
�
Copyright 1997 by North-Holland (Elsevier Scientific).�
Appeared (with tiny revisions) in Parallel Computing 23(4), 1997, pp 447-476.�

THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.�

The Galley Parallel File System

Nils Nieuwejaar� David Kotz

fnils�dfkg�cs�dartmouth�edu

Department of Computer Science� Dartmouth College� Hanover� NH ����������

Most current multiprocessor �le systems are designed to use multiple disks
in parallel� using the high aggregate bandwidth to meet the growing I�O
requirements of parallel scienti�c applications� Many multiprocessor �le
systems provide applications with a conventional Unix�like interface� al�
lowing the application to access multiple disks transparently� This inter�
face conceals the parallelism within the �le system� increasing the ease
of programmability� but making it di�cult or impossible for sophisti�
cated programmers and libraries to use knowledge about their I�O needs
to exploit that parallelism� In addition to providing an insu�cient inter�
face� most current multiprocessor �le systems are optimized for a di�erent
workload than they are being asked to support� We introduce Galley� a
new parallel �le system that is intended to e�ciently support realistic
scienti�c multiprocessor workloads� We discuss Galley�s �le structure and
application interface� as well as the performance advantages o�ered by
that interface�

Key words� Parallel I�O� Multiprocessor �le system� Performance evaluation� IBM
SP��� Scienti�c Computing�

� Introduction

While the speed of most components of massively parallel computers have been
steadily increasing for years� the I�O subsystem has not been keeping pace�
Hardware limitations are one reason for the di�erence in the rates of perfor�
mance increase� but the slow development of new multiprocessor �le systems
is also to blame� One of the primary reasons that multiprocessor �le�system
performance has not improved at the same rate as other aspects of multi�
processors is that� until recently� there has been limited information available

� This research was funded by NSF under grant number CCR�	
�
	�	 and by
NASA Ames under agreement numbers NCC ��
	 and NAG ��	���

Preprint submitted to Elsevier Preprint �� August ����

about how applications were using existing multiprocessor �le systems and
how programmers would like to use future �le systems�

Several recent analyses of production �le�system workloads on multiprocessors
running primarily scienti�c applications show that many of the assumptions
that guided the development of most multiprocessor �le systems were incor�
rect �����	��
�� It was generally assumed that scienti�c applications designed
to run on a multiprocessor would behave in the same fashion as scienti�c ap�
plications designed to run on sequential and vector supercomputers� accessing
large �les in large� consecutive chunks �������
����� Studies of two di�erent
multiprocessor �le�system workloads� running a variety of applications in a
variety of scienti�c domains� on two architectures� under both data�parallel
and control�parallel programming models� show that many applications make
many small� regular� but non�consecutive requests to the �le system ����� These
studies suggest that the workload that most multiprocessor �le systems were
optimized for is very di�erent than the workloads they are actually being asked
to serve�

Using the results from these two workload characterizations and from perfor�
mance evaluations of existing multiprocessor �le systems� we have developed
a new multiprocessor �le system called Galley� Galley is designed to deliver
high performance to a variety of parallel� scienti�c applications running on
multiprocessors with realistic workloads� Rather than attempting to design a
�le system that is intended to directly meet the speci�c needs of every user� we
have designed a simpler� more general system that lends itself to supporting a
wide variety of libraries� each of which should be designed to meet the needs
of a speci�c community of users�

The remainder of this paper is organized as follows� In Section � we describe
the speci�c goals Galley was designed to satisfy� In Section we discuss a
new� three�dimensional way to structure �les in a multiprocessor �le system�
Section � describes the design and current implementation of Galley� Section

discusses the interface available to applications that intend to use Galley� and
Section � shows how Galley�s interface can improve an application�s perfor�
mance� In Section � we discuss several other multiprocessor �le systems� and
�nally in Section 	 we summarize and describe our future plans�

� Design Goals

Most current multiprocessor �le�system designs are based primarily on hy�
potheses about how parallel scienti�c applications would use a �le system�
Galley�s design is the result of examining how parallel scienti�c applications
actually use existing �le systems� Accordingly� Galley is designed to satisfy

�

several goals�

� Allow applications and libraries to explicitly control parallelism in �le ac�
cess�

� E�ciently handle a variety of access sizes and patterns�
� Be �exible enough to support a wide variety of interfaces and policies� im�
plemented in libraries�

� Allow easy and e�cient implementations of libraries�
� Be scalable enough to run well on multiprocessors with dozens or hundreds
of nodes�

� Minimize memory and performance overhead�
Galley is targeted at distributed memory� MIMD machines such as IBM�s

SP�� or Intel�s Paragon�

� File Structure

Most existing multiprocessor �le systems use a Unix�like �le model �����
��
Under this model� a �le is seen as an addressable� linear sequence of bytes� Ap�
plications can issue requests to read or write data contiguous subranges of that
sequence of bytes� A parallel �le system typically declusters �les �i�e�� scat�
ters the blocks of each �le across multiple disks�� allowing parallel access to
the �le� This parallel access reduces the e�ect of the bottleneck imposed by
the relatively slow disk speed� Although the �le is actually scattered across
many disks� the underlying parallel structure of the �le is hidden from the
application�

Galley uses a more complex �le model that allows greater �exibility� which
should lead to higher performance�

��� Sub�les

The linear �le model o�ered by most multiprocessor �le systems can give good
performance when the request size generated by the application is larger than
the declustering unit size� as a single request will involve data from multiple
disks� Under these conditions� the �le system can access multiple disks in
parallel� delivering higher bandwidth to the application� and possibly hiding
any latency caused by disk seeks� The drawback of this approach is that most
multiprocessor �le systems use a declustering unit size measured in kilobytes
�e�g�� � KB in Intel�s CFS ����� but our workload characterization studies
show that the typical request size in a parallel application is much smaller�
frequently under ��� bytes ����� This disparity between the request size and

the declustering unit size means that most of the individual requests generated
by parallel applications are not being executed in parallel� In the worst case�
the compute processors in a parallel application may issue their requests in
such a way that all of an application�s processes may �rst attempt to access
disk � simultaneously� then all attempt to access disk � simultaneously� and
so on�

Another drawback of the linear �le model is that a dataset may have an
e�cient� parallel mapping onto multiple disks that is not easily captured by
the standard declustering scheme� One such example is the two�dimensional�
cyclically�shifted block layout scheme for matrices� shown in Figure �� which
was designed for SOLAR� a portable� out�of�core linear�algebra library ����
This data layout is intended to e�ciently support a wide variety of out�of�
core algorithms� In particular� it allows blocks of rows and columns to be
transferred e�ciently� as well as square or nearly�square submatrices�

1 2 3
4 5 6

4 5 6
1 2 3

1 2 3
4 5 6

4 5 6
1 2 3

1 23
546

546
1 23

1 23
546

546
1 23

2 13
5 6 4

5 6 4
2 13

2 13
5 6 4

5 6 4
2 13

Fig� �� An example of a ��dimensional� cyclically�shifted block layout� as
described in ����� In this example there are � disks� logically arranged into a
��by�� grid� and a ��by��� block matrix� The number in each square indicates
the disk on which that block is stored�

To avoid the limitations of the linear �le model� Galley does not impose a
declustering strategy on an application�s data� Instead� Galley provides appli�
cations with the ability to fully control this declustering according to their own
needs� This control is particularly important when implementing I�O�optimal
algorithms �	�� Applications are also able to explicitly indicate which disk they
wish to access in each request� To allow this behavior� �les are composed of
one or more sub�les� which may be directly addressed by the application� Each
sub�le resides entirely on a single disk� and no disk contains more than one
sub�le from any �le� The application may choose how many sub�les a �le con�
tains when the �le is created� The number of sub�les remains �xed throughout
the life of the �le�

The use of sub�les gives applications the ability both to control how the data is
distributed across the disks� and to control the degree of parallelism exercised
on every subsequent access� Of course� many application programmers will
not want to handle the low�level details of data declustering� so we anticipate
that most end�users will use a user�level library that provides an appropriate

�

declustering strategy�

��� Forks

Each sub�le in Galley is structured as a collection of one or more independent
forks� A fork is a named� addressable� linear sequence of bytes� similar to a
traditional Unix �le� Unlike the number of sub�les in a �le� the number of
forks in a sub�le is not �xed� libraries and applications may add forks to�
or remove forks from� a sub�le at any time� The �nal� three�dimensional �le
structure is illustrated in Figure �� There is no requirement that all sub�les
have the same number of forks� or that all forks have the same size�

File

Fork

Fork

Fork

Subfile

Fork

Fork

Fork

Fork

Subfile

Fork

Fork

Fork

IOP 2

Fork

Fork

Data

Data

Data

Data

Data

Subfile

IOP 0 IOP 1

Fig� �� Three�dimensional structure of �les in the Galley File System� The portion
of the �le residing on disk � is shown in greater detail than the portions on the
other two disks�

The use of forks allows further application�de�ned structuring� For example�
if an application represents a physical space with two matrices� one containing
temperatures and other pressures� the matrices could be stored in the same
�le �perhaps declustered across multiple sub�les� but in di�erent forks� In
this way� related information is stored logically together but may be accessed
independently�

While typical application programmers may �nd forks helpful� they are most
likely to be useful when implementing libraries� In addition to storing data
in the traditional sense� many libraries also need to store persistent� library�
speci�c �metadata� independently of the data proper� One example of such
a library would be a compression library similar to that described in ��	��
which compresses a data �le in multiple independent chunks� Such a library

could store the compressed data chunks in one fork and index information in
another�

Another instance where this type of �le structure may be useful is in the
problem of genome�sequence comparison� This problem requires searching a
large database to �nd approximate matches between strings ���� The raw data�
base used in ��� contained thousands of genetic sequences� each of which was
composed of hundreds or thousands of bases� To reduce the amount of time
required to identify potential matches� the authors constructed an index of
the database that was speci�c to their needs� Under Galley� this index could
be stored in one fork� while the database itself could be stored in a second
fork�

A �nal example of the use of forks is Stream�� a parallel �le abstraction for the
data�parallel language C� ����� Brie�y� Stream� divides a �le into three distinct
segments� each of which corresponds to a particular set of access semantics�
While the current implementation of Stream� stores all the segments in a
single �le� one could use a di�erent fork for each segment� In addition to the
raw data� Stream� maintains several kinds of metadata� which are currently
stored in three di�erent �les� �meta� �first� and �dir� In a Galley�based
implementation of Stream�� it would be natural to store this metadata in
separate forks rather than separate �les�

Users of linear��le based �le systems would generally use multiple �les in
the cases described above� Although that is certainly an option in Galley�
forks provide two signi�cant advantages� First� forks are lighter�weight entities
than �les� Second� forks allow libraries to hide metadata information safely�
In a traditional �le system� a library would either have to store its metadata
directly in the �le itself or in separate �les� Storing the metadata in the data
�le has the side e�ect of making it di�cult for other libraries and applications
to get at the raw data� Storing the metadata separately from the data makes
it easy for the data to become separated from the metadata� for example� if
one of the �les is moved or deleted� This approach can also lead to namespace
collisions� as with two Stream� �les each wanting to store their metadata in
the �meta� �first� and �dir �les�

� System Structure

The Galley parallel �le system is structured as a set of clients and servers� This
model is based on the typical multiprocessor architecture that dedicates some
processors to computation and dedicates the rest to I�O� In this system� the
Compute Processors �CPs� function as clients and the I�O Processors �IOPs�
act as servers�

�

��� Compute Processors

A client in Galley is simply any user application that has been linked with
the Galley run�time library� and which runs on a compute processor� The
run�time library receives �le�system requests from the application� translates
them into lower�level requests� and passes them �as messages� directly to the
appropriate servers� running on I�O processors� The run�time library then
handles the transfer of data between the I�O processors and the compute
node�s memory�

As far as Galley is concerned� every compute processor in an application is
completely independent of every other compute processor� Indeed� Galley does
not even assume that one compute processor is even aware of the existence
of other compute processors� This independence means that Galley does not
impose any communication requirements on a user�s application� As a result�
applications may use whichever communication software �e�g�� MPI� PVM�
P�� is most suitable to the given problem�

Like most multiprocessor �le systems� Galley o�ers both blocking and non�
blocking I�O� To simplify the implementation� and to avoid binding Galley
too tightly to a single architecture� Galley originally used multithreading to
implement non�blocking I�O� Unfortunately� most of the major communica�
tions packages cannot function in a multithreaded environment� As a result�
Galley is currently forced to use signals to implement non�blocking I�O� us�
ing a TCP�IP communications substrate� If support for multithreaded en�
vironments ever becomes commonplace in message�passing packages� we will
reexamine this decision�

Although applications may interact directly with Galley�s interface� we expect
that most applications will use a higher�level library or language layered on
top of the Galley run�time library� One such library implements a Unix�like
�le model� which should reduce the e�ort required to port legacy applications
to Galley ����� Other libraries that have been implemented on top of Galley
provide Panda ������ and Vesta �
� interfaces� as well as support for ViC�� a
variant of C� designed for out�of�core computations ������

��� I�O Processors

Galley�s I�O servers are composed of several functional units� which are de�
scribed in detail below� A high�level view of the internal structure of an IOP�
which shows the paths of communication between the units� is shown in Fig�
ure � Each functional unit is implemented as a separate thread� Furthermore�
each IOP also has one thread designated to handle incoming I�O requests

�

for each compute processor� This multithreading makes it easy for an IOP to
service requests from many clients simultaneously�

C
P

T
hr

ea
d

C
P

T
hr

ea
d

C
P

T
hr

ea
d

C
P

T
hr

ea
d

Network

C
P

T
hr

ea
d

Idle CP Threads

CacheManagerDiskManager

Fig� �� High�level view of the internal structure of a Galley I�O Processor�
showing the communication paths between the functional units� In this ex�
ample� there two active requests waiting for data from the bu�er cache or
from disk� and three idle CP Threads waiting for new requests to arrive�

While one potential concern is that this thread�per�CP design may limit the
scalability of the system� we have not observed such a limitation in the per�
formance tests shown in Section �� One may reasonably assume that a thread
that is idle �i�e�� not actively handling a request� is not likely to noticeably
a�ect the performance of an IOP� By the time the number of active threads on
a single IOP becomes great enough to hinder performance� the IOP will most
likely be overloaded at the disk� the network interface� or the bu�er cache�
and the e�ect of the number of threads will be minor relative to these other
factors� We intend to explore this issue further as we port Galley to di�erent
architectures� which may o�er di�erent levels of thread support�

����� CP Threads

CP Threads remain idle until a request arrives from the corresponding CP�
After being awakened to service a new request� a CP Thread creates a list of
all the disk blocks that will be required to satisfy the request� The CP Thread
then passes the full list of blocks to the CacheManager� and waits on a queue

	

of bu�ers returned by the CacheManager and DiskManager� As a CP Thread
receives bu�ers on its queue� it handles the transfer of data between its CP
and those bu�ers� When a CP Thread completes the transfer of data to or
from a bu�er� it decreases that bu�er�s reference count� and handles the next
bu�er in the queue� When the whole request has been satis�ed� or if it fails in
the middle� the thread passes a success or failure message back to its CP� and
idles until another request arrives�

The order in which a fork�s blocks are placed on the CP Thread�s bu�er queue
is determined by which blocks are present in the bu�er cache and the order in
which that fork�s blocks are laid out on disk� As a result� it is not possible for
Galley�s client�side run�time library to know in advance the order in which an
IOP will satisfy the individual pieces of a request� So� when reading� before
the IOP can send data to the CP� it must �rst send a message indicating what
data will be sent� Similarly� when writing� the IOP must send a message to the
CP indicating which portion of the data the IOP is ready to receive� When
writing� this approach is somewhat unusual in that the IOP is essentially
�pulling� the data from the CP� rather than the traditional model� where the
CP �pushes� the data to the IOP�

There is a further complication in transferring data between CPs and IOPs�
packing� Rather than sending lots of small packets across the network� when
possible Galley packs multiple small chunks of data into a larger packet� and
sends the larger packet when it is full� This packing reduces the aggregate
latency� and increases the e�ective data�transfer bandwidth� In the current
implementation� the list of data chunks is precomputed on the CP� and the
whole list is sent to the IOP� On our testbed systems� the speed of the network
relative to the speed of the processors is high enough that sending the list
across the network makes more sense than computing the list on both the
CPs and the IOPs�

For simplicity� within a single packet the IOP will only pack chunks in the
order they appear in the chunk list� If an out�of�order block is placed on a CP
Thread�s queue� the current packet is �ushed� even if it is not full� and a new
packet is started� An early implementation of Galley supported out�of�order
packing within a packet� but that approach required that a fairly large packet
of �control� data be sent to the CP with each �ushed packet� The current
implementation is less �exible� but appears to have higher performance on
our testbeds� On a system with a higher�bandwidth� lower�latency network�
out�of�order packing might be more e�cient� as the cost of the extra control
data would be reduced�

�

����� CacheManager

Each IOP has a bu�er cache that is maintained by the CacheManager� In ad�
dition to deciding which blocks are kept in the bu�er� the CacheManager does
all the work involved in locating blocks in the bu�er cache for CP Threads�
To perform these lookups� the CacheManager maintains a separate list of disk
blocks requested by each CP Thread� When the CacheManager has outstand�
ing request lists from multiple threads� it services requests from each list in
round�robin order� This round�robin approach is an attempt to provide fair
service to each requesting CP�

The CacheManager maintains a global Least�Recently�Used list of all the
blocks resident in the cache� When a new block is to be brought into the
cache� this list is used to determine which block is to be replaced� Providing
applications with more control over cache policies is one area of ongoing work�

Rather than performing lookups by scanning through the entire LRU list� for
e�ciency the CacheManager also maintains a hash table� containing a list of
all the blocks in the cache� For each disk block requested� the CacheManager
searches its hash table of resident blocks� If the block is found� its reference
count is increased� and a pointer to that bu�er is added to the requesting
thread�s ready queue� If the block is not resident in the cache� the CacheM�
anager �nds the �rst block in the LRU list with a reference count of �� and
schedules it to be replaced by the requested block� The bu�er is then marked
�not ready�� and a request is issued to the DiskManager to write out the old
block �if necessary�� and to read the new block into the bu�er�

����� DiskManager

The DiskManager is responsible for actually reading data from and writing
data to disk� To increase portability� Galley does not use a system�speci�c low�
level driver to directly access the disk� Instead� Galley relies on the underlying
system �presumably Unix� to provide such services� Galley�s DiskManager
has been implemented to use raw devices� Unix �les� or simulated devices as
�disks�� Galley�s disk�handling primitives are su�ciently simple that modi�
fying the DiskManager to access a device directly through a low�level device
driver is likely to be a trivial task�

The DiskManager maintains a list of blocks that the CacheManager has re�
quested to be read or written� As new requests arrive from the CacheManager�
they are placed into the list according to the disk scheduling algorithm� The
DiskManager currently uses a Cyclical Scan algorithm ����� When using either
simulated disks or raw devices� this disk scheduling helps deliver high perfor�
mance� When the underlying storage medium is a Unix �le� the layout of that
�le on disk is unrelated to the layout of data within Galley�s �le system� so

��

the DiskManager�s scheduling is less likely to help performance�

When a block has been read from disk� the DiskManager updates the cache
status of that block�s bu�er from �not ready� to �ready�� increases its reference
count� and adds it to the requesting thread�s ready queue�

Galley�s DiskManager does not attempt to prefetch data for two reasons� First�
indiscriminate prefetching can cause thrashing in the bu�er cache ����� Second�
prefetching is based on the assumption that the system can intelligently guess
what an application is going to request next� Using the higher�level requests
described below� there is frequently no need for Galley to make guesses about
an application�s behavior� the application is able to explicitly provide that
information to each IOP�

� Data Access Interface

The standard Unix interface provides only simple primitives for accessing the
data in �les� These primitives are limited to read��ing and write��ing consec�
utive regions of a �le� As discussed above� recent studies show that these primi�
tives are not su�cient to meet the needs of many parallel applications ��	�����
Speci�cally� parallel scienti�c applications frequently make many small re�
quests to a �le� with strided access patterns�

We de�ne two types of strided patterns� A simple�strided access pattern is one
in which all the requests are the same size� and there is a constant distance
between the beginning of one request and the beginning of the next� A group
of requests that form a strided access pattern is called a strided segment� A
nested�strided access pattern is similar to a simple�strided pattern� but rather
than repeating a single request at regular intervals� the application repeats
either a simple�strided or nested�strided segment at regular intervals� Studies
show that both simple�strided and nested�strided patterns are common in
parallel� scienti�c applications ��	�����

Galley provides three interfaces that allow applications to explicitly make
regular� structured requests such as those described above� as well as one
interface for unstructured requests� These interfaces allow the �le system to
combine many small requests into a single� larger request� which can lead to
improved performance in two ways� First� reducing the number of requests
can lower the aggregate latency costs� particularly for those applications that
issue thousands or millions of tiny requests� Second� providing the �le system
with this level of information allows it to make intelligent disk�scheduling
decisions� leading to fewer disk�head seeks� and to better utilization of the
disks� on�board caches�

��

The higher�level interfaces o�ered by Galley are summarized below� These
interfaces are described in greater detail� and examples are provided� in ��	�����
Note that each request accesses data from a single fork� Galley has no notion
of a �le�level read or write request�

��� Simple�strided Requests

gfs read strided�int �d� void �buf� long o	set� long rec size

long f stride� long m stride� int quant�

Beginning at o	set in the open fork indicated by �d� the �le system will read
quant records� of rec size bytes each� The o�set of each record is f stride bytes
greater than that of the previous record� The records are stored in memory
beginning at buf� and the o�set into the bu�er is changed by m stride bytes
after each record is transferred� Note that either the �le stride �f stride� or
the memory stride �m stride� may be negative� The call returns the number
of bytes transferred�

When m stride is equal to rec size� data will be gathered from disk� and stored
contiguously in memory� When f stride is equal to rec size� data will be read
from a contiguous region of a �le� and scattered in memory� It is also possi�
ble for both m stride and f stride to be di�erent than rec size� and possibly
di�erent than each other�

Naturally� there is a corresponding gfs write strided�� call�

��� Nested�strided Requests

gfs read nested�int �d� void �buf� long o	set� long rec size�
struct stride �vec� int levels�

The vec is a pointer to an array of �f stride
 m stride
 quantity� triples listed
from the innermost level of nesting to the outermost� The number of levels of
nesting is indicated by levels�

��� Nested�batched requests

gfs read batched�int �d� void �buf� struct gfs batch �vec� int quant��

��

While we found that most of the small requests in the observed workloads were
part of either simple�strided or nested�strided patterns� there may well be ap�
plications that could bene�t from some form of high�level� regular request� but
would �nd the nested�strided interface too restrictive� One example of such an
application is given in ����� For those applications� we provide a nested�batched
interface� A nested�batched request is composed of one or more batched re�
quests� each of which is described using the data structure shown in Figure ��

struct gfs batch f
int� f o�� �� File o�set ��
int� m o�� �� Memory o�set ��
char f absolute� �� Is the �le o�set absolute� ��
char m absolute� �� Is the memory o�set absolute� ��
char sub vector� �� Is the sub�request a vector� ��
int� quant� �� Number of repetitions ��
int� f stride� �� File stride between repetitions ��
int� m stride� �� Memory stride between repetitions ��
int� subvec len� �� Number of elements in subvec ��
union f
int� size� �� Size for simple request ��
struct gfs batch �subvec� �� Vector of batch requests ��

g sub�
g�

Fig�
� Data structure involved in a nested�batched I�O request�

A single instance of this data structure essentially represents a single level
in a nested�strided request� That is� with one gfs batch structure� you can
represent a �standard� request� a simple�strided request� or one level of nesting
in a nested�strided request� Galley�s batched interface allows an application
to submit a vector of batched requests� which allows an application to submit
a list of strided requests� a list of standard requests� a list of nested�strided
requests� or arbitrarily complex combinations of those requests�

As with a nested�strided request� a batched request allows an application to
specify that a particular pattern will be repeated a number of times� with a reg�
ular stride between each instance of the pattern� However� a nested�strided re�
quest requires that the repeated pattern be either a simple� or a nested�strided
requests� The batched interface allows applications to repeat batched requests
with a regular stride between them� Hence the name �nested�batched�� This
capability allows applications to repeat arbitrary access patterns with a regu�
lar stride�

A full gfs read batched�� or gfs write batched�� request will typically com�
bine multiple gfs batch structures into vectors� trees� vectors of trees� trees of

�

vectors� and so on� For example� a doubly�nested�strided request would be a
two�level tree� The root of the tree would describe the outer level of striding�
and that node�s child would describe the inner level of striding� An applica�
tion with two such strided requests could combine them into a single batched
request� In that case� there would be a vector of two trees� and each tree would
have two levels�

The �rst two elements in the data structure contain the initial �le and memory
o�sets of the request� The second two elements of the data structure indicate
whether these o�sets are speci�ed absolutely �as is done with all other Galley
requests�� or relatively� If the o�sets are relative� and if the request is the �rst
element in a new vector� these o�sets are speci�ed relative to the o�set of that
vector�s parent� Otherwise� a relative o�set is speci�ed relative to the o�set of
the previous element in the vector�

The �fth element in the structure �char sub vector� indicates whether the pat�
tern to be repeated is a simple data request or another batch vector� The sixth
element �quant� indicates how many times the pattern should be repeated� The
next two elements contain the strides that should be applied to the �le and
memory o�sets between repetitions of the pattern� The ninth element in the
structure only applies when the pattern to be repeated is a batched request�
In that case� it indicates how many elements are in the sub�request�

Finally� the sub�request is described� The sub�request can be a simple data
transfer �in the case of a standard or a simple�strided request�� or it can be a
vector of gfs batch structures �in the case of a nested�strided� or more complex
request��

An example of when this interface is useful is shown in �����

��� List Requests

Finally� in addition to these structured operations� Galley provides a simple�
more general �le interface� called the list interface� which has functionality
similar to the POSIX lio listio�� interface ����� This interface allows an ap�
plication to simply specify an array of ��le o�set� memory o�set� size� triples
that it would like transferred betweenmemory and disk� This interface is useful
for applications with access patterns that do not have any inherently regular
structure� While this interface essentially functions as a series of simple reads
and writes� it provides the �le system with enough information to make intel�
ligent disk�scheduling decisions� as well as the ability to coalesce many small
pieces of data into larger messages for transfer between CPs and IOPs�

��

� Performance

Most studies of multiprocessor �le systems have focused primarily on the sys�
tems� performance on large� sequential requests� Indeed� most do not even
examine the performance of requests of fewer than many kilobytes ����������
As discussed earlier� multiprocessor �le�system workloads frequently include
many small requests� This disparity between the observed and benchmarked
workloads means that most performance studies actually fail to examine how
a �le system can be expected to perform when running real applications in a
production environment�

�� Experimental Platform

The Galley Parallel File System was designed to be easily ported to a variety of
workstation clusters and massively parallel processors� The results presented
here were obtained on the IBM SP�� at NASA Ames� Numerical Aerodynamic
Simulation facility� This system had ��� nodes� each running AIX ����� but
only ��� were available for general use� Each node had a ���� MhZ POWER�
processor and at least ��	 megabytes of memory� Each node was connected
to both an Ethernet and IBM�s high�performance switch� While the switch
allowed throughput of up to � MB�s using one of IBM�s message�passing
libraries �PVMe� MPL� or MPI�� those libraries cannot operate in a multi�
threaded environment� Furthermore� neither MPL nor MPI allow applications
to be implemented as persistent servers and transient clients� As a result of
these limitations� and to improve portability� Galley was implemented on top
of TCP�IP�

���� TCP�IP Performance

To determine what e�ect� if any� our use of TCP�IP would have on the overall
performance of our system� we benchmarked the SP���s TCP�IP performance�
According to IBM� and veri�ed by our own testing� the maximum TCP�IP
throughput between two nodes on the SP�� is approximately �� MB�s� Un�
fortunately� as the number of communicating nodes increases� they are unable
to maintain this throughput at each node� as shown in Figure
�

For each test shown in that �gure� we used �� sinks� and varied the number
of sources from � to ��� For a given test� each source sent the same amount
of data to each sink� in a series of messages� using a �xed record size� For
each sink�source con�guration� we measured the throughput for a variety of
message sizes� As the throughput ranged over several orders of magnitude� we
varied the total amount of data transferred as well� from ��
 MB with � sources

�

0

50

100

150

200

250

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t

(M
B

/s
)

Record Size

TCP/IP Peformance

64 Sources

4 Sources

16 Sources
32 Sources

8 Sources

Fig� �� Measured TCP�IP throughout on the SP��� For each test� there were
�� sinks �similar to CPs reading a �le�� and a variable number of sources
�similar to IOPs servicing read requests��

and a ���byte record size� to over 	�� MB with �� sources and a ���kilobyte
record size�

In each of these tests� we used select�� to identify sockets with pending I�O� but
we did not attempt to use any �ow�control beyond that provided by TCP�IP�
As the �gure shows� the achieved maximum throughput increases with the
number of sources� until the number of sources exceeds �� Even with many
sources� we are only able to achieve about ��� MB�s� or less than �� MB�s at
each sink�

���� Simulated Disk

Each IOP in Galley controls a single disk� logically partitioned into � KB
blocks� For this study� each IOP had a bu�er cache of �� megabytes� large
enough to hold �
� blocks� Although each node on the SP�� has a local disk�
that disk must be accessed through AIX�s Journaling File System� While Gal�
ley was originally implemented to use these disks� our performance results ap�
peared to be in�ated by the prefetching and caching provided by JFS� Specif�
ically� we frequently measured apparent throughputs of over �� MB�s from a
single disk� To avoid these in�ated results� we examined Galley�s performance
using a simulation of an HP ��
�� SCSI hard disk� which has an average seek
time of ��
 ms and a maximum sustained throughput of ��� MB�s ����

Our implementation of the disk model was based on earlier implementa�
tions ������ � � Among the factors simulated by our model are head�switch

� The source code for this disk simulator is available online at
http���www�cs�dartmouth�edu��nils�disk�html� and is distributed with

��

time� track�switch time� SCSI�bus overhead� controller overhead� rotational
latency� and the disk cache� To validate our model� we used a trace�driven
simulation� using data provided by Hewlett�Packard and used by Ruemmler
and Wilkes in their study� � Comparing the results of this trace�driven simu�
lation with the measured results from the actual disk� we obtained a demerit
�gure �see ���� for a discussion of this measure� of
���� indicating that our
model was extremely accurate�

The simulated disk is integrated into Galley by creating a new thread on each
IOP to execute the simulation� When the thread receives a disk request� it
calculates the time required to complete the request� and then suspends itself
for that length of time� While� in most cases� the disk thread does not actually
load or store the requested data� metadata blocks must be preserved� To avoid
losing that data� the disk thread maintains a small pool of bu�ers� which is
used to store �important� data� When the disk simulation thread copies data to
or from a bu�er� the amount of time required to complete the copy �which we
calculate at system startup� is deducted from the amount of time the thread
is suspended� It should be noted that the remainder of the Galley code is
unaware that it is accessing a simulated disk�

�� Access Patterns

We examined the performance of Galley under several di�erent access pat�
terns� shown in Figure �� each of which is composed of a series of requests for
�xed�size pieces of data� or records� Although these patterns do not directly
correspond to a particular �real world� application� they are representative of
the general patterns we observed to be most common in production multipro�
cessor systems� as described above� Our experiments used a �le that contained
a sub�le on each IOP� and a single fork within each sub�le� To allow us to
better understand the system�s performance� by removing one variable� each
fork was laid out contiguously on disk� The patterns shown in Figure � re�ect
the patterns that we access from each fork� and hence� from each IOP� The
correspondence between the �le�level patterns observed in actual applications�
and the IOP�level access patterns used in this study� is discussed below�

The simplest access pattern is called broadcast� With this access pattern every
compute node reads the whole �le� In other words� the IOPs broadcast the
whole �le to all the CPs� This access pattern models the series of requests we
would expect to see when all the nodes in an application read a shared �le�
such as the initial state for a simulation� Since� to read all the data in a �le� an

the Galley source code�
� Kindly provided to us by John Wilkes and HP� Contact John Wilkes at
wilkes�hplabs�hp�com for information about obtaining the traces�

��

(b) Partitioned

(c) Interleaved

(a) Broadcast

Fig� �� The three access patterns examined in this study� Two views of each pat�
tern are displayed� the pattern as applied to a linear �le� and matrix distributions
that could give rise to the pattern� For these examples� we assume that the ma�
trices are stored on disk in row�major order� Each square corresponds to a single
record in the �le� and the highlighted squares represent the records accessed by a
single compute node in a group of four�

application must read all the data in every sub�le� a broadcast pattern at the
�le level clearly corresponds to a broadcast pattern at each sub�le� Although
it may seem counterintuitive for an application to access large� contiguous
regions of a �le in small chunks� we observed such behavior in practice �����
One likely reason that data would be accessed in this fashion is that records
stored contiguously on disk are to be stored non�contiguously in memory�
Another possible cause for such behavior is that the I�O was added to an
existing loop as an afterthought� Since it seems unlikely that an application
would want every node to rewrite the entire �le� we did not measure the
performance of the broadcast�write case�

Under a partitioned pattern� each compute node accesses a distinct� contigu�
ous region of each �le� This pattern could represent either a one�dimensional
partitioning of data or the series of accesses we would expect to see if a two�
dimensional matrix were stored on disk in row�major order� and the applica�
tion distributed the rows of the matrix across the compute nodes in a BLOCK
fashion� There are two di�erent ways a partitioned access pattern at the �le
level can map onto access patterns at the IOP level� The simpler mapping�
which is not shown in the �gure� occurs if the �le is distributed across the
disks in a BLOCK fashion� that is the �rst ��n of the �le bytes in the �le are
mapped onto the �rst of the n IOPs� and so forth� For each IOP� this map�
ping results in an access pattern similar to a broadcast pattern with only one
compute processor� The other mapping� shown in the �gure above� distributes

�	

blocks of data across the disks in a CYCLIC fashion� This second mapping is
more interesting and corresponds to the mapping used by most implementa�
tions of a linear �le model� This distribution results in accesses by each CP
to each IOP� In a system with � CPs� the �rst CP would access the �rst ���
of the data in each sub�le� and so forth� Thus� using the second mapping� a
partitioned pattern at the �le level leads to a partitioned pattern at each IOP�
As with the broadcast pattern� applications may access data in this pattern
using a small record size if the the data is to be stored non�contiguously in
memory�

In an interleaved pattern� each compute node requests a series of noncontigu�
ous� but regularly spaced� records from a �le� For the results presented here�
the interleaving was based on the record size� That is� if �� compute nodes
were reading a fork with a record size of
�� bytes� each node would read

�� bytes and then skip ahead 	��� ����
��� bytes before reading the next
chunk of data� This pattern models the accesses generated by an application
that distributes the columns of a two�dimensional matrix across the proces�
sors in an application� in a CYCLIC fashion� To see how this �le�level pattern
maps onto an IOP�level pattern� assume the linear �le is distributed tradi�
tionally� with blocks distributed across the sub�les in a CYCLIC fashion� In
the simplest case� the block size might be evenly divisible by the product of
the record size and the number of CPs� In this case� every block in the �le
is accessed with the same interleaved pattern� and any rearrangement of the
blocks �between or within disks� will result in the same sub�le�access pattern�
Thus� the blocks can be declustered across the sub�les� but the access pattern
within each sub�le will still be interleaved� There are� of course� more complex
mappings of an interleaved �le�level pattern to an IOP�level pattern� but we
focus on the simplest case�

For this performance analysis� we held the number of compute processors
constant at ��� and varied the number of IOPs �each with one disk� from � to
��� Thus� the CP�IOP ratio varied from ��� to ���� Each test began with an
empty bu�er cache on each IOP� and each write test included the time required
for all the data to actually be written to disk� While the size of each fork was
�xed� the amount of data accessed for each test was not� Since the system�s
performance on the fastest tests was several orders of magnitude faster than
on the slowest tests� there was no �xed amount of data that would provide
useful results across all tests� Thus� the amount of data accessed for each test
varied from � megabytes �writing ���byte records to � IOPs� to � gigabytes
�reading ���KB records from �� IOPs�� We performed each test �ve times�
We disregarded the lowest and highest results� and present the average of the
remaining three�

��

�� Traditional Interface

We �rst examined the performance of Galley using the standard read�write
interface� This interface required each CP to issue separate requests for each
record from each fork� Each CP issued asynchronous requests to all the forks�
for a single record from each fork� When a request from one fork completed� a
request for the next record from that fork was issued� By issuing asynchronous
requests to all IOPs simultaneously� the CPs were generally able to keep all
the IOPs in the system busy� Since each CP accessed its portion of each
sub�le sequentially� the IOPs were frequently able to schedule disk accesses
e�ectively� even with the small amount of information o�ered by the traditional
interface� Furthermore� the CPs were generally able to issue requests in phase�
That is� when an IOP completed a request for CP �� it would handle requests
for CPs � through n� By the time the IOP had completed the request from
CP n� it had received the next request from CP �� Thus� even without explicit
synchronization among the CPs� the IOPs were frequently able to service
requests from each node fairly� and were able to make good use of the disk�

Figure � shows the total throughput achieved when reading a �le with various
record sizes for each access pattern� Figure 	 presents similar results for write
performance when overwriting an existing �le� and Figure � shows Galley�s
performance when writing to a new �le� The performance curves have the same
general shape as throughput curves in most systems� that is� as the record size
increased� so did the performance� As in most systems� eventually a plateau
was reached� and further increases in the record size did not result in further
performance increases� The precise location of this plateau varied between
patterns and CP�IOP ratios� Not surprisingly� when accessing data in small
pieces� the total throughput was limited by a combination of software overhead
and by the high latency of transferring data across a network� regardless of
the access pattern�

The choice of access pattern had the greatest e�ect on performance when read�
ing data with large blocks� When reading an interleaved pattern� the system�s
peak performance was limited by the sustainable throughput of the disks on
each IOP �about ��� MB�s�� Interestingly� there was a small dip in perfor�
mance as the record size increased from � KB to � KB� With records of � KB
or smaller� every CP reads data from every block� So� regardless of the order
in which CPs� requests arrive at an IOP� that IOP reads all of the blocks in
its fork� in order� With a record size of � KB� each CP reads data only from
alternate blocks� As a result� it is possible for a request for block n � to
arrive before a request for block n� possibly causing a miss in the disk cache
and an extra head seek� slightly degrading disk performance� Even more time
was spent seeking when accessing data in a partitioned pattern� Indeed� with
that pattern� the time spent seeking from one region of the �le to another was

��

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

0

20

40

60

80

100

120

140

160

180

200

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Broadcast Access Pattern

64 IOPs

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Fig� �� Throughput for read requests using the traditional Unix�like interface�
There were �� CPs in every case� Note the di�erent scales on the y�axis�

the limiting factor in the system�s performance�

When testing an earlier version of Galley we found that with large numbers of
IOPs� the network congestion at the CPs was so great that the CPs were un�

��

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

T
hr

ou
gh

pu
t (

M
B

/s
)

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K
Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

Fig� � Throughput for write requests using the traditional Unix�like interface
when overwriting an existing �le� There were �� CPs in every case�

able to receive data and issue new requests to the IOPs in a timely fashion �����
As a result� the fortuitous synchronization discussed above broke down� so the
DiskManagers on the IOPs were unable to make intelligent disk scheduling de�
cisions� causing excess disk�head seeks and thrashing of the on�disk cache� The
combination of the network congestion and the poor disk scheduling led to dra�
matically reduced performance with large record sizes in the interleaved and
partitioned patterns� To avoid this problem� we added a simple �ow�control
protocol to Galley�s data�transfer mechanism� This �ow control essentially re�
quires an IOP to obtain permission from a CP before sending each chunk of
data� By limiting the number of outstanding permissions� the CP can reduce
or avoid this network congestion� Simple experiments on the SP�� showed that
choosing a limit between � and 	 led to the highest� and most consistent� per�
formance� While this limit is currently a compile�time option� it may be worth
exploring the possibility of allowing the CP to set it dynamically as well� All
the experiments shown here used a limit of � outstanding permissions�

Under the broadcast access pattern� data was read from the disk once� when

��

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

T
hr

ou
gh

pu
t (

M
B

/s
)

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K
Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

Fig� 	� Throughput for write requests using the traditional Unix�like interface
when writing a new �le� There were �� CPs in every case�

the �rst compute processor requested it� and stored in the IOP�s cache� When
subsequent CPs requested the same data� it was retrieved from the cache
rather than from the disk� Since each piece of data was used many times� the
cost of accessing the disk was amortized over a number of requests� and the
limiting factors were software and network overhead� In this case� the total
throughput of the system was limited by the SP���s TCP�IP performance� as
discussed above�

We now consider Figure 	� When overwriting an existing �le� and using records
of less than � KB� the �le system had to read each block o� the disk before
the new data could be copied into it� Without this requirement� any data
that was stored in that block would be lost ! even data that was not being
modi�ed by the write request� As a result� the system�s performance was
signi�cantly slower when writing small records than when reading them� As
when reading data� the interleaved pattern had the higher throughput because
the partitioned pattern forced the disk to spend time seeking between one
region of the �le and another� The performance di�erence between the two

�

was smaller when writing since many of the disk accesses in the write case
occurred at the end of the test� when the benchmark forced each IOP to
write all dirty blocks to disk �with a gfs sync�� call�� Since most of the disk
accesses occurred at once� the DiskManager was able to schedule those accesses
e�ciently�

When the record size reached � KB� the write performance of both patterns
increased dramatically�With the record size at least as large as the �le system�s
block size� Galley did not have to read each data block o� the disk before
copying the new data in� Since the �le system could simply write the new
data to disk �rather than read�modify�write�� the number of disk accesses in
each pattern was cut in half�

We �nally consider Figure �� In these tests we measured the time to write data
to a new �le� rather than to overwrite an existing �le� Note we did not use
Galley�s gfs extend�� call �which preallocates disk space for a fork� for these
tests� new blocks were assigned to the fork on the �y� as it grew� Not only was
writing to a new �le generally faster than overwriting an existing �le� in many
cases it was faster than reading a �le� For small requests� writing a new �le
was faster than overwriting an existing �le because there was no need to read
the original data o� of disk� There is some additional overhead involved when
writing a new �le� as new blocks must be assigned to the �le� but this cost
was signi�cantly less than the cost of the read�modify�write cycle� In those
cases where writing a new �le was faster than reading a �le� the write tests
bene�ted from the nearly perfect disk schedule during the gfs sync�� call� as
discussed above�

�� Strided Interface

When reading data with a traditional interface� in many cases we were able
to achieve nearly ���� of the disks� peak sustainable performance� This best�
case performance seems respectable� but as with most systems� Galley�s per�
formance with small record sizes was certainly less than satisfactory� The goal
of Galley�s new interfaces is to provide high performance for the whole range
of record sizes� with particular emphasis on providing high throughput for
small records�

The tests in this section were again performed by issuing asynchronous re�
quests to each fork� Rather than issuing a series of single�record requests to
each IOP� we used the strided interface to issue only a single request to each
IOP� That single request identi�ed all the records that should be transferred
to or from that IOP for the entire test� All other experimental conditions were
identical to those in the previous section�

��

Figure �� shows the total throughput achieved when reading a �le with various
record sizes for each access pattern using the new interface� Figure �� shows
corresponding results for overwriting an existing �le and Figure �� shows the
results when writing to a new �le�

60

80

100

120

140

160

180

200

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Broadcast Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

T
hr

ou
gh

pu
t (

M
B

/s
)

0

20

40

60

80

100

120

140

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

0

10

20

30

40

50

60

70

80

90

100

110

64 256 1K 4K 16K 64K
Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

Fig� ��� Throughput for read requests using the strided interface� There were
�� CPs in every case� Note the di�erent scales on the y�axis�

�

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

Record Size

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

Fig� ��� Throughput for write requests using the strided interface when over�
writing an existing �le� There were �� CPs in every case�

Given the traditional interface� the disk scheduler had to handle each request in
the order they arrived from the CPs� This requirement led to excess disk�head
movement� primarily in the partitioned pattern� but also in the interleaved
pattern when the record size was larger than � KB �� KB��� CPs�� Since
all the CPs accessed the same disk blocks in the broadcast case� and in an
interleaved pattern with small records� the disk schedule was optimal even
with the traditional interface� Since many of the disk accesses in the traditional
write cases occurred after a call to gfs sync��� the disk scheduler was able
to make intelligent decisions then as well� Therefore� the tests on which the
new interface led to the greatest improvements in the disk schedule were the
interleaved and partitioned read tests� and these were the two tests where the
peak throughput to the CPs improved most dramatically�

Once again� network contention was a problem for large numbers of IOPs�
The peak throughput on the broadcast pattern was limited to ���� MB�s to
each CP� The best disk schedule can also be the worst network schedule� as in
the partitioned pattern� where all IOPs �rst served CP �� then CP �� and so

��

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Interleaved Access Pattern

64 IOPs

0

20

40

60

80

100

120

64 256 1K 4K 16K 64K

T
hr

ou
gh

pu
t (

M
B

/s
)

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Fig� ��� Throughput for write requests using the strided interface when cre�
ating a new �le� There were �� CPs in every case�

forth� This disk schedule� combined with the limits of TCP�IP on the SP���
contributed to the interleaved�read pattern having higher performance than
the partitioned�read pattern using the strided interface�

While the increase in peak performance is interesting� the most striking dif�
ference between the two sets of tests is that� in most cases� Galley was able to
achieve peak performance with records as small as �� bytes ! two or three
orders of magnitude smaller than the request sizes required to achieve peak
throughput using the traditional interface� Other than increased opportuni�
ties for intelligent disk scheduling� the primary performance bene�t of our new
interface was a reduction in the number of messages� accomplished by pack�
ing small chunks of data into larger packets before transmitting them to the
receiving node�

The one case where Galley was not able to achieve maximum throughput with
a small record size was in writing a new �le in an interleaved pattern� When
a CP Thread on an IOP receives the �rst request to write to a new fork� that

��

CP Thread locks the metadata for that fork� The CP Thread then examines
the list of requests for the fork� and asks the DiskManager to assign however
many blocks are necessary for the new �le� Only after all the blocks have
been assigned does the CP Thread unlock the fork�s metadata� allowing the
other CP Threads to start processing their requests� It appears that the delay
caused by this long�term locking noticeably a�ects the system�s throughput�
This delay is less signi�cant with the partitioned pattern because the number
of requests is smaller� each CP has at most one request per block in the
partitioned pattern� while they may have as many as � per block in the
interleaved case�

While it is clear that the strided interface allowed the �le system to deliver
much better performance� the throughput plots shown in Figures �� and ��
present only part of the picture� Figure � shows the speedup of the strided�
read interface over a traditional read interface� and Figures �� and �
 show
similar results for the write interfaces� for both new �les and overwriting preex�
isting �les� When using an interleaved pattern with small records� the strided
interface led to speedups of up to �	 times when reading� � times when over�
writing an old �le� and � times when writing a new �le� There was a similar
increase in performance for small records in a partitioned pattern� up to ��
times when reading�
� times when rewriting� and
 when writing a new
�le� The broadcast�read pattern had the largest speedups for small records�
ranging from �
� to over
��

Although there was less room for improvement with large records� better disk
scheduling when reading interleaved and partitioned patterns occasionally led
to higher performance even for large records� When reading� the minimum
speedups within the range of record sizes we examined� were between � and
�� and occurred with the largest record sizes� When writing� the minimum
speedups were mostly between ��
 and ���
� Again� the minimum speedups in
the write tests were smaller than the read tests because much of the writing
with the traditional interface was performed during the gfs sync�� call� so
the IOP was able to perform more e�cient disk scheduling�

� Related Work

A variety of multiprocessor �le systems have been developed over the past ten
years or so� While many of these were similar to the traditional Unix�style �le
system� there have been also several more ambitious attempts�

Intel�s Concurrent File System �CFS� ������� and its successor� PFS� are ex�
amples of multiprocessor �le systems that use a linear �le model and provide
applications with a Unix�like interface� Both systems provide limited support

�	

0

50

100

150

200

250

300

350

400

64 256 1K 4K 16K 64K

S
pe

ed
up

Record Size

Broadcast Access Pattern

64 IOPs

0

10

20

30

40

50

60

70

80

90

100

64 256 1K 4K 16K 64K

S
pe

ed
up

Record Size

Interleaved Access Pattern

0

10

20

30

40

50

60

70

80

90

100

64 256 1K 4K 16K 64K

S
pe

ed
up

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Fig� ��� Increase in throughput for read requests using the strided interface�
Note the di�erent scales on the y�axis�

to parallel applications in the form of �le pointers that may be shared by all
the processes in the application� CFS and PFS provide several modes� each
of which provides the applications with a di�erent set of semantics governing
how the �le pointers are shared� Other multiprocessor �le systems with this

��

0

5

10

15

20

25

30

35

64 256 1K 4K 16K 64K
Record Size

Interleaved Access Pattern

S
pe

ed
up

0

10

20

30

40

50

60

64 256 1K 4K 16K 64K

S
pe

ed
up

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

Fig� �
� Increase in throughput for write requests using the strided interface
when overwriting an existing �le�

style of interface are SUNMOS and its successor� PUMA ���� sfs ��
�� and
CMMD ���

Like the systems mentioned above� PPFS provides the end user with a lin�
ear �le that is accessed with primitives that are similar to the traditional
read���write�� interface ����� In PPFS� however� the basic transfer unit is
an application�de�ned record rather than a byte� PPFS maps requests against
the logical� linear stream of records to an underlying two�dimensional model�
indexed with a �disk� record� pair� Several di�erent mapping functions� cor�
responding to common data distributions� are built into PPFS� An application
is able to provide its own mapping function as well�

Ironically� the multiprocessor �le system most removed from the traditional
Unix�like model also provides the most Unix�like interface� PIOFS� the �le
system for IBM�s SP��� allows users and applications to interact with it exactly
as they would interact with any AIX �le system� Administrators and advanced
users may also choose to interact with PIOFS�s underlying parallel �le system�

�

8 IOPs
4 IOPs

16 IOPs
32 IOPs
64 IOPs

0

5

10

15

20

25

30

35

64 256 1K 4K 16K 64K

S
pe

ed
up

Record Size

Interleaved Access Pattern

64 IOPs

0

10

20

30

40

50

60

64 256 1K 4K 16K 64K

S
pe

ed
up

Record Size

Partitioned Access Pattern

8 IOPs
4 IOPs

16 IOPs
32 IOPs

Fig� ��� Increase in throughput for write requests using the strided interface
when creating a new �le�

which is based on the Vesta �le system ���
�� Files in Vesta are two�dimensional�
and are composed of multiple cells� each of which is a sequence of basic striping
units� BSUs are essentially records� or �xed�sized sequences of bytes� Like
Galley�s sub�les� each cell resides on a single disk� While Galley only allows a
�le to have a single sub�le per disk� in Vesta a single disk may contain many
cells� Equivalent functionality could be achieved on Galley by mapping cells to
forks rather than sub�les� Vesta�s interface includes logical views of the data�
These views are essentially rectangular partitionings of the two�dimensional
�le� and can provide the application with much of the functionality of Galley�s
strided interfaces� Vesta provides users with a di�erent and powerful way of
thinking about data storage� Its largest drawback is that it is ill�suited to
datasets that cannot be partitioned into rectangular� non�overlapping sub�
blocks of a single size� In addition to the functionality of Vesta� PIOFS provides
applications with a Unix�like interface� We have built a library that provides
a Vesta�like interface for Galley�

�

� Summary and Future Work

Based on the results of several workload characterization studies� we have
designed Galley� a new parallel �le system that attempts to rectify some of
the shortcomings of existing �le systems� Galley is based on a new three�
dimensional structuring of �les� which provides tremendous �exibility and con�
trol to applications and libraries� We have shown how Galley�s higher�level I�O
requests provide the �le system with the information necessary to deliver high
performance� particularly on those access patterns that are known to be com�
mon in scienti�c applications� and which are known perform poorly on most
current multiprocessor �le systems� This high performance was achieved by
combining multiple small records into larger bu�ers before transferring them
across the network� reducing the aggregate latency� and by allowing the �le
system to perform e�ective disk scheduling� reducing the amount of disk�head
movement and making better use of the disks� on�board cache�

Future Work� We are exploring several areas for further work� First� Galley
currently supports only a single disk per IOP� Since our maximum throughput
is frequently limited by the disk�s maximum throughput� adding support for
multiple disks at the IOP is a high priority� Second� we intend to examine how
Galley performs when asked to service requests from multiple applications to
multiple �les at once� Finally� we intend to explore the issue of moving some of
an application�s I�O related code from the CP to the IOP� This functionality
would allow applications to perform data�dependent �ltering and distribution
at the IOP� reducing the amount of data transferred over the network�

Availability� The source for the Galley parallel �le system and the disk
simulator used in this paper are all available at
http���www�cs�dartmouth�edu��nils�galley�html�

References

��� James W� Arendt� Parallel genome sequence comparison using a concurrent
�le system� Technical Report UIUCDCS�R�	�����
� University of Illinois at
Urbana�Champaign� �		��

��� Sandra Johnson Baylor� Caroline B� Benveniste� and Yarson Hsu� Performance
evaluation of a parallel I�O architecture� In Proceedings of the �th ACM
International Conference on Supercomputing� pages
�
�
��� Barcelona� July
�		��

�

��� Michael L� Best� AdamGreenberg� Craig Stan�ll� and Lewis W� Tucker� CMMD
I�O� A parallel Unix I�O� In Proceedings of the Seventh International Parallel
Processing Symposium� pages
	�
	�� �		��

�
� Peter F� Corbett and Dror G� Feitelson� Design and implementation of the
Vesta parallel �le system� In Proceedings of the Scalable High�Performance

Computing Conference� pages ������ �		
�

��� Peter F� Corbett� Dror G� Feitelson� Jean�Pierre Prost� George S� Almasi�
Sandra Johnson Baylor� Anthony S� Bolmarcich� Yarsun Hsu� Julian Satran�
Marc Snir� Robert Colao� Brian Herr� Joseph Kavaky� Thomas R� Morgan� and
Anthony Zlotek� Parallel �le systems for the IBM SP computers� IBM Systems

Journal� �
���������
� January �		��

��� Thomas H� Cormen and Alex Colvin� ViC�� A preprocessor for virtual�memory
C�� Technical Report PCS�TR	
��
�� Dept� of Computer Science� Dartmouth
College� November �		
�

��� Thomas H� Cormen and Melissa Hirschl� Early experiences in evaluating the
Parallel Disk Model with the ViC� implementation� Technical Report PCS�
TR	���	�� Dartmouth College Department of Computer Science� August �		��
To appear in Parallel Computing�

�� Thomas H� Cormen and David Kotz� Integrating theory and practice in parallel
�le systems� In Proceedings of the ���� DAGS	PC Symposium� pages �
��
�
Hanover� NH� June �		�� Dartmouth Institute for Advanced Graduate Studies�
Revised as Dartmouth PCS�TR	��� on 	����	
�

�	� Hewlett Packard� HP����
	��	
� ����inch SCSI Disk Drives Technical
Reference Manual� second edition� June �		�� HP Part number �	��������

���� Jay Huber� Christopher L� Elford� Daniel A� Reed� Andrew A� Chien� and
David S� Blumenthal� PPFS� A high performance portable parallel �le system�
In Proceedings of the �th ACM International Conference on Supercomputing�
pages ����	
� Barcelona� July �		��

���� IBM� AIX Version �� General Programming Concepts� twelfth edition�
October �		
�

���� David Kotz and Nils Nieuwejaar� Dynamic �le�access characteristics of a
production parallel scienti�c workload� In Proceedings of Supercomputing ����
pages �
���
	� November �		
�

���� David Kotz� Song Bac Toh� and Sriram Radhakrishnan� A detailed simulation
model of the HP 	���� disk drive� Technical Report PCS�TR	
����� Dept� of
Computer Science� Dartmouth College� July �		
�

��
� Thomas T� Kwan and Daniel A� Reed� Performance of the CM�� scalable
�le system� In Proceedings of the �th ACM International Conference on

Supercomputing� pages �������� July �		
�

���� Susan J� LoVerso� Marshall Isman� Andy Nanopoulos� William Nesheim�
Ewan D� Milne� and Richard Wheeler� sfs� A parallel �le system for the CM���
In Proceedings of the ���� Summer USENIX Conference� pages �	������ �		��

���� Ethan L� Miller and Randy H� Katz� Input�output behavior of supercomputer
applications� In Proceedings of Supercomputing ���� pages �������� November
�		��

���� Jason A� Moore� Phil Hatcher� and Michael J� Quinn� E�cient data�parallel
�les via automatic mode detection� In Fourth Workshop on Input	Output in
Parallel and Distributed Systems� pages ���
� Philadelphia� May �		��

��� Nils Nieuwejaar and David Kotz� Low�level interfaces for high�level parallel
I�O� In Ravi Jain� John Werth� and James C� Browne� editors� Input	Output in
Parallel and Distributed Computer Systems� chapter 	� pages �������� Kluwer
Academic Publishers� �		��

��	� Nils Nieuwejaar and David Kotz� Performance of the Galley parallel �le system�
In Fourth Workshop on Input	Output in Parallel and Distributed Systems� pages
��	
� May �		��

���� Nils Nieuwejaar� David Kotz� Apratim Purakayastha� Carla Schlatter Ellis� and
Michael Best� File�access characteristics of parallel scienti�c workloads� IEEE
Transactions on Parallel and Distributed Systems� �		�� To appear�

���� Nils A� Nieuwejaar� Galley� A New Parallel File System For Scientic
Applications� PhD thesis� Dartmouth College� �		��

���� Bill Nitzberg� Performance of the iPSC��� Concurrent File System� Technical
Report RND�	������ NAS Systems Division� NASA Ames� December �		��

���� Paul Pierce� A concurrent �le system for a highly parallel mass storage system�
In Fourth Conference on Hypercube Concurrent Computers and Applications�
pages �������� �		�

��
� Terrence W� Pratt� James C� French� Phillip M� Dickens� and Stanley A�
Janet� Jr� A comparison of the architecture and performance of two parallel
�le systems� In Fourth Conference on Hypercube Concurrent Computers and
Applications� pages �������� �		�

���� Apratim Purakayastha� Carla Schlatter Ellis� David Kotz� Nils Nieuwejaar�
and Michael Best� Characterizing parallel �le�access patterns on a large�scale
multiprocessor� In Proceedings of the Ninth International Parallel Processing

Symposium� pages �������� April �		��

���� Chris Ruemmler and John Wilkes� An introduction to disk drive modeling�
IEEE Computer� ����������� March �		
�

���� K� E� Seamons� Y� Chen� P� Jones� J� Jozwiak� and M�Winslett� Server�directed
collective I�O in Panda� In Proceedings of Supercomputing ���� December �		��

�

��� K� E� Seamons and M� Winslett� A data management approach for handling
large compressed arrays in high performance computing� In Proceedings of the
Seventh Symposium on the Frontiers of Massively Parallel Computation� pages
��	���� February �		��

��	� Margo Seltzer� Peter Chen� and John Ousterhout� Disk scheduling revisited�
In Proceedings of the ���� Winter USENIX Conference� pages ������
� �		��

���� Joel T� Thomas� The Panda array I�O library on the Galley parallel �le system�
Technical Report PCS�TR	���� Dept� of Computer Science� Dartmouth
College� June �		�� Senior Honors Thesis�

���� Sivan Toledo and Fred G� Gustavson� The design and implementation of
SOLAR� a portable library for scalable out�of�core linear algebra computations�
In Fourth Workshop on Input	Output in Parallel and Distributed Systems� pages
��
�� Philadelphia� May �		��

���� Stephen R� Wheat� Arthur B� Maccabe� Rolf Riesen� David W� van Dresser� and
T� Mack Stallcup� PUMA� An operating system for massively parallel systems�
In Proceedings of the Twenty�Seventh Annual Hawaii International Conference

on System Sciences� pages ������ �		
�

