
High-Performance I/O for
Computational Grid Applications

Ron Oldfield and David Kotz

{raoldfi,dfk}@cs.dartmouth.edu.

Department of Computer Science, Dartmouth College

http://www.cs.dartmouth.edu/∼dfk/armada/

Armada – p.1

http://www.cs.dartmouth.edu/~dfk/armada/

Computational Grids

Networks of geographically distributed heterogeneous
systems and devices

Data-intensive grid applications

• Access large remote datasets (terabyte–petabyte)

• Datasets often need pre/post-processesing

• Often computationally intensive

• Examples

− Climate modeling
− Astronomy
− Computational Biology
− High-energy physics

Armada – p.2

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)

filt

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

M

Armada – p.3

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

MPSfrag replacements
Requests→

filt

Armada – p.3

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

MPSfrag replacements
← Data (reads)

filt

Armada – p.3

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Requests cause pipelined data flow through graph

• Graph has two distinct portions:

− from the data provider (describes layout of data set)
− from the application-programmer

(pre/post-processing)

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

MPSfrag replacements
Data (writes)→

filt

Armada – p.3

Armada

Armada is not a data storage system.
Armada is not a parallel file system.

The data segments that make up a data set are stored in
conventional data servers as files, databases, or the like.

The Armada graph encodes most functionality provided by
the I/O system:

• programmers interface,

• data layout,

• caching and prefetching policies,

• interfaces to heterogeneous data servers.

Armada – p.4

Armada can...

With Armada, one can...

• build a graph for parallel access to a group of legacy files,

• present many similar data sets through a standard
interface, and

• provide transparent access to derived “virtual” data–
either cached or calculated as needed.

Armada – p.5

Restructuring

Problems with the example application:

• Potential bottlenecks in composed graph

• original graph restricts placement alternatives for filter

Original graph Restructured graph

filt

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

M

bottleneck filt
API

API

API

seg

seg

seg

seg

client processors
storage servers

dist

dist

filt

filt

filt

rep

rep

M

M

rep

Armada restructures original graph to improve data flow.

Armada – p.6

Placement

After restructuring:

1. Armada deploys ships to appropriate administrative
domains to optimize data flow, then

2. domain-level resource manager decides placement of
individual ships.

filt
API

API

API

seg

seg

seg

seg

client LAN
Server LAN 1

dist

dist

filt

filt

filt

rep

rep

M

M

rep

Server LAN 2

Armada – p.7

Talk Outline

• Introduction

• Framework details

− Ships
− Graph Representation

• Restructuring graphs to improve data flow

• Partitioning graphs and placing ships

• Experiments

• Conclusion

Armada – p.8

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Merge

Data
Processing

Optimization

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements

Distribute (partition, select, copy)

Distribute ships partition requests or data to
multiple output streams.

PSfrag replacements

Distribute (partition, select, copy)

R

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Data
Processing

Optimization

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements

Merge

Merge ships interleave requests or data from
multiple input streams.

PSfrag replacements

Merge

S

R

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Optimization

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements

Data
Processing

Data-processing ships manipulate data, either in-
dividually, or in groups as it passes through the
ship.

PSfrag replacements

Data
Processing

SR

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements
Optimization

Optimization ships improve I/O performance
through latency-reduction techniques like caching
and prefetching.

PSfrag replacements

Optimization

SR

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements
Interface

Client-interface ships
convert method calls to a set of requests for data.

Storage-interface ships
access storage devices to process requests.

PSfrag replacements

Interface

S

R

R1

R2

R3

S1

S2

S3

PSfrag replacements

Interface

S

R

R1

R2

R3

S1

S2

S3

S

R

R1

R2

R3

S1

S2

S3

Armada – p.9

Properties of Ships

Properties of ships are

• used by restructuring and placement algorithms

• assigned by the programmer

• encoded in the ship’s definition

Properties identify whether a ship

• is data- or request-equivalent

• increases or decreases data flow,

• is parallelizable

Armada – p.10

Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Examples:

{1, 2, 3, 4, 5} ≡ {2, 3, 5, 1, 4}

{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 4, 5}}

{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 5, 4}}

In other words, order does not matter.

Armada – p.11

Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

A request-equivalent ship
produces request sequence equivalent to its input.

A data-equivalent ship
produces data sequence equivalent to its input.

Most structural ships are both request and data-equivalent.

Armada – p.11

Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Distribution ships partition requests or data

• S1, S2, and S3 are
subsequences of R.

• R ≡ {S1, S2, S3}

PSfrag replacements

R
S1

S2

S3

Armada – p.11

Request and Data Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Merge ships interleave requests or data

• R1, R2, and R3 are
subsequences of S.

