detection models. Further, we observe that under certain situations, e.g., training on 𝑆1𝑚𝑎𝑡ℎ

and testing on 𝑆2𝑎𝑙𝑙 , the clustering-based approach resulted in high precision, but relatively low recall, suggesting
that the model was not able to identify all the stressful periods in 𝑆2, but the ones it did identify were very
accurate.

To visualize how the clusters are assigned to the signals, we plot in Figure 7 the final results (after clustering)
of applying 𝑆1𝑚𝑎𝑡ℎ and 𝑆4ℎ𝑟 models to the same 𝑆2 participant 𝑋 we saw in Figure 5. The plots provide help
explain why the recall from the clustering-based approach may have been low. In the case of this participant, it
seems that the model was not able to identify all the stress-minutes during the startle response task (T1), whereas
an optimized threshold of 0.35 was able to classify all of the minutes of T1 as stressed.7 Given the trajectory
of the stress signal – in the case, of user 𝑋 – it seems that the clustering approach might be more informative,
as it is able to distinguish periods when the users’ stress levels are going down, and marks them as such. This

7For clarity, we show the output for just two models. We argue, however, that since 𝑆1𝑚𝑎𝑡ℎ had the most variance (from Figure 6) and 𝑆4ℎ𝑟
had the least variance, these two models should provide a good representation of the effectiveness of our approach.
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Table 10. Performance of the models built using heart rate and R-R interval features based on the type of threshold. ‘FT’
denotes a fixed threshold learned during training on the train set; ‘OT’ denotes an optimized threshold learned from the test
set; ‘US’ denotes the proposed unsupervised clustering based classification. 𝐹1, 𝑃 , and 𝑅 represent the F1-score, precision,
and recall, respectively.

Training
Dataset

Evaluation Dataset
𝑆1𝑚𝑎𝑡ℎ 𝑆1𝑎𝑙𝑙 𝑆2𝑚𝑎𝑡ℎ 𝑆2𝑎𝑙𝑙 𝑆3ℎ𝑟 𝑆4ℎ𝑟

FT OT US FT OT US FT OT US FT OT US FT OT US FT OT US

𝑆1𝑚𝑎𝑡ℎ

F1 0.89 0.89 0.68 0.85 0.71 0.84 0.86 0.88 0.70 0.86 0.76 0.65 0.67 0.68 0.72 0.75 0.80
P 0.88 0.89 0.93 0.83 0.92 0.85 0.85 0.84 0.92 0.87 0.91 0.62 0.60 0.62 0.74 0.74 0.77
R 0.89 0.89 0.53 0.87 0.58 0.83 0.88 0.92 0.57 0.85 0.65 0.69 0.76 0.76 0.71 0.77 0.83

𝑆2𝑚𝑎𝑡ℎ

F1 0.85 0.87 0.86 0.66 0.84 0.70 0.87 0.89 0.68 0.82 0.72 0.73 0.74 0.75 0.75 0.76 0.79
P 0.82 0.85 0.84 0.89 0.83 0.88 0.86 0.85 0.90 0.83 0.90 0.62 0.62 0.65 0.68 0.68 0.72
R 0.88 0.88 0.88 0.52 0.85 0.58 0.88 0.94 0.54 0.81 0.60 0.89 0.92 0.88 0.83 0.86 0.87

𝑆3ℎ𝑟
F1 0.82 0.90 0.91 0.57 0.90 0.70 0.81 0.93 0.92 0.58 0.86 0.74 0.77 0.76 0.73 0.74 0.80
P 0.93 0.89 0.96 0.93 0.90 0.97 0.97 0.93 0.92 0.98 0.86 0.95 0.70 0.68 0.64 0.64 0.72
R 0.73 0.90 0.86 0.41 0.90 0.55 0.70 0.94 0.93 0.41 0.87 0.61 0.85 0.86 0.86 0.88 0.91

