
Also appeared at the Workshop for I/O in Parallel and Distributed Systems at IPPS ’95.
Copyright 1995 by the authors.

Low�level Interfaces for High�level Parallel I�O

Nils Nieuwejaar David Kotz

PCS�TR������

Department of Computer Science

Dartmouth College� Hanover� NH ����������

fnils�dfkg�cs�dartmouth�edu

Abstract

As the I�O needs of parallel scienti�c applications increase� �le systems for multiprocessors are being
designed to provide applications with parallel access to multiple disks� Many parallel �le systems present
applications with a conventional Unix�like interface that allows the application to access multiple disks
transparently� By tracing all the activity of a parallel �le system in a production� scienti�c computing
environment� we show that many applications exhibit highly regular� but non�consecutive I�O access
patterns� Since the conventional interface does not provide an e�cient method of describing these
patterns� we present three extensions to the interface that support strided� nested�strided� and nested�
batched I�O requests� We show how these extensions can be used to express common access patterns�

� Introduction

While the computational power of multiprocessors has been steadily increasing for years� the power of

the I�O subsystem has not been keeping pace� This imbalance is partly due to hardware limitations� but

the shortcomings of the �le systems bear a large part of the responsibility as well� One of the primary

reasons that parallel �le systems have not improved at the same rate as other aspects of multiprocessors

is that until now there has been limited information available about how applications were using existing

parallel �le systems and how programmers would like to be able to use future �le systems�

In �KN��	� we discuss the results of a workload characterization study in which we recorded all

the parallel �le�system activity on an iPSC�
�� at NASA Ames Numerical Aerodynamics Simulation

�NAS� facility� Over a period of weeks� we traced the activity of several hundred applications �primarily

computational �uid�dynamics codes�� which accessed over ������ �les� Unlike previous studies of parallel

�le systems� we traced information about every I�O request� Using the same �le�system traces� in this

paper we examine how well the �le systems interface matched the needs of the applications� We then

present two extensions to the conventional interface that allow the programmer to make higher�level�

structured I�O requests� Finally� we present a more general interface that allows the programmer to

make more complex� structured requests� These extensions will increase the amount of information

available to the low�level �le system and enable substantial performance optimizations�

This research was supported in part by the NASA Ames Research Center under Agreement Number NCC ������

� The Conventional Interface

Many existing multiprocessor �le systems are based on the conventional Unix�like �le�system interface

in which �les are seen as an addressable� linear stream of bytes �BGST��� Pie
�� LIN���	� To provide

higher throughput� the �le system typically declusters �les �i�e�� scatters the blocks of each �le across

multiple disks�� thus allowing parallel access to the �le� reducing the e�ect of the bottleneck imposed by

the relatively slow disk speed� Although the �le is actually scattered across many disks� the underlying

parallel structure of the �le is hidden from the application� The interface is limited to such operations

as open��� read��� write��� and seek��� all of which manipulate an implicit �le pointer�

Experience has shown that this simple model of a �le is well suited to uniprocessor applications that

tend to access �les in a simple� sequential fashion �OCH�
�	� It has similarly proven to be appropriate

for scienti�c� vector applications that also tend to access �les sequentially �MK��	� Results in �KN���

PEK���	� however� show that sequential access to consecutive portions of a �le is much less common in

a multiprocessor environment� So� while the simple Unix�like interface has worked well in the past� it

is clear that it is not well suited to parallel applications� which have more complicated access patterns�

Indeed� it may well be the case that the linear �le model itself is an inappropriate abstraction in a

parallel environment� While our focus in this paper is the improvement of the interface to a linear �le

model� the enhancement or outright replacement of that model is worthy of further investigation�

One common enhancement to the conventional interface is a shared �le pointer �Pie
�� RP���

BGST��� FBD��	� which provides a mechanism for regulating access to a shared �le by multiple pro�

cesses in a single application� The simplest shared �le pointer is one which supports an atomic�append

mode �as in �LMKQ
�	� page ����� Intels CFS provides this mode in addition to several more struc�

tured access modes �e�g�� round�robin access to the �le pointer� �Pie
�	� However� the tracing study

described in �KN��	 found that CFSs shared �le pointers are rarely used in practice and suggests that

poor performance and a failure to match the needs of applications are the likely causes�

� Access Patterns

To this point� most parallel �le systems have been optimized to support large �many kilobyte� �le

accesses� The workload study described in �KN��	 shows that while some parallel scienti�c applications

do issue a relatively small number of large requests� there are many applications that issue thousands

or millions of small �� ��� bytes� requests� putting a great deal of stress on current �le systems�

As in �KN��	 we de�ne a sequential request to be one that is at a higher �le o�set than the previous

request from the same compute node� and a consecutive request to be a sequential request that begins

where the previous request ended� A common characteristic of many �le�system workloads� particularly

scienti�c �le�system workloads� is that �les are accessed consecutively �OCH�
�� BHK���� MK��	� In

the parallel �le�system workload� we found that while almost ��� of all �les were accessed sequentially�

�

consecutive access was primarily limited to those �les that were only opened by one compute node�

When �les were opened by just a single node� ��� of those �les were accessed strictly consecutively

�i�e�� every access began immediately after the previous access�� but when �les were opened by multiple

nodes� only ��� of those nodes accessed the �le strictly consecutively�

We de�ne an interval to be the distance between the end of one access and the beginning of the

next� While �KN��	 shows that almost ��� of all �les are accessed with fewer than � di�erent intervals�

that study made no distinction between single�node and multi�node �les� Looking more closely� we

found that while ��� of all multi�node �les were accessed at most once by each node �i�e�� there were �

intervals� and ��� of all multi�node �les had only � interval� over ��� of multi�node �les had � or more

di�erent intervals� Since previous studies �MK��	 have shown that scienti�c applications rarely access

�les randomly� the fact that a large number of multi�node �les have many di�erent intervals suggests

that these �les are being accessed in some complex� but possibly regular� pattern�

��� Strided accesses

Although �les may be opened by multiple nodes simultaneously� we are only interested here in the

accesses generated by individual nodes� When necessary to avoid confusion� we use the term node��le to

discuss a single nodes usage of a �le� We refer to a series of requests to a node��le as a simple�strided

access pattern if each request is the same size and if the �le pointer is incremented by the same amount

between each request� This would correspond� for example� to the series of I�O requests generated by

each process in a parallel application reading a column of data from a matrix stored in row�major order�

It could also correspond to the pattern generated by an application that distributed the columns of a

matrix across its processors in a cyclic pattern� if the columns could be distributed evenly and if the

matrix was stored in row�major order�

Since a strided pattern was less likely to occur in single�node �les� and since it could not occur in

�les that had only one or two accesses� we looked only at those �les that had three or more requests by

multiple nodes �� Figure � shows that many of the accesses to these �les appeared to be part of a simple�

strided access pattern� Although consecutive access was far more common in single�node �les� it does

occur in multi�node �les� Since consecutive access could be considered a simple form of strided access

�with an interval of ��� Figure � shows the frequency of strided accesses with and without consecutive

accesses included� In either case� over
�� of all the �les we examined were apparently accessed entirely

with a strided pattern�

We de�ne a strided segment to be a group of requests that appear to be part of a simple�strided

pattern� Figure � only shows the percentage of requests that were involved in some strided segment� it

does not tell us whether the requests are all part of a single strided segment that spans the whole �le�

�Although we only looked at a restrictive subset of �les� they account for over ��	 of the I
O requests in the entire traced
workload�

�

80

Including Consecutive

Not Including Consecutive

0

0.2

0.4

0.6

0.8

1

100604020

% Accesses Strided

0

Fr
ac

tio
n

of
 n

od
e-

fi
le

s

Figure �� Cumulative distribution of node��les according to the fraction of

accesses that were involved in a simple�strided pattern� This graph covers both

the case where consecutive accesses are counted as strided �with an interval of ��

and the case where they are not�

Number of strided segments

2000

0

4000

6000

8000

N
um

be
r

of
 f

il
es

0 50 150 200100

Figure �� The number of di�erent strided segments in each node��le� We have

ignored segments of fewer than �� accesses�

or if each �le had many segments with only a few requests in each� Figure � shows that it was common

for a node��le to be accessed in many strided segments� Since we were only interested in those cases

where a �le was clearly being accessed in a strided pattern� this �gure does not include short segments

