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Abstract

As the I�O needs of parallel scienti�c applications increase� �le systems for multiprocessors are being
designed to provide applications with parallel access to multiple disks� Many parallel �le systems present
applications with a conventional Unix�like interface that allows the application to access multiple disks
transparently� By tracing all the activity of a parallel �le system in a production� scienti�c computing
environment� we show that many applications exhibit highly regular� but non�consecutive I�O access
patterns� Since the conventional interface does not provide an e�cient method of describing these
patterns� we present an extension which supports strided and nested�strided I�O requests�

� Introduction

While the computational power of multiprocessors has been steadily increasing for years� the power

of the I�O subsystem has not been keeping pace� This is partly due to hardware limitations� but the

shortcomings of the �le systems bear a large part of the responsibility as well� One of the primary

reasons that parallel �le systems have not improved at the same rate as other aspects of multiprocessors

is that until now there has been limited information available about how applications were using existing

parallel �le systems and how programmers would like to be able to use future �le systems�

In �KN��	� we discuss the results of a tracing study in which all �le�related activity on a massively

parallel computer was recorded� Unlike previous studies of parallel �le systems� we traced information

about every I�O request� Using the same �le system traces� in this paper we examine how well the

�le system
s interface matched the needs of the applications� We then present an extension to the

conventional interface that allows the programmer to make higher�level� structured I�O requests which

should allow the �le system to achieve greater throughput�

This research was supported in part by the NASA Ames Research Center under Agreement Number NCC ������
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� The Conventional Interface

Many existing multiprocessor �le systems are based on the conventional Unix�like �le system interface

in which �les are seen as an addressable� linear stream of bytes� To provide higher throughput� the �le

system typically declusters �les �i�e�� scatters the blocks of each �le across multiple disks�� thus allowing

parallel access to the �le� reducing the eect of the bottleneck imposed by the relatively slow disk speed�

Although the �le is actually scattered across many disks� the underlying parallel structure of the �le is

hidden from the application� The interface is limited to such operations as open� close� read� write� and

seek�

Experience has shown that this simple model of a �le is well suited to uniprocessor applications that

tend to access �les in a simple� sequential fashion �OCH���	� It has similarly proven to be appropriate

for scienti�c� vector applications that also tend to access �les sequentially �MK��	� Results in �KN��	�

however� show that sequential access to consecutive portions of a �le is much less common in a multi�

processor environment� So� while the simple Unix�like interface has worked well in the past� it is clear

that it is not well suited to parallel applications� which have more complicated access patterns�

One extension to the conventional interface oered by several multiprocessor �le systems is a shared

�le pointer �Pie��� BGST��	� This provides a mechanism for regulating access to a shared �le by

multiple processes in a single application� The simplest shared �le pointer is one which supports an

atomic�append mode �as in �LMKQ��	� page ����� Intel
s CFS provides this in addition to several more

structured access modes �e�g�� round robin access to the �le pointer� �Pie��	� However� the tracing study

described in �KN��	 found that CFS
s shared �le pointers are rarely used in practice and suggests that

poor performance and a failure to match the needs of applications are the likely causes�

� Access Patterns

As in �KN��	 we de�ne a sequential request to be one that is at a higher �le oset than the previous

request from the same compute node� and a consecutive request to be a sequential request that begins

where the previous request ended� A common characteristic of many �le system workloads� particularly

scienti�c �le system workloads� is that �les are accessed consecutively �OCH���� BHK���� MK��	� In

the parallel �le system workload� we found that while almost ��� of all �les were accessed sequentially�

consecutive access was primarily limited to those �les that were only opened by one compute node�

When a �le was opened by just a single node� ��� of those nodes accessed the �le strictly consecutively

�i�e�� every accesses began immediately after the previous access�� but when a �le was opened by multiple

nodes concurrently� only ��� of those nodes accessed that �le strictly consecutively�

We de�ne an interval to be the distance between the end of one access and the beginning of the next�

While the study described in �KN��	 shows that almost ��� of all �les are accessed with fewer than

� dierent intervals� that study made no distinction between single�node and multinode �les� Looking
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Figure �� Cumulative distribution of node��les according to the fraction of

accesses that were involved in a simple�strided pattern� This graph covers both

the case where consecutive accesses are counted as strided �with an interval of ��

and the case where they are not�

more closely� we found that while ��� of all multinode �les were accessed at most once by each node

�i�e�� there were � intervals� and ��� of all multinode �les had only � interval� over ��� of multinode �les

had � or more dierent intervals� Since previous studies ��MK��	� have shown that scienti�c applications

rarely access �les randomly� the fact that a large number of multinode �les have many dierent intervals

suggests that these �les are being accessed in some complex� but possibly regular� pattern�

��� Strided accesses

Although �les may be opened by multiple nodes simultaneously� we are only interested in the accesses

generated by individual nodes� When necessary to avoid confusion� we use the term node��le to discuss a

single node
s usage of a �le� We refer to a series of requests to a node��le as a simple�strided access pattern

if each request is the same size and if the oset of the �le pointer is incremented by the same amount

between each request� This would correspond� for example� to the series of I�O requests generated by an

application reading a column of data from a matrix stored in row�major order� It could also correspond

to the pattern generated by an application that distributed the columns of a matrix stored in row�major

order across its processors in a cyclic pattern� if the data could be distributed evenly�

Since a strided pattern was unlikely to occur in single�node �les� and since it could not occur in

�les that had only one or two accesses� we looked only at those �les that had three or more requests

by multiple nodes� Figure � shows that many of the accesses to these �les appeared to be part of a

simple�strided access pattern� Although consecutive access was far more common in single�node �les�

it does occur in multinode �les� Since consecutive access could be considered a simple form of strided

access �with an interval of ��� Figure � shows the frequency of strided accesses both with and without

including consecutive accesses� In either case� over ��� of all the �les we examined were apparently

accessed in a strided pattern� We de�ne a strided segment to be a group of requests that appear to
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Figure �� The number of dierent strided segments in each node��le� We have

ignored segments of fewer than �� accesses�
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Figure �� The number of segments of a given length �including �short
 segments

of �� or fewer accesses�� By far� most segments have between �� and �� accesses�

part of a simple�strided pattern� Figure � only shows the percent of requests that were involved in some

strided segment� it does not tell us whether the requests a part of a single� �le�long strided segment or

if there were many shorter strided segments�

Figure � shows that it was common for a node��le to be accessed in many strided segments� Since we

were only interested in those cases where a �le was clearly being accessed in a strided pattern� this �gure

does not include short segments �fewer than �� accesses� that may appear to be strided� Furthermore�

in this graph we did not consider consecutive access to be strided� Despite using these fairly restrictive

criteria for �strided access
� we still found that it occurred frequently� Although Figure � shows that

there were quite a few long segments� Figure � indicates that most segments fall into the range of �� to

�� requests� While the existence of these simple�strided patterns is interesting and potentially useful�

the large number of �les that are accessed in multiple short segments suggests that there was a level of

structure beyond that described by a simple�strided pattern�
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Figure �� The tail of the segment length distribution shown in Figure �� There

are quite a few very long strided segments�

��� Nested patterns

A nested�strided access pattern is similar to a simple�strided access pattern but rather than being com�

posed of simple requests separated by regular strides in the �le� it is composed of strided segments

separated by regular strides in the �le� A singly�nested pattern is the same as a simple�strided pattern�

A doubly�nested pattern could correspond to the pattern generated by an application that distributed

the columns of a matrix stored in row�major order across its processors in a cyclic pattern� if the data

could not be distributed evenly �Figure ��� The simple�strided sub�pattern corresponds to the requests

and strides generated within each row of the matrix� while the top�level pattern corresponds to the

distance between one row and the next� This access pattern could also be generated by an application

that was reading a single column of data from a three�dimensional matrix� Higher levels of nesting could

occur if an application mapped a multidimensional matrix onto a set of processors�

Table �� The number of �les that utilize a given maximum level of nesting�

Maximum Level Number of
of Nesting node��les

� ���
� �����
� ���
� ����
�� �

Table � shows how frequently nested patterns occurred� Files that had one level of nesting correspond

to those that only exhibited a simple�strided pattern� while �les with zero levels of nesting had no

apparent regular pattern at all� Interestingly� it was far more common for �les to exhibit three levels

of nesting rather than two� The large number of triply�nested �les may be a result of the environment

in which the tracing was performed� The machine traced was used mostly for computational �uid

dynamics �CFD� codes� which frequently use multidimensional matrices �for ��dimensional data over

time��
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Column #:

Compute Node #:

Inner Stride

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Outer Stride

Inner Stride

Figure �� The columns of this ��x�� matrix have been distributed cyclically

across the � compute nodes in an application� The columns assigned to node �

are highlighted� If this were composed of ��byte doubles and stored on disk in

row�major order� the I�O pattern would have an inner stride of �� ����� bytes

and an outer stride of ��� ������ bytes�

� A New Interface

While it would be presumptuous to suggest that programmers �nd the conventional interface burdensome

when implementing applications that do such regular I�O� it is certainly ine�cient� If an interface were

available that allowed an application to explicitly make simple� and nested�strided requests� the number

of I�O requests issued to the multinode �les we examined could have been reduced from ���������� to