• {R1, R2, R3} ≡ S

PSfrag replacements

R1

R2

R3

S

Armada – p.11

Ships that Change Data Flow

Data-reducer: a ship that decreases the data flow

• filter

• compress

• reduce (min, max, sum)

Data-increaser: a ship that increases the data flow

• cache

• decompress

Armada – p.12

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Armada – p.13

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Right-parallelizable

A B

PSfrag replacements

R

S1

S2

S3

Original

A

A

A

B

PSfrag replacements

R

S1

S2

S3

Replicated

A

A

A

BM

PSfrag replacements

R

S1

S2

S3

Recursed

Armada – p.13

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Left-parallelizable

AB

PSfrag replacements

R

R1

R2

R3

Original

A

A

A

B

PSfrag replacements

R

R1

R2

R3

Replicated

A

A

A

MB

PSfrag replacements

R

R1

R2

R3

Recursed

Armada – p.13

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

seg

seg

M

dist

dist

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

 P

 P

seg

seg

M

dist

dist

P

seg seg

P

seg seg

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

seg

seg

M

dist

dist

P

seg seg

P

seg seg

S S

dist dist

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

seg

seg

M

dist

dist

 P

P

seg seg

P

seg seg

P

S S

dist dist

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

seg

seg

M

dist

dist

 P

 S

P

seg seg

P

seg

rep

seg

P

S S

dist dist

S

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

 P

 S

seg

seg

M

dist

dist

 P

 S

P

seg seg

P

seg

rep

seg

Pfilt

APIAPI API

P

S S

dist dist

M

S S

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

 P

 S

seg

seg

M

dist

dist

 P
S

P

seg seg

P

seg

rep

seg

Pfilt

APIAPI API

P

S S

dist dist

Armada – p.14

Graph Restructuring

Goals:

• remove bottlenecks (increase parallelism)

• allow effective placement of ships

We restructure by swapping adjacent ships in the SP-tree

• increase parallelism by swapping parallelizable ships with
structural ships

• reduce network traffic on slow links by

− moving data-reducing ships toward data source,
− moving data-increasing ships toward data dest

Armada – p.15

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean
Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append b to S

cb

N

da

S

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append b to S

c

N

dab

S

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append c to S

c

N

dab

S

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append c to S

N

dacb

S

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Slide c left

N

dacb

S

swap?

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append a to S

N

dacb

S

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append a to S

N

dcb

S

a

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Slide a left

N

dcb

S

a

swap?

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Slide a left

N

dab

S

c

swap?

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append d to S

N

dba

S

c

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Append d to S

N

ba

S

dc

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Slide d left

N

ba

S

dc

swap?

Armada – p.16

The Restruct Algorithm

The RESTRUCT algorithm traverses the SP-tree (depth-first) from node N ,
revisiting when necessary (all series and parallel nodes are initially
marked dirty).

1. if N is a leaf or clean (base case)

(a) return

2. else if N is a parallel node

(a) RESTRUCT each child of N

3. else if N is a series node

(a) create a new series node S

(b) while N has children

i. child←remove leftmost child of N

ii. append child to S

iii. SLIDE child left
(c) N ← S

4. mark N clean

Assign S to N

ba

S

dc

N

PSfrag replacements

←

Armada – p.16

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

Armada – p.17

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

(A) Non-structural, (B) Non-structural

B sA
S

A B

A sB
S

B A

Armada – p.17

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

(A) Non-structural, (B) Distribution, Parallel node

p
A

s

B

S

PBA

A

A

A

p

s

B

S

P

S

A

S

A

S

A

B

PARALLELIZE right
Armada – p.17

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

Parallel node, (A) Merge, (B) Non-structural

p
BA

s

S

P BA

S

P

S

B

S

B

S

B

A

p

B

B

B
s

s

s

A

s

PARALLELIZE left
Armada – p.17

Swapping Ships

Conditions for swapping two series-connected ships (labeled A and B)

• A and B are commutative (A or B is request-equivalent and A or B is
data-equivalent)

• swapping A and B is beneficial to the application (see next slide), and

• the graph resulting from a swap is an SP-DAG (we allow four
configurations).

Parallel node, (A) Merge, (B) Distrib, Parallel node

B

pp

s

A

S

P B PA

S

P P

S S

B A

S

A

S

A

S

B

S

B

p

s

B
ss

A

B
ss

A

B
ss

A

p

PARALLELIZE right and left
Armada – p.17

Beneficial Swap

A swap is deemed beneficial if it increases parallelism, moves a
data-reducing ship closer to the data source, or moves a data-increasing
ship closer to data destination.