�fewer than �� accesses� that may appear to be strided� Furthermore� in this graph we did not consider

consecutive access to be strided� Despite using these fairly restrictive criteria for �strided access� we

still found that it occurred frequently� Although Figure � indicates that most segments fell into the

range of �� to �� requests� it also shows that there were quite a few long segments� Furthermore� while

the existence of these simple�strided patterns is interesting and potentially useful� the fact that many

�les were accessed in multiple short segments suggests that there was a level of structure beyond that

described by a simple�strided pattern�

�

N
um

be
r

of
 s

eg
m

en
ts

500

1000

1500

2000

3000

2500

500 1500 25002000

Number of accesses

0
10000 5 10 15 20 25 30

Number of accesses

50000

100000

150000

250000

200000

0

Figure �� The number of segments of a given length �including �short segments of �� or fewer accesses��

For clarity� we show the head and tail of the distribution separately� By far� most segments have between

�� and �� accesses�

��� Nested patterns

A nested�strided access pattern is similar to a simple�strided access pattern but rather than being com�

posed of simple requests separated by regular strides in the �le� it is composed of strided segments

separated by regular strides in the �le� A singly�nested pattern is the same as a simple�strided pattern�

A doubly�nested pattern could correspond to the pattern generated by an application that distributed

the columns of a matrix stored in row�major order across its processors in a cyclic pattern� if the columns

could not be distributed evenly across the processors �Figure ��� The simple�strided sub�pattern corre�

sponds to the requests generated within each row of the matrix� while the top�level pattern corresponds

to the distance between one row and the next� This access pattern could also be generated by an ap�

plication that was reading a single column of data from a three�dimensional matrix� Higher levels of

nesting could occur if an application mapped a multidimensional matrix onto a set of processors�

Table �� The number of node��les that use a given maximum level of nesting�

Maximum Level Number of

of Nesting node��les

� ���
	 	���

� ���
�
	
	

�� �

Table � shows how frequently nested patterns occurred� Files with zero levels of nesting had no

strided accesses� and those with one level had only simple�strided accesses� Interestingly� it was far more

common for �les to exhibit three levels of nesting than two� This tendency suggests that many of the

applications in this environment were using multidimensional matrices�

Compute Node #: 0 1 2 3 4 5 6 7
Column #:

0

Inner Stride

1 2 3 4 5 6 7 0 1 2 3

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Outer Stride

Inner Stride

Figure �� The columns of this ��x�� matrix have been distributed cyclically

across the
 compute nodes in an application� The columns assigned to node �

are highlighted� If the matrix were composed of
�byte doubles and stored on disk

in row�major order� the I�O pattern would have an inner stride of �� �
�
� bytes

and an outer stride of ��� ����
� bytes�

� File System Interfaces

While it would be presumptuous to suggest that programmers �nd the conventional interface burdensome

when implementing applications that do such regular I�O� it is likely to be ine�cient� If an interface

were available that allowed an application to explicitly make simple� and nested�strided requests� the

number of I�O requests issued to the multi�node �les we examined could potentially have been reduced

from �����
���� to
����� � a reduction of over ��� �� Not only would reducing the number of requests

lower the aggregate latency costs �particularly for those applications that issue thousands or millions of

very small requests�� but recent work has shown that providing a �le system with this level of information

can lead to tremendous performance improvements �Kot��	�

We introduce three new interfaces in increasing order of complexity and power� While these interfaces

are intended to be used in a multiprocessor �le system where �les will be shared amongmultiple processes�

we have not included any primitives to explicitly control synchronization or �le sharing� Such primitives

could certainly be implemented alongside these interfaces� thus providing stricter semantics for them�

Similarly� while we show only blocking calls� there is no reason that a �le system could not implement

non�blocking versions of each call as well� Finally� we anticipate that these interfaces will more commonly

�This number should be regarded as an upper bound� as we do not have su�cient information to positively determine
whether an access pattern is caused by the limitations of the interface or by the structure of the computation�

�

�define SIZEOF�ELT sizeof�double�

int read�column�fid� a�
int fid�
double a���

�
int bytes�
long long offset�
long stride�

	
 The stride between requests will be equal to the amount
of space needed to store N double�precision numbers�
	

stride N
 SIZEOF�ELT�

	
 Calculate this node�s initial offset into the file�
Processor n will start by reading the first element of column n
	

offset mynum��
 SIZEOF�ELT�

bytes read�strided�fid� a� offset� SIZEOF�ELT� stride� M��

return �bytes M
 SIZEOF�ELT�� 	
 true iff I	O was successful
	
�

Figure
 An simple�strided request� N nodes each read a column from a row�majorM �N matrix�

be used by compilers or application�level libraries than by end�user programmers� Therefore� we have

striven for power and expressiveness rather than simplicity�

��� Simple�strided interface

Although most of the requests in the observed workload may be characterized as simple�strided requests�

�le�system interfaces that allow applications to issue such requests are rare� The only vendor we are

aware of that provides a strided interface is Cray Research� but their interface is currently not o�ered

on their massively parallel T�D machines �Cra��	�

The following interface allows applications to issue simple�strided requests�

bytes � read strided�fid� buf� offset� record size� stride size� quant�

Beginning at offset� the �le system will read quant records of record size bytes� and store them

contiguously in memory at buf� The o�set of each record is stride size bytes greater than the previous

records o�set� The call returns the total number of bytes transferred� Naturally� there is a corresponding

write strided�� call� The code fragment shown in Figure � illustrates how this interface could be used

in practice to read an M � N matrix� For simplicity� this fragment assumes that there are exactly N

processors� and that each processor knows its number �between � and N � ��� In this case� the strided

interface reduces the number of calls issued by each node from M to ��

�

��� Nested�strided interface

Although a simple�strided interface alone can dramatically reduce the number of requests issued by an

application� an interface that allowed an application to issue nested�strided requests would further re�

duce the number of requests issued and would introduce additional opportunities for optimization� The

following interface allows both simple� and nested�strided requests�

bytes � read nested�fid� buf� offset� record size� stride vector� levels�

The stride vector is a pointer to an array of �stride� quantity� pairs listed from the innermost

level of nesting to the outermost� The number of levels of nesting is indicated by levels� The individual

record size chunks of data are read from �le fid and stored consecutively in the bu�er indicated by buf�

The call returns the number of bytes transferred� Naturally there is a corresponding write nested��

call�

An example of the use of the nested�strided interface is shown in Figure �� This example illustrates

how a node could read its portion of a three�dimensionalM �M �M matrix from a �le when the matrix

is to be distributed across the processors in a �BLOCK� BLOCK� BLOCK� fashion� For simplicity� we

have again assumed that we have the proper number of processors to distribute the data evenly� In this

case that means we have N � N �N processors which we will logically arrange in a cube with numbers

assigned from left to right� and from front to back �i�e�� processor N � N � � is at the bottom right of

the front of the cube and processor N �N is at the top left of the second plane of the cube�� Using the

conventional interface� each node would have to issue �M�N �� requests� Again� we have reduced the

number of requests issued by each node to one�

Although this code fragment looks complicated� it should be noted that it is essentially a proper

subset of the code necessary to request each chunk individually �as is done in the traced workload��

and is no more complex than in any other general�purpose interface �e�g�� MPI�IO or Vesta�� It could

also easily be hidden in a higher�level library or generated automatically by a compiler for a parallel

language �e�g�� HPF��

��� A Nested�batched Interface

While we found that most of the small requests in the observed workload were part of a strided pattern�

there may well be applications that could bene�t from some form of higher�level request� but would

�nd the nested�strided interface too restrictive� For those applications� we introduce a nested�batched

interface�

One common example of a batched I�O interface may be seen in the POSIX lio listio�� function�

which allows the user to submit a list of simple read���write�� requests in a single operation �IBM��	�

While the POSIX interface is very general� it does not provide a compact method of describing regular

�

�define Q �M	N� 	
 Elements in each dimension assigned to a processor
	
�define SIZEOF�ELT sizeof�double�
�define SIZEOF�ROW �M
 SIZEOF�ELT�
�define SIZEOF�PLANE �M
 M
 SIZEOF�ELT�

	
 My location in the logical cube of processors�
	
�define MY�X �mynum�� � N�
�define MY�Y ��mynum�� � �N
N��	N�
�define MY�Z �mynum�� 	 �N
N��

int read�my�block�fid� a�
int fid�
double a���

�
struct �

long stride� quantity�
� vector����
long long offset�
long bytes� x� y� z�

	
 The first matrix element of my block
	
x Q
 MY�X�
y Q
 MY�Y�
z Q
 MY�Z�

offset �x
 SIZEOF�ELT� � �y
 SIZEOF�ROW� � �z
 SIZEOF�PLANE��

	
 Inner stride� The distance from one row to the next within
one plane of my block
	

vector����stride SIZEOF�ROW�
vector����quantity Q�

	
 Outer stride� The distance from the first row of one plane
to the first row of the next plane
	

vector����stride SIZEOF�PLANE�
vector����quantity Q�

bytes read�nested�fid� a� offset� �Q
 SIZEOF�ELT�� vector� ���
return �bytes �Q
Q
Q
 SIZEOF�ELT���

�

Figure � A nested�strided request� We assume M�N � ��

access patterns� Since we have seen that most �les are accessed in a regular fashion we view this

limitation as serious�

We have designed a new batched I�O interface that provides the generality of the POSIX interface

as well as the compact representation of regular patterns provided by the nested�strided interface� The

two data structures involved in a nested�batched I�O request can be seen in Figure �� The simpler of

the two is the request vector� The request vector is simply an array of requests� along with a count of

the number of requests� As in the POSIX interface� the application submits the entire list of requests

to the �le system rather than submitting one request at a time�

While the POSIX interface restricts the type of request to simple reads and�or writes� we provide a

richer set of options with our request t structure� First� each request speci�es the o�set into the �le

from which to begin servicing the request� This o�set may be absolute or it may be speci�ed relative

�

struct request�t �
long long offset�
short offset�type� 	
 ABSOLUTE or RELATIVE
	
short subreq�type� 	
 SIMPLE or VECTOR
	
long quant�
long stride�
union �

unsigned long size�
struct request�vec�t
sub�vec�

� sub�request�
��

struct request�vec�t �
int requests�
struct request�t vector���

��

Figure � Data structures involved in a nested�batched I�O request�

to the previous o�set� Second� in addition to simple requests� the application may choose to submit a

strided request� That is� the application may specify that the request is to be repeated a number of

times �quant�� and may specify the change in o�set between each request �stride�� Finally� the requests

themselves may be vectors of requests�

The ability to submit vectors of requests provides applications with the full power and generality of

the POSIX interface� The ability to make strided requests and to use sub�vectors for requests provides

applications with a compact method of specifying regular patterns� In particular� they are able to make

nested�strided requests as well as more complicated requests� That this interface is a proper superset of

the two interfaces described earlier may be seen in Figure
� which illustrates the functionality of and

relationships between the three interfaces�

A simple example of when such an interface might be useful is shown in Figure �� Unlike Figure �� the

distance between the columns is not the same� so although the overall access pattern is highly regular�

the nested�strided interface is unable to capture that regularity� Figure �� shows an example of the code

required to make a batched request for this data� The example assumes that the matrix is laid out in

row�major order on disk and that it begins at byte � of the �le�

As with the previous example� although the work required to set up a nested�batched request may

appear tedious� it is no more so than the work required to issue requests for each piece of data individually

using the conventional interface� In addition� it would certainly be possible and appropriate to hide

some of this complexity from the end user by providing semantically higher�level routines� which would

generate the actual low�level request� in an application� or domain�speci�c library�

While this example illustrates the basic power of the interface� it does not utilize some of the more

subtle features of the interface� For example� the �rst request in an inner request vector is allowed to

specify its own o�set� It may specify an absolute o�set� essentially overriding the stride imposed by

	�

Request

Simple-strided

Request

Nested-strided

Stride

Nested-batched

Request

Stride

Stride’

Stride’ Stride’’

Request’ Request’’

Stride

Figure �� The relationships between the three proposed interfaces�

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Column #: 10 2 3

Figure �� One node wants to access the data in columns �� �� and �
 of this

��x�� matrix� which is stored in row�major order� While this request is highly

regular� it is too complex to be handled with a nested�strided request�

		

int read�my�columns�fid� a�
int fid�
double a���

�
long bytes�
struct request�vec�t inner�vec�
struct request�t outer�
struct request�t inner��� �

�� RELATIVE� SIMPLE� �� �� sizeof�double��
�
sizeof�double�� RELATIVE� SIMPLE� �� �� sizeof�double��
��
sizeof�double�� RELATIVE� SIMPLE� �� �� sizeof�double�

��

inner�vec�requests ��
inner�vec�vector inner�

outer�offset ��
outer�offset�type ABSOLUTE�
outer�subreq�type VECTOR�
outer�quant ���
outer�stride ��
 sizeof�double��
outer�subvec �inner�vec�

bytes read�batched�fid� a� �outer��

return �bytes ��
 ��
 sizeof�double���� 	
 cols
 rows
 size
	
�

Figure 	� An example of nested�batched I�O�

the outer request� or it may specify a relative o�set� In this example �and� we expect� in most cases��

it speci�es an o�set relative to the o�set determined by the outer request� It should be noted that�

although legal� a RELATIVE o�set may not be well de�ned for the �rst request of an outer request

vector if the underlying �le system does not support the notion of a �le pointer�

While all three interfaces guarantee that after all the data is transferred it will be in order in the

bu�er� the order in which the individual chunks are transferred is not speci�ed� This interface allows

the �le system the option of transferring the data from the disk to the I�O node and from the I�O node

to the local bu�er in the most e�cient order rather than strictly sequentially� This ability to reorder

data transfers can be used to achieve remarkable performance gains �Kot��	� and is a distinct advantage

of this interface over any interface where the user must request one small piece of data at a time� forcing

the �le system to service requests in a particular order�

� Other Unconventional Interfaces

��� nCUBE

A �le�system interface proposed for the nCUBE is based on a two�step mapping of a �le into the compute�

node memories �DdR��	� The �rst step is to provide a mapping from sub�les stored on multiple disks

to an abstract dataset �a traditional one�dimensional I�O stream�� The second step is mapping the

	�

abstract dataset into the compute�node memories� The �rst mapping is done by the system software�

while the second mapping function is provided by the user� The �rst function is composed with the

inverse of the second to generate a function that directly maps data from compute�node memory to disk�

Their mapping functions are essentially a permutation of the index bits of the data�

While the nCUBE interface is far more elegant and aesthetically pleasing than our extensions� it

does have several important limitations� The most serious of these limitations is a direct outgrowth of

its elegance� since the mapping functions are based on permutations of the index bits� all sizes must be

powers of �� This includes the number of I�O nodes� the number of compute nodes� the disk block size�

the unit�of�transfer size� and� for some data distributions� the matrix dimensions� It should be noted

that this interface could be built on top of the extensions described above�

��� Vesta

The Vesta �le system �CBF��� CF��� FCHP��	 breaks away from the traditional one�dimensional �le

structure� Files in Vesta are two�dimensional and are partitioned according to explicit user commands�

Users specify both a physical partitioning� which indicates how the �le should be stored on disk and

which lasts for the lifetime of the �le� and a logical partitioning� which indicates how the data should

be distributed among the processors� Not only does this logical partitioning provide a useful means

of specifying data distribution� it allows signi�cant performance gains since it can guarantee that each

portion of the �le will be accessed by only a single processor� This guarantee reduces the need for

communication and synchronization between the nodes�

While Vesta provides a �exible and powerful method of specifying the distribution of a regular data

structure across compute and I�O nodes� it too has limitations� Vesta seems ill�suited to problems that

use irregular data� where irregular is de�ned as anything that cannot be laid out in a rectangle or that

cannot be partitioned into rectangular sub�blocks of a single size� One of Vestas great strengths is

its two�dimensional �le abstraction� which allows programmers to specify layout information that will

hopefully lead to performance improvements� Unfortunately� this abstraction makes it di�cult for Vesta