������ � a reduction of over ����� Not only would reducing the number of requests lower the aggregate

latency costs� but recent work has shown that providing a �le system with this level of information can

lead to tremendous performance improvements �Kot��	�

We propose an extension to the conventional interface that will allow simple� and nested�strided

requests�

cc � reads�fid� buf� initial offset� record size� stride vector� levels�

The stride vector is a pointer to an array of �stride� quantity� pairs listed from the innermost

level of nesting to the outermost� The number of levels of nesting is indicated by levels� The individual

�Although we only looked at a restrictive subset of �les� they account for over ��	 of the I
O requests in the entire traced
workload�
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record size�size chunks of data are read from �le ��d� and stored consecutively in the buer indicated

by buf� The call returns the number of bytes transferred� This interface is similar to the readv�� call

introduced in BSD ��� ��LMKQ��	�� but rather than taking contiguous data from the disk and scattering

it to separate buers� reads�� takes noncontiguous data from disk and stores it contiguously in memory�

If we only allowed a single level of nesting �i�e�� simple�strided�� this interface would be very similar to

Cray
s listio�� system call� Naturally there is a corresponding writes�� call�

The code fragment shown in Figure � illustrates how this interface could be used in practice� For

simplicity� this fragment assumes that there are exactly N processors� and that each processor knows

its number �between � and N � ��� In this case� the strided interface reduces the number of calls from

each node from M to ��

�define STRIDE �
�define QUANTITY �

double a�M�	


� Read a column from an MxN double precision matrix �



� This code assumes that there are exactly N processors reading N
columns from a matrix stored in row�major order �


int read�column�int fid� �
int stride�vector������	 
� ��level � simple�strided pattern

We could also use a vector of structs �

int bytes	
int initial�offset	


� The stride between requests will be equal to the amount
of space needed to store N double�precision numbers �


stride�vector����STRIDE� � N � sizeof�double�	


� We will be reading one element from each of M rows �

stride�vector����QUANTITY� � M	


� Calculate this node�s initial offset into the file
Processor n will start by reading the first element of column n �


initial�offset � mynum�� � sizeof�double�	

bytes � reads�fid� a� initial�offset� sizeof�double�� stride�vector� ��	

return �bytes �� M � sizeof�double��	 
� true iff I
O was successful �

�

Figure �� A singly	nested example�

A more complicated example is shown in Figure �� This example illustrates how a node can read

its portion of a three�dimensional M �M �M matrix from a �le when the matrix is to be distributed

across the processors in a �BLOCK� BLOCK� BLOCK� fashion� For simplicity� we have again assumed

that we have the proper number of processors to distribute the data evenly� In this case that means we

have N �N �N processors which we will logically arrange in a cube with numbers assigned from left to

right� and from front to back �i�e�� processor N � N � � is at the bottom right of the front of the cube

and processor N �N is at the top left of the second plane of the cube�� Using the conventional interface�

each node would have to issue �M�N �� requests� Again� we have reduced the number of requests issued






by each node to one�

Although this code fragment looks complicated� it should be noted that it is essentially a proper

subset of the code necessary to request each chunk individually �as is done in the traced workload��

It could also easily be hidden in a higher level library or generated automatically by a compiler for a

parallel language �e�g�� HPF��

�define Q �M
N� 
� The number of elements in each dimension assigned to a processor �

�define SIZEOF�ROW �M � sizeof�double��
�define SIZEOF�PLANE �M � M � sizeof�double��
�define SIZEOF�BLOCK �Q�Q�Q � sizeof�double��

struct stride�vector�t �
int stride	
int quantity	

�	

struct position�vector�t �
int x� y� z	

�	

double a�Q��Q��Q�	

int read�my�block�int fid� �
struct position�vector�t my�location� first�element	
struct stride�vector�t stride�vector���	
unsigned long initial�offset� record�size	
int bytes	


� Where in the logical cube of processors am I� �

my�locationx � mynum�� � N	
my�locationy � �mynum�� � �N�N�� 
 N	
my�locationz � mynum�� 
 �N�N�	


� Which is the first element of my block� �

first�elementx � Q � my�locationx	
first�elementy � Q � my�locationy	
first�elementz � Q � my�locationz	


� Where in the file does my block begin� �

initial�offset � first�elementx � sizeof�double� �

first�elementy � SIZEOF�ROW �
first�elementz � SIZEOF�PLANE	


� The inner stride is the distance from one row to the
next within one plane of my block �


stride�vector���stride � SIZEOF�ROW	
stride�vector���quantity � Q	


� The outer stride is the distance from the first row of
one plane of my block to the first row of the next plane �


stride�vector���stride � SIZEOF�PLANE	
stride�vector���quantity � Q	

record�size � Q � sizeof�double�	

bytes � reads�fid� a� initial�offset� record�size� stride�vector� ��	
return �bytes �� SIZEOF�BLOCK�	 
� true iff I
O was successful �


�

Figure 
� A doubly	nested example�
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While this interface guarantees that after all the data is transferred it will be in order in the buer�

the order in which the individual chunks are transferred is not speci�ed� This allows the �le system the

option of transferring the data from the disk to the I�O node and from the I�O node to the local buer

in the most e�cient order rather than strictly sequentially� This reordering of data transfers can be used

to achieve remarkable performance gains �Kot��	�

� Unconventional interfaces

��� nCUBE

The �le system interface available on the nCUBE is based on a two�step mapping of a �le into the compute

node memories �DdR��	� The �rst step is to provide a mapping from sub�les stored on multiple disks

to an abstract dataset �a traditional one�dimensional I�O stream�� The second step is mapping the

abstract dataset into the compute node memories� The �rst mapping is done by the system software�

while the second mapping function is provided by the user� The �rst function is composed with the

inverse of the second to generate a function which directly maps data from compute node memory to

disk� Their mapping functions are essentially a permutation of the index bits of the data�

While the nCUBE interface is far more elegant and aesthetically pleasing than our extension� it does

have several important limitations� The most serious of these limitations is a direct outgrowth of its

elegance� since the mapping functions are based on permutations of the index bits� all sizes must be

powers of �� This includes the number of I�O nodes� the number of compute nodes� the disk block size�

the unit�of�transfer size� and� for some data distributions� the matrix dimensions� The authors make it

clear that they recognize the severity of this limitation and that they intend to introduce a more general

form of mapping function in the future�

��� Vesta

The Vesta �le system ��CBF��� CFPB��� CF��	� breaks away from the traditional one�dimensional �le

structure� Files in Vesta are two�dimensional and are partitioned according to explicit user commands�

Users specify both a physical partitioning� which indicates how the �le should be stored on disk and

which lasts for the lifetime of the �le� and a logical partitioning� which indicates how the data should

be distributed among the processors� Not only does this logical partitioning provide a useful means

of specifying data distribution� it allows signi�cant performance gains since it can guarantee that each

portion of the �le will be accessed by only a single processor� This reduces the need for communication

and synchronization between the nodes�

While Vesta provides a �exible and powerful method of specifying the distribution of a regular data

structure across compute and I�O nodes� it too has limitations� Vesta seems ill�suited to problems that

use irregular data� where irregular is de�ned as anything that cannot be laid out in a rectangle or that

cannot be partitioned into rectangular sub�blocks of a single size� Another of Vesta
s great strengths is
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its two�dimensional �le abstraction� which allows programmers to specify layout information that will

hopefully lead to performance improvements� Unfortunately� this abstraction makes it di�cult for Vesta

to share �les with applications on other systems� and it increases the di�culty of porting old applications

to a new platform�

Neither nCUBE nor Vesta appear to provide an easy way for two compute nodes to access overlapping

regions of a �le� Since many models of physical events require logically adjacent nodes to share boundary

information� this could be an important restriction� This can be seen in the �le�sharing results in �KN��	

which show that most read�only �les had at least some bytes that were accessed by multiple processors�

It should be noted that the same results show that in many cases� the strict partitioning oered by

nCUBE and Vesta may match the application
s needs for write�only �les�

� Conclusion

We found that while many of the �les used by the parallel scienti�c applications in our traces did not

exhibit the strongly consecutive access patterns typically seen in uniprocessor and vector supercomputer

�le systems� they were still accessed in a highly regular manner� We have analyzed the high�level

structure of these regular patterns and discovered that the Unix�like �le system interface does not

provide programmers with a way to describe this structure to the �le system�

We propose an extension to the conventional �le system interface that allows programmers of mul�

tiprocessors to make I�O requests at a higher semantic level� In our traced workload� this extension

could potentially have reduced the number of requests made by well over ���� thus reducing aggregate

latency� and given the �le system the opportunity to optimize the movement of data� These advan�

tages are achieved without abandoning the traditional notion of a �le as an addressable� linear sequence

of bytes� allowing us to continue to use �dusty�deck
 applications and to easily transfer data between

applications on dierent systems�
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