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Computational Grids

Networks of geographically distributed heterogeneous
systems and devices

Data-intensive grid applications

• Access large remote datasets (terabyte–petabyte)

• Datasets often need pre/post-processesing

• Often computationally intensive

• Examples

− Climate modeling
− Astronomy
− Computational Biology
− High-energy physics
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The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)
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The Armada Framework
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Armada

Armada is not a data storage system.
Armada is not a parallel file system.

The data segments that make up a data set are stored in
conventional data servers as files, databases, or the like.

The Armada graph encodes most functionality provided by
the I/O system:

• programmers interface,

• data layout,

• caching and prefetching policies,

• interfaces to heterogeneous data servers.
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Armada can...

With Armada, one can...

• build a graph for parallel access to a group of legacy files,

• present many similar data sets through a standard
interface, and

• provide transparent access to derived “virtual” data–
either cached or calculated as needed.
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Restructuring

Problems with the example application:

• Potential bottlenecks in composed graph

• original graph restricts placement alternatives for filter

Original graph Restructured graph
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Placement

After restructuring:

1. Armada deploys ships to appropriate administrative
domains to optimize data flow, then

2. domain-level resource manager decides placement of
individual ships.
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Talk Outline

• Introduction

• Framework details

− Ships
− Graph Representation

• Restructuring graphs to improve data flow

• Partitioning graphs and placing ships

• Experiments

• Conclusion
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Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization 

Interface 

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)
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Ships

Armada includes a rich set of extensible ship classes.
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Armada includes a rich set of extensible ship classes.
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Merge ships interleave requests or data from
multiple input streams.
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Ships

Armada includes a rich set of extensible ship classes.
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PSfrag replacements

Data
Processing

Data-processing ships manipulate data, either in-
dividually, or in groups as it passes through the
ship.
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Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Interface 

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements
Optimization

Optimization ships improve I/O performance
through latency-reduction techniques like caching
and prefetching.
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Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)
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Storage (File, Query)
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Interface

Client-interface ships
convert method calls to a set of requests for data.

Storage-interface ships
access storage devices to process requests.
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Properties of Ships

Properties of ships are

• used by restructuring and placement algorithms

• assigned by the programmer

• encoded in the ship’s definition

Properties identify whether a ship

• is data- or request-equivalent

• increases or decreases data flow,

• is parallelizable
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Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Examples:

{1, 2, 3, 4, 5} ≡ {2, 3, 5, 1, 4}

{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 4, 5}}

{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 5, 4}}

In other words, order does not matter.
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Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

A request-equivalent ship
produces request sequence equivalent to its input.

A data-equivalent ship
produces data sequence equivalent to its input.

Most structural ships are both request and data-equivalent.
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Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Distribution ships partition requests or data

• S1, S2, and S3 are
subsequences of R.

• R ≡ {S1, S2, S3}
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Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Merge ships interleave requests or data

• R1, R2, and R3 are
subsequences of S.

• {R1, R2, R3} ≡ S
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Ships that Change Data Flow

Data-reducer: a ship that decreases the data flow

• filter

• compress

• reduce (min, max, sum)

Data-increaser: a ship that increases the data flow

• cache

• decompress
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Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive
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Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive
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Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output
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Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

seg

seg

M

dist

dist

  

Armada – p.14



Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

 P

 P

seg

seg

M

dist

dist

  

 

P

seg seg

P

seg seg

Armada – p.14



Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
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Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)
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Graph Restructuring

Goals:

• remove bottlenecks (increase parallelism)

• allow effective placement of ships

We restructure by swapping adjacent ships in the SP-tree

• increase parallelism by swapping parallelizable ships with
structural ships

• reduce network traffic on slow links by

− moving data-reducing ships toward data source,
− moving data-increasing ships toward data dest
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean
Armada – p.16
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The Restruct Algorithm
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).
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2. else if N is a parallel node

(a) RESTRUCT each child of N
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean
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The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Assign S to N

ba

S

dc

N

PSfrag replacements

←
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Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).
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Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

(A) Non-structural, (B) Non-structural
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Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

(A) Non-structural, (B) Distribution, Parallel node

p
A

s

B

S

PBA

A

A

A

p

s

B

S

P

S

A

S

A

S

A

B

PARALLELIZE right
Armada – p.17



Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).
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Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

Parallel node, (A) Merge, (B) Distrib, Parallel node
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Beneficial Swap

A swap is deemed beneficial if it increases parallelism, moves a
data-reducing ship closer to the data source, or moves a data-increasing
ship closer to data destination.

Algorithm to decide a beneficial swap of adjacent ships A and B

1. Assign a preferred direction to each ship (1 for right, −1 for left, or 0)

• Merge ships prefer to go right (increase parallelism)

• Distribution ships prefer to go left (increase parallelism)

• Data-reducing ships prefer to swap toward the data destination

• Data-increasing ships prefer to swap toward the data source

2. return true if preferred direction of A is greater than preferred
direction of B

3. else return false
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Restructuring the Example Graph
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Placement

Hierarchical graph partitioning

1. Partition the ships into k sets (each set represents an
administrative domain).

2. Partition the ships within each domain to processors
provided by domain-level schedulers.

The Graph Partitioning Problem
Given graph G(V,E) with weighted vertices and weighted
edges, partition the vertices into k sets in such a way to
balance the sum of the vertices and to minimize the weights
of the edge crossings between sets
(NP-hard [Garey et al., 1976]).
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Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct graph from SP-tree

2. Assign edge weights

3. Assign vertex weights

4. partition graph (using CHACO)

5. for each domain

(a) request procs from domain

(b) partition sub-graph
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Experiments

Examined four configurations of the example application with a filter that
removed exactly 50% of the data.

filt

API

repAPI

API

dist
seg

seg

seg

seg
dist

Client LAN

Server LAN 1

Server LAN 2

M

(a) orig1

filt

API

repAPI

API

dist
seg

seg

seg

seg
dist

Client LAN

Server LAN 1

Server LAN 2

M

(b) orig2

API rep

API

API

dist
seg

seg
rep

rep

filt

filt

dist
seg

seg

filt

filt

Server LAN 1Client LAN

Server LAN 2

same host

M

M

(c) restruct1

API rep

API

API

dist
seg

seg
rep

rep

filt

filt

dist
seg

seg

filt

filt

Server LAN 1Client LAN

Server LAN 2

separate hosts

M

M

(d) restruct2
Armada – p.22



Experiment Setup

The area between the blobs represents the WAN

• each LAN connected to the
WAN by single router

• each WAN link has limited
capacity

LAN 1

LAN 3

LAN 2
WAN

Ran experiments on the Emulab Network Testbed

• Three LANs, each with...

− Five 850 MHz Pentium III processors
− 100 Mbps switched network (0.15 msec latency)

• WAN consisted of...

− Three network links with 2.0 msec latency
− Bandwidth ranged from 2 to 100 Mbps
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Results: Effective Throughput
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Related Work

Parallel processing of I/O streams

• PS2[Messerli, 1999]

− data-flow model with automatic parallelization

• DataCutter [Spencer et al., 2002]

− component-based, analytic model to decide parallelization

Armada does not force the whole application into a data-flow model
Armada widens data flow for parallel clients and parallel servers

Operation re-ordering to improve data flow, e.g., in databases

• dQUOB [plale et al. 2000]

− optimize query tree to move high-filtering portions close to data
− exploit well-defined properties associated with query processing

Armada provides a more general approach
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Future Work

Real Applications

• fMRI application (80 TBytes of brain image data)

• Seismic application (3 TBytes of synthetic seismic data)

• Can components be reused between applications?

• How much can performance benefit?

Modifications toBENEFICIAL and COMMUTATIVE

Placement

• incorporate domain-specific information into the partitioner (compute
capacity, memory capacity, etc...)

• dynamic re-deployment when network conditions change

Tuning for cluster computing (in addition to the grid)
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Summary

The Armada framework

• allows data provider to describe complex distributed data sets

• allows the application to describe processing required before computation

• data-flow model provides a “latency-tolerant” approach useful for wide-area computing

Restructuring algorithm

• arranges graph to provide end-to-end parallel I/O

• enables effective placement of data-processing components to reducing network traffic
over slow network links

Placement

• hierarchical approach: application-level assignment to domain, domain-level
assignment to processors.

Experiments show that restructuring is beneficial in both low and high-bandwidth
environments.
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