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An exciting trend in high-performance distributed com-
puting is the development of widely-distributed networks of
heterogeneous systems and devices, known ascomputational
grids. Grid applications use high-speed networks to logically
assemble collections of resources such as scientific instru-
ments, supercomputers, databases, and so forth. One impor-
tant challenge facing grid computing is efficient parallel I/O
for data-intensive grid applications. Data-intensive grid ap-
plications are particularly challenging because they require
access to large (terabyte-petabyte) remote data sets and of-
ten have computational requirements that can only be met by
high-performance supercomputers. In addition, data is often
stored in “raw” formats and requires significant preprocess-
ing or filtering before the computation can take place. Such
applications exist in seismic processing, climate modeling,
physics, astronomy, biology, chemistry, and visualization.

In this report, we present the Armada framework [OK01]
for building I/O-access paths for data-intensive grid appli-
cations. We designed Armada to allow grid applications to
efficiently access data sets distributed across a computational
grid, and in particular to allow the application programmer
and the dataset provider to design and deploy a flexible net-
work of application-specific and dataset-specific functional-
ity across the grid.

Using the Armada framework, grid applications access re-
mote data sets by sending data requests through a graph of
distributed application objects. The graph is called an “ar-
mada” and the objects are called “ships”. Figure 1 shows a
simple armada for an application accessing applying a pre-
processing operator to a distributed data set. We expect most
applications to access data through existing armadas con-
structed by a data set provider; however, it is also possible for
the application to extend existing armadas with application-
specific functionality or to construct entire armadas from
scratch. The armada encodes the programmer’s interface,
data layout, caching and prefetching policies, interfaces to
heterogeneous data servers, and most other functionality pro-
vided by an I/O system. The application sees an armada as
an object providing access to a specific type of data through
a high-level interface. One use of Armada, for example, is
to construct complicated data sets on top of legacy files and
databases.
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Figure 1: Armada for an application accessing a distributed
data set.
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Figure 2: Hierarchy of Armada ships.

Our framework includes a rich set of ship definitions
(shown in Figure 2) implemented as Java class objects.
Among these are structural ships to manage distributed data
sets and replicas; data-processing ships that manipulate data
as it passes through the network; optimization ships that use
latency-reducing techniques like caching, prefetching, and
data aggregation to improve performance; ships that pro-
vide high-level interfaces to applications; and ships that in-
terface with local file systems or databases. For more com-
plex applications, the basic ships can be extended to provide
application-specific functionality.

The metadata used to describe the interconnection of the
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(a) Sequential sub-
graph.
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Figure 3: Subgraphs in a series-parallel tree.

ships and the information about each ship (location of its im-
plementation, hints about placement of the ship, and so forth)
is called a “blueprint”. We use a series-parallel tree (SP tree)
to describe the layout of the ships. In such a graph, a node
represents a ship (base case) or a subgraph. Subgraphs (il-
lustrated in Figure 3) take two forms: a sequential subgraph
that represents a series of connected nodes and a parallel sub-
graph that represents a set of nodes connected in parallel. An
SP tree is syntactically easy to describe (we use XML) and
easy to manipulate internally.

The Armada system attempts to improve performance in
three ways: selecting an effective placement of ships in the
network, optimizing the data-flow within the armada, and re-
structuring the graph (which may include replicating ships).
Placement of ships will likely have the largest effect on per-
formance. In a typical situation, there may be a slow or
congested network connecting sites hosting the application
and sites hosting the data segments. When reading a data
set, moving data-reduction operators close (in terms of net-
work connectivity) to the data can dramatically reduce the
amount of data that travels through the “slow” portion of
the network. We can also reduce the number of data trans-
fers by bypassing portions of the armada that do not process
the data. For example, many of the structural ships simply
route data to a particular location. Finally, in some cases, re-
structuring the graph may improve performance by distribut-
ing compute and network load and possibly moving data-
reduction operators closer to the data source. Consider, for
example, a parallel application that filters data from a feder-
ated data set distributed to two administrative domains. We
illustrate this example in Figure 4. The application first con-
structs a blueprint describing the compute node layout, an
interface to the data, and the preprocessing required. It then
attaches the application blueprint to a blueprint from the data
provider that describes the data layout. Armada restructures
the graph, where possible, to remove network bottlenecks
and push data reduction filters closer to the data servers. It
then assigns ships to hosts within the appropriate administra-
tive domain and initiates the data transfer. In our example,
Armada replicates the API ship to place one on each com-
pute node, it converts the filter “Op” to “combine” ships and
other “Op” ships that are placed in the local domain of the

data servers.
Although several existing software systems support pro-

cessing of data near the data source, these systems typi-
cally restrict the application to a specific access interface.
Mocha [RMR00] from the University of Maryland, and
dQUOB [PS00] from the Georgia Institute of Technology,
require an SQL-like interface. DataCutter [BFK+00], from
the University of Maryland, is specially designed to select
data subsets through multi-dimensional range queries. In Ar-
mada, the application interface will usually be defined or se-
lected by the data provider or the application. In many cases,
they may choose a standard interface (e.g., POSIX or SQL);
however, some applications may prefer a more specialized
interface, for example a collective interface for a parallel ap-
plication.

The Coign [HS99] distributed partitioning system, from
Microsoft, and Abacus [APGG00], from Carnegie Mellon
University, are both systems that attempt to improve network
performance of distributed applications by selecting an ap-
propriate placement for application components to minimize
communication. While our current version places objects
manually, our goal is to extend the ideas from Coign and
Abacus to place objects based on communication, CPU, and
memory requirements of the various components.

In summary, the goal of our work is to improve perfor-
mance of data-intensive grid applications by reducing the
amount of data transferred through the network and pro-
viding a mechanism for arranging access to distributed and
replicated datasets. If we can show that our approach suc-
cessfully meets this goal, our work will impact and influence
the way large distributed datasets are managed and accessed
across computational grids.
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Figure 4: Original and optimized armadas for an application spanning three administrative domains.
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