Algorithm to decide a beneficial swap of adjacent ships A and B

1. Assign a preferred direction to each ship (1 for right, −1 for left, or 0)

• Merge ships prefer to go right (increase parallelism)

• Distribution ships prefer to go left (increase parallelism)

• Data-reducing ships prefer to swap toward the data destination

• Data-increasing ships prefer to swap toward the data source

2. return true if preferred direction of A is greater than preferred
direction of B

3. else return false

Armada – p.18

Restructuring the Example Graph

S

P

seg seg

P

seg seg

P

APIAPI API

P

S S

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

API

API

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

Armada – p.19

Restructuring the Example Graph

S

P

seg seg

P

seg seg

P

APIAPI API

P

S Sswap

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

API

API

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

swap

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

Armada – p.19

Restructuring the Example Graph

S

P

seg seg

P

seg seg

P

APIAPI API

P

S S

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

filt
→

API

API

API

seg

seg

seg

seg

client processors
storage servers

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

filt
→

Armada – p.19

Restructuring the Example Graph

S

P

seg seg

P

seg seg

P

APIAPI API

P

S S

swap swap

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

filt
→

API

API

API

seg

seg

seg

seg

client processors
storage serversswap

swap

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

filt
→

Armada – p.19

Restructuring the Example Graph

S

P

seg seg

P

SAPIAPI API

P

SS

P

seg seg

S

SS

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

filt
→

filt
→

filt
→

API

API

API

seg

seg

seg

seg

client processors
storage servers

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

filt
→

filt
→

filt
→

Armada – p.19

Restructuring the Example Graph

S

P

seg seg

P

SAPIAPI API

P

SS

P

seg seg

S

SS

swap

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

filt
→

filt
→

filt
→

API

API

API

seg

seg

seg

seg

client processors
storage servers

swap

PSfrag replacements

rep
←

dist
←

dist
←

M
→

filt
→

filt
→

filt
→

filt
→

Armada – p.19

Restructuring the Example Graph

S

P

seg seg

P

S

P

SS

P

seg seg

S

SS

API

S

API

S

API

S

PSfrag replacements

rep
←

rep
←

rep
←

dist
←

dist
←

M
→

M
→

filt
→

filt
→

filt
→

filt
→

API

API

API

seg

seg

seg

seg

client processors
storage servers

PSfrag replacements

rep
←

rep
←

rep
←

dist
←

dist
←

M
→

M
→ filt

→

filt
→

filt
→

filt
→

Armada – p.19

Placement

Hierarchical graph partitioning

1. Partition the ships into k sets (each set represents an
administrative domain).

2. Partition the ships within each domain to processors
provided by domain-level schedulers.

The Graph Partitioning Problem
Given graph G(V,E) with weighted vertices and weighted
edges, partition the vertices into k sets in such a way to
balance the sum of the vertices and to minimize the weights
of the edge crossings between sets
(NP-hard [Garey et al., 1976]).

Armada – p.20

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct graph from SP-tree

2. Assign edge weights

3. Assign vertex weights

4. partition graph (using CHACO)

5. for each domain

(a) request procs from domain

(b) partition sub-graph

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct graph from SP-tree

2. Assign edge weights

3. Assign vertex weights

4. partition graph (using CHACO)

5. for each domain

(a) request procs from domain

(b) partition sub-graph

25
25

25

25

100

25
13

26
8

16

16

16

8

8

8

8

8 26

13

13

13

25

25

25

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct graph from SP-tree

2. Assign edge weights

3. Assign vertex weights

4. partition graph (using CHACO)

5. for each domain

(a) request procs from domain

(b) partition sub-graph

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

25
13

26
8

16

16

16

8

8

8

8

8 26

13

13

13

25

25

25
PSfrag replacements

∞

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct graph from SP-tree

2. Assign edge weights

3. Assign vertex weights

4. partition graph (using CHACO)

5. for each domain

(a) request procs from domain

(b) partition sub-graph

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

25
13

26
8

16

16

16

8

8

8

8

8 26

13

13

13

25

25

25
PSfrag replacements

∞

∞

∞

∞

∞

∞

∞

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct graph from SP-tree

2. Assign edge weights

3. Assign vertex weights

4. partition graph (using CHACO)

5. for each domain

(a) request procs from domain

(b) partition sub-graph

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

25
13

26
8

16

16

16

8

8

8

8

8 26

13

13

13

25

25

25
PSfrag replacements

∞

∞

∞

∞

∞

∞

∞

Armada – p.21

Partitioning an Armada Graph

Chaco Graph Partitioning Software [Hendrickson and Leland, SNL]

Algorithm for placement of Armada ships

1. Construct graph from SP-tree

2. Assign edge weights

3. Assign vertex weights

4. partition graph (using CHACO)

5. for each domain

(a) request procs from domain

(b) partition sub-graph

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

25
13

26
8

16

16

16

8

8

8

8

8 26

13

13

13

25

25

25

Armada – p.21

Experiments

Examined four configurations of the example application with a filter that
removed exactly 50% of the data.