to share �les with applications on other systems� and it increases the di�culty of porting old applications

to a new platform� This two�dimensional layout can also adversely a�ect performance� The �horizontal�

dimension of a Vesta �le is tied to the number of cells� which in turn is heavily related to the physical

layout of the �le� This means that a �ne�grain cyclic�cyclic distribution would require many cells� which

could result in a signi�cant performance penalty� Again� this interface could be built on top of the

extensions we described above�

Neither nCUBE nor Vesta appear to provide an easy way for two compute nodes to access overlapping

regions of a �le� Since many models of physical events require logically adjacent nodes to share boundary

information� this could be an important restriction� This can be seen in the �le�sharing results in �KN��	�

which show that most read�only �les had at least some bytes that were accessed by multiple processors�

	�

It should be noted that the same results show that in many cases� the strict partitioning o�ered by

nCUBE and Vesta may match the applications needs for write�only �les�

��� MPI�IO

MPI�IO is a draft standard for parallel I�O from NASAs Ames Research Center and IBMs T�J� Watson

Research Center� which derives much of its philosophy and interface from the MPI message�passing

standard �CFH���	� In MPI�IO� �le I�O is modeled as message passing� That is� reading from a �le

is analogous to receiving a message and writing to a �le is analogous to sending a message� Just as

MPI provides structured messages based on simple and derived types� access to �les in MPI�IO is based

on etypes and �letypes� Like structs in C� MPIs derived types and MPI�IOs etypes are constructed

from simple base types such as integers or �oats� Filetypes in turn are structured collections of etypes�

Unlike structs or derived types� �letypes may contain holes as well as data� Using the �letype as a

template� these holes allow applications to specify which pieces of data in a �le are to be accessed and

which are to be skipped over� When multiple nodes in an application access a �le� they typically all

share a common etype while each node has its own �letype� which indicates which portions of the �le

that node will access� Through the proper combination of etypes and holes� �letypes may be used to

generate the same regular access patterns as the interfaces we presented above�

MPI�IO presents three compelling advantages� First� rather than being speci�ed in bytes� I�O is

speci�ed in terms of the same data types programmers use in their applications� eliminating the need

to painstakingly calculate o�sets into the �le� Second� MPI�IO may well bene�t from its association

with MPI� which shows signs of becoming the dominant message�passing interface of the near future�

Finally� MPI�IO o�ers the promise of providing a common interface to parallel I�O across many di�erent

platforms� The primary disadvantage of MPI�IO is its unfamiliarity� particularly to those programmers

who are accustomed to Unix�like I�O� It remains to be seen whether or not this interface will be embraced

by scienti�c programmers� Finally MPI�IO has yet to be implemented� and it is possible that design

decisions that look good on paper will not work in practice� It appears that MPI�IO could also feasibly

be implemented on top of a nested�batched interface�

� Conclusion

We found that while many of the �les used by the parallel scienti�c applications in our traces did not

exhibit the strongly consecutive access patterns typically seen in uniprocessor and vector supercomputer

�le systems� they were still accessed in a highly regular manner� We have analyzed the high�level

structure of these regular patterns and discovered that the Unix�like �le�system interface does not provide

programmers with a way to describe that structure to the �le system�

We have described several extensions to the conventional �le�system interface that allow programmers

of multiprocessors to make I�O requests at a higher semantic level� Although these extensions are

	�

intended to serve primarily as low�level primitives for libraries� there is no reason they could not be

used by end�user programmers as well� In our traced workload� the nested�strided extension alone could

potentially have reduced the number of requests made by over ���� reducing aggregate latency� and

given the �le system the opportunity to optimize the movement of data� These advantages are achieved

without abandoning the traditional notion of a �le as an addressable� linear sequence of bytes and

without abandoning the traditional read���write�� interface� This consistency with existing systems

allows us to continue to use �dusty�deck applications and to easily transfer data between applications

on di�erent systems�

WWW

More information about this work and the CHARISMA project� as well as pointers to many of the

papers referenced here may be found at http���www�cs�dartmouth�edu�pario�html�

References

�BGST��	 Michael L� Best� Adam Greenberg� Craig Stan�ll� and Lewis W� Tucker� CMMD I�O� A par�

allel Unix I�O� In Proceedings of the Seventh International Parallel Processing Symposium�

pages �
������ �����

�BHK���	 Mary G� Baker� John H� Hartman� Michael D� Kupfer� Ken W� Shirri�� and John K� Ouster�

hout� Measurements of a distributed �le system� In Proceedings of the Thirteenth ACM

