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Abstract

Most current multiprocessor �le systems are designed to use multiple disks in parallel� using the high
aggregate bandwidth to meet the growing I�O requirements of parallel scienti�c applications� Many
multiprocessor �le systems provide applications with a conventional Unix�like interface� allowing the
application to access multiple disks transparently� This interface conceals the parallelism within the �le
system� increasing the ease of programmability� but making it di�cult or impossible for sophisticated
programmers and libraries to use knowledge about their I�O needs to exploit that parallelism� In
addition to providing an insu�cient interface� most current multiprocessor �le systems are optimized
for a di�erent workload than they are being asked to support� We introduce Galley� a new parallel �le
system that is intended to e�ciently support realistic scienti�c multiprocessor workloads� We discuss
Galley�s �le structure and application interface� as well as the performance advantages o�ered by that
interface�

� Introduction

While the speed of most components of massively parallel computers have been steadily increasing for

years� the I�O subsystem has not been keeping pace� Hardware limitations are one reason for the

di�erence in the rates of performance increase� but the slow development of new multiprocessor �le

systems is also to blame� One of the primary reasons that multiprocessor �le�system performance has

not improved at the same rate as other aspects of multiprocessors is that� until recently� there has been

limited information available about how applications were using existing multiprocessor �le systems and

how programmers would like to use future �le systems�

Several recent analyses of production �le�system workloads on multiprocessors running primarily

scienti�c applications show that many of the assumptions that guided the development of most multi�

processor �le systems were incorrect �KN	
� NK	�a� PEK�	�� It was generally assumed that scienti�c

applications designed to run on a multiprocessor would behave in the same fashion as scienti�c applica�

tions designed to run on sequential and vector supercomputers� accessing large �les in large� consecutive

chunks �Pie�	� PFDJ�	� LIN�	�� MK	�� Studies of two di�erent multiprocessor �le�system workloads�
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running a variety of applications in a variety of scienti�c domains� on two architectures� under both

data�parallel and control�parallel programming models� show that many applications make many small�

regular� but non�consecutive requests to the �le system �NKP�	�� These studies suggest that the work�

load that most multiprocessor �le systems were optimized for is very di�erent than the workloads they

are actually being asked to serve�

Using the results from these two workload characterizations and from performance evaluations of

existing multiprocessor �le systems� we have developed Galley� Galley is a new multiprocessor �le system

that is designed to deliver high performance to a variety of parallel� scienti�c applications running on

multiprocessors with realistic workloads� Rather than attempting to design a �le system that is intended

to directly meet the speci�c needs of every user� we have designed a simpler� more general system that

lends itself to supporting a wide variety of libraries� each of which should be designed to meet the needs

of a speci�c community of users�

The remainder of this paper is organized as follows� In Section � we describe the speci�c goals

Galley was designed to satisfy� In Section � we discuss a new� three�dimensional way to structure �les

in a multiprocessor �le system� Section 
 describes the design and current implementation of Galley�

Section � discusses the interface available to applications that intend to use Galley� and Section � shows

how Galley�s interface can improve an application�s performance� In Section � we discuss several other

multiprocessor �le systems� and �nally in Section � we summarize and describe our future plans�

� Design Goals

Most current multiprocessor �le systems designs are based primarily on hypotheses about how parallel

scienti�c applications would use a �le system� Galley�s design is the result of examining how parallel

scienti�c applications actually use existing �le systems� Accordingly� Galley is designed to satisfy several

goals�

� Allow applications and libraries to explicitly control parallelism in �le access�

� E�ciently handle a variety of access sizes and patterns�

� Be �exible enough to support a wide variety of interfaces and policies� implemented in libraries�

� Allow easy and e�cient implementations of libraries�

� Be scalable enough to run well on multiprocessors with dozens or hundreds of nodes�

� Minimize memory and performance overhead�

Galley is targeted at distributed memory� MIMD machines such as IBM�s SP�� or Intel�s Paragon�
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� File Structure

Most existing multiprocessor �le systems are based on a Unix�like model �BGST	�� Pie�	� LIN�	��

Under this model� a �le is seen as an addressable� linear sequence of bytes� Applications can issue

requests to read or write data contiguous subranges of that sequence of bytes� A parallel �le system

typically declusters �les �i�e�� scatters the blocks of each �le across multiple disks�� allowing parallel

access to the �le� This parallel access reduces the e�ect of the bottleneck imposed by the relatively slow

disk speed� Although the �le is actually scattered across many disks� the underlying parallel structure

of the �le is hidden from the application�

Galley uses a more complex �le model that allows greater �exibility� which should lead to higher

performance�

��� Sub�les

The linear �le model o�ered by most multiprocessor �le systems can give good performance when the

request size generated by the application is larger than the declustering unit size� as a single request

will involve data from multiple disks� Under these conditions� the �le system can access multiple disks

in parallel� delivering higher bandwidth to the application� and possibly hiding any latency caused by

disk seeks� The drawback of this approach is that most multiprocessor �le systems use a declustering

unit size measured in kilobytes �e�g�� 
 KB in Intel�s CFS �Pie�	�� but our workload characterization

studies show that the typical request size in a parallel application is much smaller� frequently under ���

bytes �NKP�	�� This disparity between the request size and the declustering unit size means that most

of the individual requests generated by parallel applications are not being executed in parallel� In the

worst case� the compute processors in a parallel application may issue their requests in such a way that

all of an application�s processes may �rst attempt to access disk � simultaneously� then all attempt to

access disk � simultaneously� and so on�

Another drawback of the linear �le model is that a dataset may have an e�cient� parallel mapping

onto multiple disks that is not easily captured by the standard declustering scheme� One such example

is the two�dimensional� cyclically�shifted block layout scheme for matrices� shown in Figure �� which was

designed for SOLAR� a portable� out�of�core linear�algebra library �TG	�� This data layout is intended

to e�ciently support a wide variety of out�of�core algorithms� In particular� it allows blocks of rows and

columns to be transferred e�ciently� as well as square or nearly�square submatrices�

To avoid the limitations of the linear �le model� Galley does not impose a declustering strategy on an

application�s data� Instead� Galley provides applications with the ability to fully control this declustering

according to their own needs� This control is particularly important when implementing I�O�optimal

algorithms �CK	�� Applications are also able to explicitly indicate which disk they wish to access in

each request� To allow this behavior� �les are composed of one or more sub�les� which may be directly

addressed by the application� Each sub�le resides entirely on a single disk� and no disk contains more
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Figure �� An example of a ��dimensional� cyclically�shifted block layout� as

described in �TG	�� In this example there are � disks� logically arranged into a

��by�� grid� and a ��by��� block matrix� The number in each square indicates the

disk on which that block is stored�

than one sub�le from any �le� The application may choose how many sub�les a �le contains when the

�le is created� The number of sub�les remains �xed throughout the life of the �le�

The use of sub�les gives applications the ability both to control how the data is distributed across

the disks� and to control the degree of parallelism exercised on every subsequent access� Of course�

many application programmers will not want to handle the low�level details of data declustering� so we

anticipate that most end�users will use a user�level library that provides an appropriate declustering

strategy�

��� Forks

Each sub�le in Galley is structured as a collection of one or more independent forks� A fork is a named�

addressable� linear sequence of bytes� similar to a traditional Unix �le� Unlike the number of sub�les in

a �le� the number of forks in a sub�le is not �xed� libraries and applications may add forks to� or remove

forks from� a sub�le at any time� The �nal� three�dimensional �le structure is illustrated in Figure ��

There is no requirement that all sub�les have the same number of forks� or that all forks have the same

size�

The use of forks allows further application�de�ned structuring� For example� if an application repre�

sents a physical space with two matrices� one containing temperatures and other pressures� the matrices

could be stored in the same �le �perhaps declustered across multiple sub�les� but in di�erent forks� In

this way� related information is stored logically together but may be accessed independently�

While typical application programmers may �nd forks helpful� they are most likely to be useful when

implementing libraries� In addition to storing data in the traditional sense� many libraries also need to

store persistent� library�speci�c �metadata� independently of the data proper� One example of such a

library would be a compression library similar to that described in �SW	�� which compresses a data �le

in multiple independent chunks� Such a library could store the compressed data chunks in one fork and

index information in another�
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Figure �� Three dimensional structure of �les in the Galley File System� The

portion of the �le residing on disk � is shown in greater detail than the portions on

the other two disks�

Another instance where this type of �le structure may be useful is in the problem of genome�sequence

comparison� This problem requires searching a large database to �nd approximate matches between

strings �Are	�� The raw database used in �Are	� contained thousands of genetic sequences� each of

which was composed of hundreds or thousands of bases� To reduce the amount of time required to

identify potential matches� the authors constructed an index of the database that was speci�c to their

needs� Under Galley� this index could be stored in one fork� while the database itself could be stored in

a second fork�

A �nal example of the use of forks is Stream�� a parallel �le abstraction for the data�parallel language�

C� �MHQ	�� Brie�y� Stream� divides a �le into three distinct segments� each of which corresponds to a

particular set of access semantics� While the current implementation of Stream� stores all the segments

in a single �le� one could use a di�erent fork for each segment� In addition to the raw data� Stream�

maintains several kinds of metadata� which are currently stored in three di�erent �les� �meta� �first�

and �dir� In a Galley�based implementation of Stream�� it would be natural to store this metadata in

separate forks rather than separate �les�

� System Structure

The Galley parallel �le system is structured as a set of clients and servers� This model is based on the

typical multiprocessor architecture that dedicates some processors to computation and dedicates the rest

to I�O� In this system� the Compute Processors �CPs� function as clients and the I�O Processors �IOPs�

act as servers�
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��� Compute Processors

A client in Galley is simply any user application that has been linked with the Galley run�time library�

and which runs on a compute processor� The run�time library receives �le�system requests from the

application� translates them into lower�level requests� and passes them �as messages� directly to the

appropriate servers� running on I�O processors� The run�time library then handles the transfer of data

between the I�O processors and the compute node�s memory�

As far as Galley is concerned� every compute processor in an application is completely independent

of every other compute processor� Indeed� Galley does not even assume that one compute processor is

even aware of the existence of other compute processors� This independence means that Galley does

not impose any communication requirements on a user�s application� As a result� applications may use

whichever communication software �e�g�� MPI� PVM� P
� is most suitable to the given problem�

Like most multiprocessor �le systems� Galley o�ers both blocking and non�blocking I�O� To simplify

the implementation� and to avoid binding Galley too tightly to a single architecture� Galley originally

used multithreading to implement non�blocking I�O� Unfortunately� most of the major communications

packages cannot function in a multithreaded environment� As a result� Galley is currently forced to

use signals to implement non�blocking I�O� using a TCP�IP communications substrate� If support for

multithreaded environments ever becomes commonplace in message�passing packages� we will reexamine

this decision�

Although applications may interact directly with Galley�s interface� we expect that most applica�

tions will use a higher�level library or language layered on top of the Galley run�time library� One such

library implements a Unix�like �le model� which should reduce the e�ort required to port legacy ap�

plications to Galley �Nie	�� Other libraries currently being implemented provide Panda �SCJ�	� and

Vesta �CFP�	� interfaces� as well as ViC�� a variant of C� designed for out�of�core computations �CC	
�

��� I�O Processors

Galley�s I�O servers� illustrated in Figure �� are composed of several units� which are described in detail

below� Each unit is implemented as a separate thread� Furthermore� each IOP also has one thread

designated to handle incoming I�O requests for each compute processor� When an IOP receives a

request from a CP� the appropriate CP thread interprets the request� passes it on to the appropriate

worker thread� and then handles the transfer of data between the IOP and the CP� This multithreading

makes it easy for an IOP to service requests from many clients simultaneously�

While one potential concern is that this thread�per�CP design may limit the scalability of the system�

we have not observed such a limitation in the performance tests shown in Section �� One may reasonably

assume that a thread that is idle �i�e�� not actively handling a request� is not likely to noticeably a�ect

the performance of an IOP� By the time the number of active threads on a single IOP becomes great

enough to hinder performance� the IOP will most likely be overloaded at the disk� the network interface�
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Figure �� Internal structure of a Galley I�O Processor� showing two active data

requests waiting for the CacheManager� one active metadata request waiting for the

NameServer� and three idle CP threads�

or the bu�er cache� and the e�ect of the number of threads will be minor relative to these other factors�

We intend to explore this issue further as we port Galley to di�erent architectures� which may o�er

di�erent levels of thread support�

Galley�s metadata �not to be confused with a user�level library�s �metadata� discussed above� is

distributed across all IOPs� so there is no single point of contention that could limit scalability� Thus�

each IOP acts both as a data server and as a metadata server� When a request arrives for a metadata

operation �e�g�� �le open� close� delete�� the CP�s thread hands the request on to the NameServer� waits

for the NameServer to complete the operation� and then passes the result back to the requesting CP�

For most operations� the NameServer will need to submit a request to the CacheManager for data stored

on disk�

����� CP Threads

CP threads remain idle until a request arrives from the corresponding CP� After being awakened to

service a new data�access request� a CP thread creates a list of all the disk blocks� that will be required

to satisfy the request� The CP thread then passes the full list of blocks to the CacheManager� and waits

on a queue of bu�ers returned by the CacheManager and DiskManager� As a CP thread receives bu�ers

on its queue� it handles the transfer of data between its CP and those bu�ers� When a CP thread

completes the transfer of data to or from a bu�er� it decreases that bu�er�s reference count� and handles

the next bu�er in the queue� When the whole request has been satis�ed� or if it fails in the middle� the

�The current implementation of Galley uses a logical disk�block size of �� KB	
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thread passes a success or failure message back to its CP� and idles until another request comes in�

The order in which a fork�s blocks are placed on the CP thread�s bu�er queue is determined by which

blocks are present in the bu�er cache and the order in which that fork�s blocks are laid out on disk� As

a result� it is not possible for Galley�s client�side run�time library to know in advance in which order an

IOP will satisfy the individual pieces of a request� When writing� this approach is somewhat unusual in

that the IOP is essentially �pulling� the data from the CP� rather than the traditional model� where the

CP �pushes� the data to the IOP�

����� CacheManager

Each IOP has a bu�er cache that is maintained by the CacheManager� In addition to deciding which

blocks are kept in the bu�er� the CacheManager does all the work involved in locating blocks in the bu�er

cache for CP threads and the NameServer� To perform these lookups� the CacheManager maintains a

separate list of disk blocks requested by each thread� When the CacheManager has outstanding request

lists from multiple threads� it services requests from each list in round�robin order� This round�robin

approach is an attempt to provide fair service to each requesting CP�

The CacheManager maintains a global LRU list of all the blocks resident in the cache� When a

new block is to be brought into the cache� this list is used to determine which block is to be replaced�

Providing applications with more control over cache policies is one area of ongoing work�

Rather than performing lookups by scanning through the entire LRU list� for e�ciency the Cache�

Manager also maintains a hash table� containing a list of all the blocks in the cache� For each disk

block requested� the CacheManager searches its hash table of resident blocks� If the block is found� its

reference count is increased� and a pointer to that bu�er is added to the requesting thread�s ready queue�

If the block is not resident in the cache� the CacheManager �nds the �rst block in the LRU list with a

reference count of �� and schedules it to be replaced by the requested block� The bu�er is then marked

�not ready�� and a request is issued to the DiskManager to write out the old block �if necessary�� and to

read the new block into the bu�er�

����� DiskManager

The DiskManager is responsible for actually reading data from and writing data to disk� The DiskMan�

ager maintains a list of blocks that the CacheManager has requested to be read or written� As new

requests arrive from the CacheManager� they are placed into the list according to the disk scheduling

algorithm� The DiskManager currently uses a Cyclical Scan algorithm �SCO	�� When a block has been

read from disk� the DiskManager updates the cache status of that block�s bu�er from �not ready� to

�ready�� increases its reference count� and adds it to the requesting thread�s ready queue�

Galley�s DiskManager does not attempt to prefetch data for two reasons� First� indiscriminate

prefetching can cause thrashing in the bu�er cache �Nit	�� Second� prefetching is based on the assump�
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tion that the system can intelligently guess what an application is going to request next� Using the

higher�level requests described below� there is frequently no need for Galley to make guesses about an

application�s behavior� the application is able to explicitly provide that information to each IOP�

To increase portability� Galley does not use a system�speci�c low�level driver to directly access the

disk� Instead� Galley relies on the underlying system �presumably Unix� to provide such services�

Galley�s DiskManager has been implemented to use raw devices� Unix �les� or simulated devices as

�disks�� Galley�s disk�handling primitives are su�ciently simple that modifying the DiskManager to

access a device directly through a low�level device driver is likely to be a trivial task�

� Application Interface

Given the new �le model provided by Galley� and the observed frequency of regular access patterns

in multiprocessor �le system workloads� it was not su�cient to simply provide applications with a

traditional Unix interface� Although applications may certainly be written directly to Galley�s interface�

it is primarily intended to allow the easy implementation of libraries� We anticipate that these libraries

will provide the higher�level functionality needed by most users�

��� File Operations

Files in Galley are created using the gfs create file�� call� In addition to specifying a �le name�

an application may specify on how many IOPs� and even on which IOPs� the �le is to be created� A

gfs create file call is completed in three steps� The �rst step is to verify that the name chosen for

the �le is not already in use� and to reserve the name if it is available� This step requires that a single

message be sent to the IOP that will be responsible for maintaining the metadata for the new �le� The

responsible IOP is chosen by applying a simple hash function to the �le name� Vesta uses a similar

scheme �CFP�	�� The second step is to create sub�les on each of the appropriate IOPs� This step

requires that a message be sent to each IOP� asking that a sub�le�header block be assigned to the �le�

Like an inode in a Unix �le system� a sub�le�header block contains all the metadata information for that

sub�le� Unlike the Unix practice of statically creating inodes� however� any block in the �le system may

become a sub�le�header block� Each IOP returns either the ID of the assigned header block� or an error

code� If this step fails on any IOP �e�g�� if it is out of disk space�� then each IOP is instructed to release

the newly assigned header blocks� the reserved �le name is released� and the appropriate error code is

returned to the application� The �nal step of a successful �le�creation process is to store the �le name�

along with all the sub�le�header block IDs� on disk at the responsible IOP and to return a success code

to the application� Note that after the �le is created� all the sub�les are empty� that is� no forks are

created as part of the �le�creation process�

As far as Galley is concerned� each compute node in an application is a completely independent

entity� Therefore� Galley has no notion of a leader� a node that can issue requests on behalf of other

�



processors� As a result� each node in an application that wishes to use a �le in Galley must explicitly

open that �le using the gfs open file�� call� When an application issues a gfs open file�� call� the

run�time library sends a request to the appropriate metadata server �again� determined by hashing the

�le name�� If the �le exists� the metadata server returns a list of all the sub�le�header block IDs to

the requesting CP� The run�time library assigns the open �le a �le ID� and caches the list of header

block IDs in an open��le table to avoid repeated requests to the metadata server� Since these IDs do

not change during the course of the �le�s lifetime� we do not have to be concerned that the cached IDs

will become inconsistent with the IDs stored at the metadata server� The run�time library then sends

messages to each of the IOPs on which the �le has a sub�le� notifying the IOP that the sub�le has been

opened� The IOP then either sets up a small amount of state� or increases a reference count if another

CP has already opened the sub�le�

The metadata server maintains no information about which CPs open a �le� or even that the �le

has been opened� This lack of state at the metadata server means that it is possible for one compute

processor to ask that a �le be deleted �using gfs delete file��� while another CP is still using the �le�

Deleting a �le in Galley is a two�step process� The �rst step simply involves removing some indexing

information� the name and ID list stored at the metadata server� Since each CP that opens a �le

maintains a local cache of header block IDs� CPs that have already opened a �le are not a�ected by the

removal of that indexing information� The second step is asking each IOP on which the �le was created

to delete its sub�le� If the reference count for that sub�le is �� it �and all of its forks� are actually

deleted� If the reference count for that sub�le is greater than �� it is marked for deletion� and will be

deleted when the reference count reaches �� Thus� even if CP A requests that a �le be deleted� while

CP B is using the �le� CP B will still be able to access the �le�s data until it closes the �le�

��� Fork Operations

Forks are created using the gfs create fork�� call� which takes as parameters the ID of an open �le�

the sub�le in which the fork is to be created� and a name for the new fork� Galley�s run�time library

looks up the ID of the appropriate sub�le�header block in its cached list� and sends both the header

ID and the fork name to that sub�le�s IOP� By sending the header ID to the IOP� there is no need

for an extra indexing operation to take place at the IOP� the IOP is able to retrieve the appropriate

sub�le�header block immediately� The IOP adds the name of the fork to the sub�le�header block� and

returns a success or error code to the CP� For the convenience of application programmers� Galley also

provides a gfs all create�� call� which creates a fork of the given name in each of the �le�s sub�les�

As with �les� each process in an application that intends to access a fork�s data must explicitly

open that fork� Forks are opened using the gfs open fork�� call� which takes the same parameters as

the fork�creation call� If the fork�open request is successful� Galley returns a fork ID� which is used in

subsequent calls� much like a �le descriptor is used in Unix� Forks are closed with gfs close fork���
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and deleted with gfs delete fork��� As with �les� if a CP attempts to delete a fork that has a non�zero

reference count� that fork is marked for deletion� but is not actually deleted until its reference count

reaches �� For convenience� there are gfs all open� gfs all close� and gfs all delete calls as well�

��� Data Access Interface

The standard Unix interface provides only simple primitives for accessing the data in �les� These

primitives are limited to read��ing and write��ing consecutive regions of a �le� As discussed above�

recent studies show that these primitives are not su�cient to meet the needs of many parallel applica�

tions �NK	�a� NKP�	�� Speci�cally� parallel scienti�c applications frequently make many small requests

to a �le� with strided access patterns�

We de�ne two types of strided patterns� A simple�strided access pattern is one in which all the

requests are the same size� and there is a constant distance between the beginning of one request and the

beginning of the next� A group of requests that form a strided access pattern is called a strided segment�

A nested�strided access pattern is similar to a simple�strided pattern� but rather than repeating a single

request at regular intervals� the application repeats either a simple�strided or nested�strided segment

at regular intervals� Studies show that both simple�strided and nested�strided patterns are common in

parallel� scienti�c applications �NK	�a� NKP�	��

Galley provides three interfaces that allow applications to explicitly make regular� structured requests

such as those described above� as well as one interface for unstructured requests� These interfaces allow

the �le system to combine many small requests into a single� larger request� which can lead to improved

performance in two ways� First� reducing the number of requests can lower the aggregate latency costs�

particularly for those applications that issue thousands or millions of tiny requests� Second� providing

the �le system with this level of information allows it to make intelligent disk�scheduling decisions�

leading to fewer disk�head seeks� and to better utilization of the disks� on�board caches�

The higher�level interfaces o�ered by Galley are summarized below� These interfaces are described

in greater detail� and examples are provided� in �NK	�a� Nie	�� Note that each request accesses data

from a single fork� Galley has no notion of a �le�level read or write request�

����� Simple�strided Requests

gfs�read�strided�int fid� void �buf� long offset� long rec�size�

long f�stride� long m�stride� int quant�

Beginning at offset in the open fork indicated by fid� the �le system will read quant records� of

rec size bytes each� The o�set of each record is f stride bytes greater than that of the previous

record� The records are stored in memory beginning at buf� and the o�set into the bu�er is changed

by m stride bytes after each record is transferred� Note that either the �le stride �f stride� or the

memory stride �m stride� may be negative� The call returns the number of bytes transferred�
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When m stride is equal to rec size� data will be gathered from disk� and stored contiguously in

memory� When f stride is equal to rec size� data will be read from a contiguous region of a �le� and

scattered in memory� It is also possible for both m stride and f stride to be di�erent than rec size�

and possibly di�erent than each other�

Naturally� there is a corresponding gfs write strided�� call�

����� Nested�strided Requests

gfs�read�nested�int fid� void �buf� long offset� long rec�size�

struct stride �vec� int levels�

The vec is a pointer to an array of �f stride� m stride� quantity� triples listed from the inner�

most level of nesting to the outermost� The number of levels of nesting is indicated by levels�

����� Nested�batched Requests

While we found that most of the small requests in the observed workloads were part of either simple�

strided or nested�strided patterns� there may well be applications that could bene�t from some form of

high�level� regular request� but would �nd the nested�strided interface too restrictive� An example of

such an application is given in �Nie	�� For those applications� we provide a nested�batched interface�

The data structure involved in a nested�batched I�O request is called a request vector�

struct batch �

long f�offset�

long m�offset�

char f�offset�type� �� ABSOLUTE or RELATIVE ��

char m�offset�type� �� ABSOLUTE or RELATIVE ��

char subreq�type� �� SIMPLE or VECTOR ��

long f�stride� �� File stride between repetitions ��

long m�stride� �� Memory stride between repetitions ��

int quant� �� Number of repetitions ��

int elements� �� Number of elements in subvec ��

union �

long size� �� Simple request ��

struct batch �subvec� �� Request vector ��

	 sub�

	�

Each request in the vector speci�es the o�set into the �le from which to begin servicing the request�

This o�set may be absolute or it may be speci�ed relative to the previous request�s o�set� In addition

to simple reads and writes� each request in the vector may be a strided request� That is� the application

may specify that the request is to be repeated a number of times �quant�� and may specify the change

in both �le and memory o�sets between each request� Finally� the requests themselves may be vectors

of requests� to allow nesting�

This interface gives applications the ability to submit multiple simple or strided requests at once�
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����� List Requests

Finally� in addition to these structured operations� Galley provides a simple� more general �le interface�

called the list interface� which has functionality similar to the POSIX lio listio�� interface �IBM	
�

This interface allows an application to simply specify an array of ��le o�set� memory o�set� size� triples

that it would like transferred between memory and disk� This interface is useful for applications with

access patterns that do not have any inherently regular structure� While this interface essentially

functions as a series of simple reads and writes� it provides the �le system with enough information

to make intelligent disk�scheduling decisions� as well as the ability to coalesce many small pieces of data

into larger messages for transferring between CPs and IOPs�

� Performance

Most studies of multiprocessor �le systems have focussed primarily on the systems� performance on large�

sequential requests� Indeed� most do not even examine the performance of requests of fewer than many

kilobytes �Nit	�� BBH	�� KR	
� As discussed above� multiprocessor �le�system workloads frequently

include many small requests� The disparity between the measured and benchmarked workloads means

that most performance studies actually fail to examine how a �le system can be expected to perform

when running real applications in a production environment�

��� Experimental Platform

The Galley File System was designed to be easily ported to a variety of workstation clusters and massively

parallel processors� The results in this paper were obtained on the IBM SP�� at NASA Ames� Numerical

Aerodynamic Simulation facility� This system has ��� nodes� each running AIX 
����� but only �
� are

available for general use� Each node has a ���� MhZ POWER� processor and at least ��� megabytes of

memory� Each node is connected to both an Ethernet and IBM�s high�performance switch� While the

switch allows throughput of up to �
 MB�s using one of IBM�s message�passing libraries �PVMe� MPL�

or MPI�� those libraries cannot operate in a multithreaded environment� Furthermore� neither MPL

nor MPI allow applications to be implemented as persistent servers and transient clients� As a result of

these limitations� Galley is implemented on top of TCP�IP�

To determine what e�ect� if any� our use of TCP�IP would have on the overall performance of

our system� we performed some simple benchmarking of the SP���s TCP�IP performance� According

to IBM �veri�ed by own testing�� the maximum TCP�IP throughput between two nodes on the SP��

is approximately �� MB�s� Unfortunately� as the number of nodes increases� it becomes di�cult to

maintain this throughput at each node� as shown in Figure 
� In each test� we used �� sinks� and varied

the number of sources from 
 to �
� Each source sent the same amount of data to each sink� using a �xed

record size� For each sink�source con�guration� we measured the throughput for a variety of message
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Figure �� Measured TCP�IP throughout on the SP��� For each test� there were

�� sinks �similar to CPs reading a �le�� and a variable number of sources �similar

to IOPs servicing read requests��

sizes� In each of these tests� we used select�� to identify sockets with pending I�O� but we did not

attempt to use any �ow�control beyond that provided by TCP�IP� As the �gure shows� the achieved

maximum throughput increases with the number of sources� until the number of sources exceeds ���

Even with many sources� we are only able to achieve about ��� MB�s� or less than �
 MB�s at each

sink�

Each IOP in Galley controls a single disk� logically partitioned into ��KB blocks� For this study�

each IOP had a bu�er cache of �
 megabytes� large enough to hold ��� blocks� Although each node on

the SP�� has a local disk� access to that disk must be performed through AIX�s Journaling File System�

While Galley was originally implemented to use these disks� our performance results appeared to be

in�ated by the prefetching and caching provided by JFS� Speci�cally� we frequently measured apparent

throughputs of over �� MB�s from a single disk� To avoid these in�ated results� we examined Galley�s

performance using a simulation of an HP 	���� SCSI hard disk� which has an average seek time of

���� ms and a maximum sustained throughput of ��� MB�s �HP	��

Our implementation of the disk model was based on earlier implementations �RW	
� KTR	
��

Among the factors simulated by our model are head�switch time� track�switch time� SCSI�bus over�

head� controller overhead� rotational latency� and the disk cache� To validate our model� we used a

trace�driven simulation� using data provided by Hewlett�Packard and used by Ruemmler and Wilkes

in their study�� Comparing the results of this trace�driven simulation with the measured results from

the actual disk� we obtained a demerit �gure �see �RW	
 for a discussion of this measure� of �����

�The source code for this disk simulator is available online at http���www�cs�dartmouth�edu��nils�disk�html	
�Kindly provided to us by John Wilkes and HP	 Contact John Wilkes at wilkes
hplabs	hp	com for information about

obtaining the traces	
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(a) Broadcast (b) Partitioned

(c) Interleaved

Figure �� The three access patterns examined in this study� Two views of each pattern are

displayed� the pattern as applied to a linear �le� and matrix distributions that could give rise to

the pattern� For these examples� we assume that the matrices are stored in row�major order� Each

square corresponds to a single record in the �le� and the highlighted squares represent the records

accessed by a single compute node in a group of four�

indicating that our model was extremely accurate�

The simulated disk is integrated into Galley by creating a new thread on each IOP to execute the

simulation� When the thread receives a disk request� it calculates the time required to complete the

request� and then suspends itself for that length of time� While� in most cases� the disk thread does not

actually load or store the requested data� metadata blocks must be preserved� To avoid losing that data�

the disk thread maintains a small pool of bu�ers� which is used to store �important� data� When the

disk simulation thread copies data to or from a bu�er� the amount of time required to complete the copy

�which we calculate at system startup� is deducted from the amount of time the thread is suspended� It

should be noted that the remainder of the Galley code is unaware that it is accessing a simulated disk�

��� Access Patterns

We examine the performance of Galley under several di�erent access patterns� shown in Figure �� each of

which is composed of a series of requests for �xed�size pieces of data� or records� Although these patterns

do not directly correspond to a particular �real world� application� they are representative of the general

patterns we observed to be most common in production multiprocessor systems� as described above� Our

measurements were performed using a �le that contained a sub�le on each IOP� and a single fork within
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each sub�le� To allow us to better understand the system�s performance� by removing one variable� the

forks were laid out contiguously on disk� The patterns shown in Figure � re�ect the patterns that we

access from each IOP� The correspondence between the IOP�level access patterns used in this study�

and the �le�level patterns observed in actual applications� is discussed for each pattern below�

The simplest access pattern is called broadcast� With this access pattern every compute node reads

the whole �le� In other words� the IOPs broadcast the whole �le to all the CPs� This access pattern

models the series of requests we would expect to see when all the nodes in an application read a shared

�le� such as the initial state for a simulation� Since� in order to read all the data in a �le� an application

must read all the data in every sub�le� a broadcast pattern at the �le level clearly corresponds to a

broadcast pattern at each sub�le� Although it may seem counterintuitive for an application to access

large� contiguous regions of a �le in small chunks� we observed such behavior in practice� One likely

reason that data would be accessed in this fashion is that records stored contiguously on disk are to be

stored non�contiguously in memory� In the simplest case� this pattern would be similar to the interleaved

pattern described below� with the interleaving occurring in memory rather than on disk� Since it seems

unlikely that an application would want every node to rewrite the entire �le� we did not measure the

performance of the broadcast�write case�

Under a partitioned pattern� each compute node accesses a distinct� contiguous region of each �le�

This pattern could represent either a one�dimensional partitioning of data or the series of accesses

we would expect to see if a two�dimensional matrix were stored on disk in row�major order� and the

application distributed the rows of the matrix across the compute nodes in a BLOCK fashion �using

HPF terminology �HPF	��� There are two di�erent ways a partitioned access pattern at the �le level

can map onto access patterns at the IOP level� The �rst occurs if the �le is distributed across the disks

in a BLOCK fashion� that is the �rst ��n of the �le bytes in the �le are mapped onto the �rst of the

n IOPs� and so forth� For each IOP� this mapping results in an access pattern similar to a broadcast

pattern with � compute processor� The other mapping distributes blocks of data across the disks in a

CYCLIC fashion� This second mapping is more interesting and corresponds to the mapping used by

most implementations of a linear �le model� This distribution results in accesses by each CP to each

IOP� In a system with 
 CPs� the �rst CP would access the �rst ��
 of the data in each sub�le� and

so forth� Thus� using the second mapping� a partitioned pattern at the �le level leads to a partitioned

pattern at each IOP� As with the broadcast pattern� applications may access data in this pattern using

a small record size if the the data is to be stored non�contiguously in memory�

In an interleaved pattern� each compute node requests a series of noncontiguous� but regularly spaced�

records from a �le� For the results presented here� the interleaving was based on the record size� That is�

if �� compute nodes were reading a �le with a record size of ��� bytes� each node would read ��� bytes

and then skip ahead ��	� �������� bytes before reading the next chunk of data� This pattern models

the accesses generated by an application that distributes the columns of a two�dimensional matrix across
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the processors in an application� in a CYCLIC fashion� To see how this �le�level pattern maps onto

an IOP�level pattern� assume the linear �le is distributed traditionally� with blocks distributed across

the sub�les in a CYCLIC fashion� In the simplest case� the block size might be evenly divisible by the

product of the record size and the number of CPs� In this case� every block in the �le is accessed with

the same interleaved pattern� and any rearrangement of the blocks �between or within disks� will result

in the same sub�le�access pattern� Thus� the blocks can be declustered across the sub�les� but the access

pattern within each sub�le will still be interleaved� There are� of course� more complex mappings of an

interleaved �le�level pattern to an IOP�level pattern� but we focus on the simplest case�

For this performance analysis� we held the number of compute processors constant at ��� and varied

the number of IOPs �each with one disk� from 
 to �
� Thus� the CP�IOP ratio varied from ��
 to 
���

Each test began with an empty bu�er cache on each IOP� and each write test included the time required

for all the data to actually be written to disk� While the size of each fork was �xed� the amount of data

accessed for each test was not� Since the system�s performance on the fastest tests was several orders

of magnitude faster than on the slowest tests� there was no �xed amount of data that would provide

useful results across all tests� Thus� the amount of data accessed for each test varied from 
 megabytes

�writing �
�byte records to 
 IOPs� to � gigabytes �reading �
�KB records from �
 IOPs�� The results

presented here represent the average of three executions of each test�

��� Traditional Interface

We �rst examined the performance of Galley using the standard read�write interface� This interface

required each CP to issue separate requests for each record from each fork� Each CP issued asynchronous

requests to all the forks� for a single record from each fork� When a request from one fork completed�

a request for the next record from that fork was issued� By issuing asynchronous requests to all IOPs

simultaneously� the CPs were generally able to keep all the IOPs in the system busy� Since each CP

accessed its portion of each sub�le sequentially� the IOPs were frequently able to schedule disk accesses

e�ectively� even with the small amount of information o�ered by the traditional interface� Furthermore�

the CPs were generally able to issue requests in phase� That is� when an IOP completed a request for

CP �� it would handle requests from CPs � through n� By the time the IOP had completed the request

from CP n� it had received the next request from CP �� Thus� even without explicit synchronization

among the CPs� the IOPs were able to service requests from each node fairly� and were able to make

good use of the disk�

Figure � shows the total throughput achieved when reading a �le with various record sizes for each

access pattern� Figure � presents similar results for write performance� The performance curves have

the same general shape as throughput curves in most systems� that is� as the record size increased� so

did the performance� As in most systems� eventually a plateau was reached� and further increases in the

record size did not result in further performance increases� The precise location of this plateau varied
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Figure �� Throughput for read requests using the traditional Unix�like interface� There were �� CPs in

every case� Note the di�erent scales on the y�axis�

between patterns and CP�IOP ratios� Unsurprisingly� when accessing data in small pieces� the total

throughput was limited by a combination of software overhead and by the high latency of transferring

data across a network� regardless of the access pattern�

The choice of access pattern had the greatest e�ect on performance when reading data with large

blocks� When reading an interleaved pattern� the system�s peak performance was limited by the sus�

tainable throughput of the disks on each IOP �about ��� MB�s�� There was a small dip in performance

as the record size increased from � KB to 
 KB� with small numbers of IOPs� With records of � KB or

smaller� every CP reads data from every block� With a record size of 
 KB� each CP reads data only

from alternate blocks� As a result� it is possible for a request for block n� � to arrive before a request

for block n� slightly degrading disk performance� These out�of�order requests are less likely to occur

with larger records� The overall performance when reading the partitioned pattern was limited by the

time the disk spent seeking from one region of the �le to another� The small spike in performance with

�
 IOPs and a 
 KB record size is repeatable� but it is not clear what causes it�
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Figure 	� Throughput for write requests using the traditional Unix�like interface� There were �� CPs in

every case�

When testing an earlier version of Galley we found that with large numbers of IOPs� the network

congestion at the CPs was so great that the CPs were unable to receive data and issue new requests to

the IOPs in a timely fashion �NK	�b� As a result� the DiskManagers on the IOPs were unable to make

intelligent disk scheduling decisions� causing excess disk�head seeks and thrashing of the on�disk cache�

The combination of the network congestion and the poor disk scheduling led to dramatically reduced

performance with large record sizes in the interleaved and partitioned patterns� To avoid this problem�

we added a simple �ow�control protocol to Galley�s data�transfer mechanism�

Under the broadcast access pattern� data was read from the disk once� when the �rst compute

processor requested it� and stored in the IOP�s cache� When subsequent CPs requested the same data�

it was retrieved from the cache rather than from the disk� Since each piece of data was used many

times� the cost of accessing the disk was amortized over a number of requests� and the limiting factors

were software and network overhead� In this case� the total throughput of the system was limited by

the SP���s TCP�IP performance� as discussed above�

Consider Figure �� When writing data with records of less than �� KB� the �le system had to read

each block o� the disk before the new data could be copied into it� Without this requirement� any

data that was stored in that block would be lost � even data that was not being modi�ed by the write

request� As a result the system�s performance was slower when writing small records than when reading

them� Furthermore� with small records� the interleaved pattern had higher total throughput than the

partitioned pattern� As when reading data� the interleaved pattern had higher throughput because the

partitioned pattern forced the disk to spend time seeking between one region of the �le and another�

When the record size reached �� KB� the write performance of both patterns increased dramatically�

With the record size at least as large as the �le system�s block size� Galley did not have to read each

data block o� the disk before copying the new data in� Since the �le system could simply write the new

data to disk �rather than read�modify�write�� the number of disk accesses in each pattern was cut in half�
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Furthermore� since much of the data was not actually written to disk until the CPs called gfs sync���

at the end of the test� the system could avoid many of the excess seeks in the partitioned case�

��� Strided Interface

When reading data with a traditional interface� in many cases we were able to achieve nearly ���� of

the disks� peak sustainable performance� This best�case performance seems respectable� but as with

most systems� Galley�s performance with small record sizes was certainly less than satisfactory� The

goal of Galley�s new interfaces is to provide high performance for the whole range of record sizes� with

particular emphasis on providing high throughput for small records�

The tests in this section were again performed by issuing asynchronous requests to each fork� Rather

than issuing a series of single�record requests to each IOP� we used the strided interface to issue only a

single request to each IOP� That single request identi�ed all the records that should be transferred to

or from that IOP for the entire test� All other experimental conditions were identical to those in the

previous section�

Figure � shows the total throughput achieved when reading a �le with various record sizes for each

access pattern using the new interface� and Figure 	 shows corresponding results for writing�

Given the traditional interface� the disk scheduler had to handle each request in the order they

arrived from the CPs� This requirement led to excess disk�head movement primarily in the partitioned

pattern� but also in the interleaved pattern when the record size was larger than � KB ��� KB��� CPs��

Since each CP read from the same data blocks in the broadcast case� and in an interleaved pattern with

small records� the disk schedule was optimal even with the traditional interface� Since many of the disk

accesses in the traditional write cases occurred after a call to gfs sync��� the disk scheduler was able

to make intelligent decisions then as well� Therefore� the tests on which the new interface lead to the

greatest improvements in the disk schedule were the interleaved and partitioned read tests� and these

were the two tests where the peak throughput to the CPs improved most dramatically�

Once again� network contention was a problem for large numbers of IOPs� The peak throughput on

the broadcast pattern was limited to ����
 MB�s to each CP� The best disk schedule can also be the

worst network schedule� as in the partitioned pattern� where all IOPs �rst served CP �� then CP �� and

so forth� This disk schedule� combined with the limits of TCP�IP� contributed to the interleaved�read

pattern having higher performance than the partitioned�read pattern using the strided interface�

While the increase in peak performance is interesting� the most striking di�erence between the

two sets of tests is that� in most cases� Galley was able to achieve peak performance with records as

small as �
 bytes two or three orders of magnitude smaller than the request sizes required to achieve

peak throughput using the traditional interface� Other than increased opportunities for intelligent disk

scheduling� the primary performance bene�t of our interface was a reduction in the number of messages�

accomplished by packing small chunks of data into larger packets before transmitting them to the

�	
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Figure 
� Throughput for read requests using the strided interface� There were �� CPs in every case�

Note the di�erent scales on the y�axis�
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Figure �� Throughput for write requests using the strided interface� There were �� CPs in every case�

��



receiving node�

One short�term goal for Galley is reducing the variability of the system�s performance� This variability

is most obvious in the interleaved�read pattern with �
 IOPs� Performance was also variable when writing

data� particularly in the partitioned pattern� We are investigating two possible solutions to this problem�

re�ning our �ow�control strategy and modifying the DiskManager to consider the impact on network

performance when designing a disk schedule�

While it is clear that the strided interface allowed the �le system to deliver much better performance�

the throughput plots shown in Figures � and 	 present only part of the picture� Figure �� shows the

speedup of the strided�read interface over a traditional read interface� and Figure �� shows similar results

for the write interfaces� When using an interleaved pattern with small records� the strided interface led

to speedups of up to �� times when reading� and 
� times when writing� The increase in performance

for small records in a partitioned pattern was even greater� up to �� times when reading and �
 times

when writing� The broadcast�read pattern had the largest speedups for small records� ranging from ���

to ���� Although there was less room for improvement with large records� better disk scheduling when

reading interleaved and partitioned patterns led to higher performance even for large records�

� Related Work

A variety of multiprocessor �le systems have been developed over the past ten years or so� While many of

these were similar to the traditional Unix�style �le system� there have been also several more ambitious

attempts�

Intel�s Concurrent File System �CFS� �Pie�	� Nit	�� and its successor� PFS� are examples of multipro�

cessor �le systems that use a linear �le model and provide applications with a Unix�like interface� Both

systems provide limited support to parallel applications in the form of �le pointers that may be shared

by all the processes in the application� CFS and PFS provide several modes� each of which provides the

applications with a di�erent set of semantics governing how the �le pointers are shared� Other multi�

processor �le systems with this style of interface are SUNMOS and its successor� PUMA �WMR�	
�

sfs �LIN�	�� and CMMD �BGST	��

Like the systems mentioned above� PPFS provides the end user with a linear �le that is accessed with

primitives that are similar to the traditional read���write�� interface �HER�	�� In PPFS� however�

the basic transfer unit is an application�de�ned record rather than a byte� PPFS maps requests against

the logical� linear stream of records to an underlying two�dimensional model� indexed with a �disk�

record� pair� Several di�erent mapping functions� corresponding to common data distributions� are

built into PPFS� An application is able to provide its own mapping function as well�

Ironically� the multiprocessor �le system most removed from the traditional Unix�like model also pro�

vides the most Unix�like interface� PIOFS� the �le system for IBM�s SP��� allows users and applications

to interact with it exactly as they would interact with any AIX �le system� Administrators and advanced
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Figure ��� Increase in throughput for read requests using the strided interface� Note the di�erent scales

on the y�axis�
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users may also choose to interact with PIOFS�s underlying parallel �le system� which is based on the

Vesta �le system �CF	
� CFP�	�� Files in Vesta are two�dimensional� and are composed of multiple

cells� each of which is a sequence of basic striping units� BSUs are essentially records� or �xed�sized se�

quences of bytes� Like Galley�s sub�les� each cell resides on a single disk� While Galley only allows a �le

to have a single sub�le per disk� in Vesta a single disk may contain many cells� Equivalent functionality

could be achieved on Galley by mapping cells to forks rather than sub�les� Vesta�s interface includes

logical views of the data� These views are essentially rectangular partitionings of the two�dimensional

�le� and can provide the application with much of the functionality of Galley�s strided interfaces� Vesta

provides users with a di�erent and powerful way of thinking about data storage� Its largest drawback is

that it is ill�suited to datasets that cannot be partitioned into rectangular� non�overlapping sub�blocks

of a single size� Like Galley� Vesta uses a hashing scheme to distribute metadata� In addition to the

functionality of Vesta� PIOFS provides applications with a Unix�like interface� We have built a library

that provides a Vesta�like interface for Galley�

� Summary and Future Work

Based on the results of several workload characterization studies� we have designed Galley� a new parallel

�le system that attempts to rectify some of the shortcomings of existing �le systems� Galley is based

on a new three�dimensional structuring of �les� which provides tremendous �exibility and control to

applications and libraries� We have shown how Galley�s strided I�O request reduced the aggregate

latency of multiple small requests and allowed the �le system to optimize the disk accesses required to

satisfy the request�

The results of our experiments indicate that our new style of interface increased performance by

several orders of magnitude� More importantly� this new interface allows high performance on access

patterns that are known to be common in scienti�c applications� and which are known perform poorly

on most current multiprocessor �le systems�

Future Work� We are exploring several areas for further work� First� Galley currently supports

only a single disk per IOP� Since our maximum throughput is frequently limited by the disk�s maximum

throughput� adding support for multiple disks at the IOP is a high priority� Second� we have only

examined the performance of the system running microbenchmarks� To really understand Galley�s

performance� we plan to study how real applications perform on Galley� Finally� we intend to examine

how Galley performs when asked to service requests from multiple applications to multiple �les at once�
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