𝑆4ℎ𝑟
F1 0.88 0.89 0.86 0.75 0.84 0.79 0.86 0.87 0.86 0.75 0.85 0.82 0.69 0.74 0.74 0.77 0.89
P 0.85 0.90 0.79 0.90 0.81 0.87 0.82 0.85 0.79 0.89 0.84 0.86 0.63 0.62 0.63 0.76 0.70
R 0.91 0.87 0.95 0.64 0.87 0.73 0.92 0.90 0.95 0.65 0.86 0.78 0.76 0.91 0.89 0.78 0.91

Table 11. Performance of the models built using EDA features based on the type of threshold. ‘FT’ denotes a fixed threshold
learned during training on the train set; ‘OT’ denotes an optimized threshold learned from the test set; ‘US’ denotes the
proposed unsupervised clustering based classification. 𝐹1, 𝑃 , and 𝑅 represent the F1-score, precision, and recall, respectively.

Training
Dataset

Evaluation Dataset
𝑆3𝑒𝑑𝑎 𝑆4𝑒𝑑𝑎

FT OT US FT OT US

𝑆3𝑒𝑑𝑎
F1 0.80 0.81 0.85 0.86 0.88
P 0.79 0.78 0.89 0.86 0.92
R 0.82 0.84 0.81 0.85 0.84

𝑆4𝑒𝑑𝑎
F1 0.81 0.81 0.81 0.89 0.84
P 0.75 0.77 0.76 0.89 0.87
R 0.89 0.85 0.87 0.88 0.82

example emphasizes why it is important to avoid relying only on metrics like F1-score, precision, and recall,
which provide limited information about a model’s performance.

Further, we believe that focusing only on two classes (stressed and not-stressed) is too much of an over-
simplification. We argue that there should at least be three classes: not-stressed, intermediate, and stressed. In the
future, such a three-class classification could enable scheduling of Just-in-time Adaptive Interventions (JITAI).
In one potential use case, a JITAI system would trigger interventions when the probability of stress is in the
intermediate stage with a positive slope.
We next explore the feasibility of such a three-class scenario. We now fit a K-Means model with 3 clusters,

with the centers initialized at 0, 0.5, and 1.0 for the baseline, intermediate, and stressed classes, respectively. We
used an approach to fit and interate over the cluster much like that we used for the two-class approach. Given
the preliminary scope of this three-class exploration, we quickly revisit participant 𝑋 in Figure 8. The three-class
approach appears promising, and worthy of further investigation.
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Fig. 7. The two-class cluster assignments for two dif-
ferent models, 𝑆4ℎ𝑟 and 𝑆1𝑚𝑎𝑡ℎ , on a participant from
𝑆2. The green dots represent the “not-stressed” cluster,
and the red dots represent the “stressed” cluster. The
dotted-lines represent the optimal thresholds for the two
models (same as Figure 5).
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Fig. 8. The three-class cluster assignments for two differ-
ent models, 𝑆4ℎ𝑟 and 𝑆1𝑚𝑎𝑡ℎ , on a participant from 𝑆2.
The green dots represent the “baseline” cluster, the blue
dots represent the “intermediate” cluster, and the red
dots represent the “stressed” cluster. The dotted-lines
represent the optimal thresholds for the two models
(same as Figure 5).

It is important to note that the clustering-based approach works only for batch detection of past stress, and not
for detecting stress in-the-moment. We argue, however, that this method can be used to learn the cluster-centers
of the user for a few days before enabling an in-the-moment stress-detection module based on the learned cluster
centers. In any case, there remain other challenges before a real-time in-the-moment stress-detection method is
feasible, as we discuss in Section 6.

5.7 Summary of Results
We now summarize the results presented in Section 5. We started with a LOSO cross-validation of each data
subset and found that even after following the same data cleaning, processing, feature extraction, and model
building process, the results of each LOSO evaluation was different, even between studies that had similar study
protocols or sensors. We specifically noted that models built with just the mental arithmetic task did not perform
as well when tested with the subsets consisting of all three stressors in S1 and S2. We also observed that models
built using only the heart-rate and R-R interval features from the Empatica E4 performed poorly as compared to
models built using data from the Polar H7/H10. Finally, we noted that the optimal threshold to classify between
stressed and not-stressed was different across the studies, and the values of the F1 score, precision, and recall
varied significantly with a change in threshold.

Next, we built models using data from each study, and evaluated it on every other subset. We found that
models built using 𝑆1𝑚𝑎𝑡ℎ and 𝑆2𝑚𝑎𝑡ℎ (the baseline and mental arithmetic stressor subsets of 𝑆1 and 𝑆2) performed
similarly when tested with the other’s data. Both these studies had similar protocols (except the random order of
stressors) and used the same family of Polar heart-rate monitors. These models, however, had lower AUROC
scores when evaluated with data from 𝑆3 and 𝑆4, although the type of stressor was similar (mental arithmetic).
We believe this difference may result from signal-quality differences between Polar and Empatica devices. The
models built using heart-rate and R-R interval data from 𝑆3 and 𝑆4, however, performed quite well when tested
with 𝑆1 and 𝑆2. This result suggests that – despite the lower data quality from Empatica – these SVMmodels were
able to reliably fit a hyperplane between the features belonging to stressed and not-stressed periods. Finally, we
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observed that all models performed poorly when tested with 𝑆1𝑎𝑙𝑙 and 𝑆2𝑎𝑙𝑙 . One possible explanation: our models
were built using just the baseline rest period and the mental arithmetic stressor, but 𝑆1𝑎𝑙𝑙 and 𝑆2𝑎𝑙𝑙 included data
from other stressors that may have triggered a different physiological response.
We then explored means to improve the performance of these stress-detection models by accounting for the

temporal dynamics of stress signals. We found that a two-layer approach with a Bayesian-network model could
factor in the previous window’s stress levels, resulting in a consistent improvement in performance – across
all models – when compared to a single-layer approach. We observed an average increase in AUROC of 0.07.
The increase was more pronounced for evaluations that performed poorly before; e.g., applying the two-layer
approach to evaluate model built with 𝑆1𝑚𝑎𝑡ℎ on 𝑆2𝑎𝑙𝑙 led to an increase of 0.19 in the median AUROC.
We then explored means to determine the threshold for classification. We found that the choice of threshold

varied with the choice of sensors, study protocol, and distribution of train and test samples. We proposed an
unsupervised clustering approach to determine the stressed and not-stressed classes , and found that our method
always performed better than when using a threshold learned from training data. Finally, we presented some
qualitative evidence showing the feasibility of clustering the data into three classes: baseline, intermediate, and
stress.

6 DISCUSSION AND FUTURE DIRECTIONS
In this paper we evaluate the reproducibility of stress-detection models. We identified several challenges that
might limit reproducibility, and discussed and proposed methods to tackle those challenges: improving the
performance of models across studies and determining a threshold for classification that could be applicable
across studies. While we argue that these are important steps in the direction of generalizability of stress detection
models, several challenges and limitations remain; we discuss them here.

6.1 Detecting Stress “in-the-moment”
As part of our work, we evaluated methods to improve detection of stress in-the-moment; while the results were
positive, there are some considerations. First, we argue it is not yet feasible to deploy real-time, in-the-moment
stress detection that works immediately out-of-the-box. One of the key processing steps in all stress-detection
approaches is the normalization of the physiological signals for each user, to remove any user-specific traits from
the signal. To normalize a participant’s signal, we (and prior work) used the entire time series of data from that
participant. So although the stress classification was happening in-the-moment, the signal processing and feature
computations were done beforehand. For a stress-detection method to work out-of-the-box, the model needs to
do real-time data normalization of physiological signals before features can be calculated. Since the mean and
standard deviation of such signals could vary over a day (or a few days), these models would have to employ a
form of adaptive normalization to make reliable predictions. Adaptive normalization, however, is a non-trivial
task and in itself is an important topic of research [49, 50].
For the deployment of just-in-time stress detection, the models will likely need a calibration/personalization

period lasting several days. During this adaptation period, the model could learn the normalization parameters
and classification thresholds for the new user (based on our proposed clustering-based classification method),
without requiring any labels or feedback from the user.

6.2 Detecting Stress in “Free-Living” Conditions
We recognize that our work focuses on data collected in controlled in-lab settings. Given the lack of reproducibility
and replicability of results in a controlled scenarios, however, we argue it is important to evaluate reproducibility
in a controlled environment before tackling reproducibility in free-living conditions. Our work provides a solid
foundation for such work.
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Further, we argue that physiological sensors alone may not be sufficient for detecting stress in free-living
conditions. These sensors simply measure the physiological response to stress. A variety of other factors could
cause similar physiological responses, e.g., caffeine intake, smoking, drinking, and physical activity, all of which
can confound stress-detection models. In fact, Grace et al. found that listening to music (which had a relaxing
effect on participants’ perception of stress) led a physiological arousal that could be misconstrued for stress [10].
Thus, we argue that for continuous real-time stress detection to be feasible in free-living conditions, physiological
signals need to be paired with the users’ context. Although some prior works have accounted for physical activity
in their stress-detection models with varying degrees of success [28, 38, 47, 61], few studies have addressed the
other confounding factors. In a preliminary study, Mishra et al. found that the threshold of what is considered
‘stress’ changed with participants’ context [45]. The authors reported that during inherently “arousing” activities,
like attending a meeting or driving, the threshold of physiological stress likelihood for participants to perceive a
situation as stressful was higher than restful activities. Given these and other remaining challenges, free-living
stress detection remains an active area of research.

6.3 Large-scale Validations
In our work, we evaluated the reproducibility of stress detection models using data from 90 participants collected
from four independent studies conducted over a period of two years. The studies had different participant
demographics, different study protocols, and different physiological sensors. While our results are promising –
demonstrating methods and models that can be translated across studies – further evaluations with larger studies
are needed. One important aspect is the accuracy of the sensing devices. We found that less-accurate sensors
could lead to weaker performance, regardless of the modeling quality. Hence, when evaluating performance of
models across studies involving different sensors, we recommend comparing performance with the individual
study’s LOSO cross-validation scores. Performance comparisons that use the same benchmark across studies
with differing sensors may lead to inflated or deflated results and incorrect conclusions.

6.4 Stress is not a Binary Condition
Researchers have long treated stress detection as a binary classification problem [17, 38, 39, 47, 52, 61, 66]. Although
this approach simplifies the model complexity and improves detection performance, one must remember that
‘stress’ is a continuous variable and is continuously varying. Few researchers have explored stress detection
with more than two classes [28, 35, 48]. One approach is to build a binary classifier but use the model’s output
(probability of stress) as a continuous variable to measure stress response. In our work, we considered this
probability as a continuous stress signal and evaluated the potential for use of an unsupervised method to identify
periods of stressed and not-stressed. We also provided preliminary qualitative evidence indicating it may be
feasible to group the stress signal into three categories: baseline, intermediate, stress. Such a multi-class approach
would be vital to delivering just-in-time adaptive interventions to users. Although Sarker et al. discuss a complex
trend-analysis method [61], we expect a simple heuristic approach, like delivering interventions when the stress
level is in the intermediate class with a positive slope, may well be sufficient. We plan to further evaluate this
method in future work.

7 CONCLUSION
In this work, we took the first step towards testing reproducibility and validity of methods and machine-learning
models for stress detection. We analyzed data from 90 participants, from four independent controlled studies,
using two different types of sensors, with different study protocols and research goals. We started by evaluating
the performance of models built using data from one study and tested on data from other studies. Next, we
evaluated new methods to improve the performance of stress-detection models and found that our methods led
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to a consistent increase in performance across all studies, irrespective of the device type, sensor type, or the
type of stressor. Finally, we developed and evaluated a clustering approach to determine the stressed/not-stressed
classification when applying models on data from different studies, and found that our approach performed
better than selecting a threshold based on training data. This paper’s thorough exploration of reproducibility in a
controlled environment provides a critical foundation for deeper study of such methods, and is a prerequisite for
tackling reproducibility in free-living conditions.
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