filt

API

repAPI

API

dist
seg

seg

seg

seg
dist

Client LAN

Server LAN 1

Server LAN 2

M

(a) orig1

filt

API

repAPI

API

dist
seg

seg

seg

seg
dist

Client LAN

Server LAN 1

Server LAN 2

M

(b) orig2

API rep

API

API

dist
seg

seg
rep

rep

filt

filt

dist
seg

seg

filt

filt

Server LAN 1Client LAN

Server LAN 2

same host

M

M

(c) restruct1

API rep

API

API

dist
seg

seg
rep

rep

filt

filt

dist
seg

seg

filt

filt

Server LAN 1Client LAN

Server LAN 2

separate hosts

M

M

(d) restruct2
Armada – p.22

Experiment Setup

The area between the blobs represents the WAN

• each LAN connected to the
WAN by single router

• each WAN link has limited
capacity

LAN 1

LAN 3

LAN 2
WAN

Ran experiments on the Emulab Network Testbed

• Three LANs, each with...

− Five 850 MHz Pentium III processors
− 100 Mbps switched network (0.15 msec latency)

• WAN consisted of...

− Three network links with 2.0 msec latency
− Bandwidth ranged from 2 to 100 Mbps

Armada – p.23

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
M

bi
t/s

ec
)

WAN bandwidth
2*WAN bandwidth
orig1
orig2
restruct1
restruct2

Armada – p.24

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
M

bi
t/s

ec
)

WAN bandwidth
2*WAN bandwidth
orig1
orig2
restruct1
restruct2

Client LAN

Server LAN 1

Server LAN 2

PSfrag replacements

Armada – p.24

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
M

bi
t/s

ec
)

WAN bandwidth
2*WAN bandwidth
orig1
orig2
restruct1
restruct2

Client LAN

Server LAN 1

Server LAN 2

PSfrag replacements

Armada – p.24

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
M

bi
t/s

ec
)

WAN bandwidth
2*WAN bandwidth
orig1
orig2
restruct1
restruct2

Server LAN 1Client LAN

Server LAN 2

same host

PSfrag replacements

Armada – p.24

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
M

bi
t/s

ec
)

WAN bandwidth
2*WAN bandwidth
orig1
orig2
restruct1
restruct2

Server LAN 1Client LAN

Server LAN 2

separate hosts

PSfrag replacements

Armada – p.24

Related Work

Parallel processing of I/O streams

• PS2[Messerli, 1999]

− data-flow model with automatic parallelization

• DataCutter [Spencer et al., 2002]

− component-based, analytic model to decide parallelization

Armada does not force the whole application into a data-flow model
Armada widens data flow for parallel clients and parallel servers

Operation re-ordering to improve data flow, e.g., in databases

• dQUOB [plale et al. 2000]

− optimize query tree to move high-filtering portions close to data
− exploit well-defined properties associated with query processing

Armada provides a more general approach

Armada – p.25

Future Work

Real Applications

• fMRI application (80 TBytes of brain image data)

• Seismic application (3 TBytes of synthetic seismic data)

• Can components be reused between applications?

• How much can performance benefit?

Modifications toBENEFICIAL and COMMUTATIVE

Placement

• incorporate domain-specific information into the partitioner (compute
capacity, memory capacity, etc...)

• dynamic re-deployment when network conditions change

Tuning for cluster computing (in addition to the grid)

Armada – p.26

Summary

The Armada framework

• allows data provider to describe complex distributed data sets

• allows the application to describe processing required before computation

• data-flow model provides a “latency-tolerant” approach useful for wide-area computing

Restructuring algorithm

• arranges graph to provide end-to-end parallel I/O

• enables effective placement of data-processing components to reducing network traffic
over slow network links

Placement

• hierarchical approach: application-level assignment to domain, domain-level
assignment to processors.

Experiments show that restructuring is beneficial in both low and high-bandwidth
environments.

Armada – p.27

The High-Performance I/O for
Computational Grid Applications

Ron Oldfield and David Kotz

Department of Computer Science, Dartmouth College

http://www.cs.dartmouth.edu/∼dfk/armada/

Supported by Sandia National Laboratories under contract DOE-AV6184.

Armada – p.28

http://www.cs.dartmouth.edu/~dfk/armada/

	Computational Grids
	The Armada Framework
	Armada
	Armada can...
	Restructuring
	Placement
	Talk Outline
	Ships
	Properties of Ships
	Request and Data Equivalent Ships
	Ships that Change Data Flow
	Parallelizable Ships
	Graph Representation
	Graph Restructuring
	The Restruct Algorithm
	Swapping Ships
	Beneficial Swap
	Restructuring the Example Graph
	Placement
	Partitioning an Armada Graph
	Experiments
	Experiment Setup
	Results: Effective Throughput
	Related Work
	Future Work
	Summary
	~