Symposium on Operating Systems Principles� pages ��
����� �����

�CBF��	 Peter F� Corbett� Sandra Johnson Baylor� and Dror G� Feitelson� Overview of the Vesta

parallel �le system� In IPPS ��� Workshop on Input�Output in Parallel Computer Systems�

pages ����� �����

�CF��	 Peter F� Corbett and Dror G� Feitelson� Design and implementation of the Vesta parallel

�le system� In Proceedings of the Scalable High�Performance Computing Conference� pages

������ �����

�CFH���	 Peter Corbett� Dror Feitelson� Yarson Hsu� Jean�Pierre Prost� Marc Snir� Sam Fineberg� Bill

Nitzberg� Bernard Traversat� and Parkson Wong� MPI�IO� a parallel �le I�O interface for

MPI� Technical Report NAS�������� NASA Ames Research Center� January ����� Version

����

�Cra��	 Cray Research� listio manual page� ����� Publication SR������

�DdR��	 Erik DeBenedictis and Juan Miguel del Rosario� nCUBE parallel I�O software� In

Eleventh Annual IEEE International Phoenix Conference on Computers and Communica�

tions �IPCCC�� pages ���������� April �����

	

�FBD��	 Craig S� Freedman� Josef Burger� and David J� Dewitt� SPIFFI � a scalable parallel �le

system for the Intel Paragon� Submitted to IEEE TPDS� �����

�FCHP��	 Dror G� Feitelson� Peter F� Corbett� Yarson Hsu� and Jean�Pierre Prost� Parallel I�O systems

and interfaces for parallel computers� In Multiprocessor Systems � Design and Integration�

World Scienti�c� ����� To appear�

�IBM��	 IBM� AIX Version �	
 General Programming Concepts� twelfth edition� October �����

�KN��	 David Kotz and Nils Nieuwejaar� Dynamic �le�access characteristics of a production parallel

scienti�c workload� In Proceedings of Supercomputing ���� pages �������� November �����

�Kot��	 David Kotz� Disk�directed I�O for MIMD multiprocessors� In Proceedings of the ����

Symposium on Operating Systems Design and Implementation� pages ������ November �����

�LIN���	 Susan J� LoVerso� Marshall Isman� Andy Nanopoulos� William Nesheim� Ewan D� Milne�

and Richard Wheeler� sfs� A parallel �le system for the CM��� In Proceedings of the ����

Summer USENIX Conference� pages �������� �����

�LMKQ
�	 Samuel J� Le er� Marshall Kirk McKusick� Michael J� Karels� and John S� Quarterman�

The Design and Implementation of the �	�BSD UNIX Operating System� Addison�Wesley�

��
��

�MK��	 Ethan L� Miller and Randy H� Katz� Input�output behavior of supercomputer applications�

In Proceedings of Supercomputing ���� pages �������� November �����

�OCH�
�	 John Ousterhout� Herv!e Da Costa� David Harrison� John Kunze� Mike Kupfer� and James

Thompson� A trace driven analysis of the UNIX ��� BSD �le system� In Proceedings of the

Tenth ACM Symposium on Operating Systems Principles� pages ������ December ��
��

�PEK���	 ApratimPurakayastha� Carla Schlatter Ellis� David Kotz� Nils Nieuwejaar� and Michael Best�

Characterizing parallel �le�access patterns on a large�scale multiprocessor� In Proceedings of

the Ninth International Parallel Processing Symposium� �����

�Pie
�	 Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In Fourth

Conference on Hypercube Concurrent Computers and Applications� pages �������� ��
��

�RP��	 Brad Rullman and David Payne� An e�cient �le I�O interface for parallel applications�

DRAFT presented at the Workshop on Scalable I�O� Frontiers ��� February �����

	�

