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A Fuzzy MHT Algorithm Applied to Text-Based
Information Tracking

Santiago Aja-Fernández, Carlos Alberola-López, Member, IEEE, and George V. Cybenko

Abstract—In this paper, we carry out a detailed analysis of
a fuzzy version of Reid’s classical multiple hypothesis tracking
(MHT) algorithm. Our fuzzy version is based on well-known
fuzzy feedback systems, but the fact that the system we describe
is specialized for likelihood discrimination makes this study par-
ticularly novel. We discuss several techniques for rule activation.
One of them, namely, thesum–product, seems particularly useful
for likelihood management and its linearity makes it tractable for
further analysis. Our analysis is performed in two stages. First,
we demonstrate that, with appropriately chosen rules, our system
can discriminate the correct hypothesis. Second, the steady-state
behavior with constant input is characterized analytically. This
enables us to establish the optimality of thesum–productmethod
and it also gives a simple procedure to predict the system’s
behavior as a function of the rule base. We believe this fact can
be used to devise a simple procedure for fine-tuning the rule base
according to the system designer needs. The application driving
our fuzzy MHT implementation and analysis is the tracking of
natural language text-based messages. That application is used as
an example throughout the paper.

Index Terms—Fuzzy feedback system, hypotheses discrimina-
tion, information tracking, multiple hypothesis tracking (MHT) al-
gorithm, natural language processing.

I. INTRODUCTION

NATURAL language messages are present in many infor-
mation processing and analysis applications. However,

to-date most systems for natural language processing have been
used for database querying or machine translation. New and
more powerful text processing techniques need to be developed
and analyzed to handle other important applications that
require correlation of text-based messages such as intelligence
analysis, computer security incidents databases, and customer
service reporting.

These applications have several common attributes: they
involve tracking possibly ambiguous reports generated by
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different observers over time (in this contexttracking means
finding which messages deal with the same pieces of informa-
tion and, therefore, they should be correlated somehow over
time). Each such application also tends to be narrow in scope
so a few important keywords should be carefully searched for
and processed. These applications areas are all in need of more
advanced automatic analysis techniques given the increasing
amount of networked text-based information available to them.

TEXTTRACK, described in [1], is a software system whose
goals are to apply advanced signal processing tracking con-
cepts to natural language processing. TEXTTRACK addresses the
problems of correlating and tracking observations of multiple
moving vehicles reported by natural language messages that
are generated by multiple observers asynchronously over time.
The system has demonstrated that such problems can be tackled
using relatively mature concepts from radar signal processing,
namely the multiple hypothesis tracking (MHT) algorithm [20].
The prototype accepts simple natural language messages about
vehicle types and locations, correlates the messages and asso-
ciates groups of messages into the most likely tracks based on
a succession of positions. The correlation procedure is solved
in two steps: first, an appropriately modified, but still classical,
Bayesian framework is used to handle the ambiguity in natural
language descriptions. A formal theorem shows that under very
mild conditions, the correct solution is eventually achieved. The
second step uses a fuzzy inference engine (FIE), specifically, a
fuzzy version of the classical Bayesian Reid’s multiple hypoth-
esis tracking algorithm. Since the purpose is to model natural
language ambiguity, linguistic variables (i.e.,computing with
wordsin Zadeh’s terminology [24]) are a natural choice for this
purpose. However, [1] does not include a rigorous analytical
study of the TEXTTRACK system. That work presented an intu-
itive argument for the system’s effectiveness and was illustrated
with several working examples.

In this paper, we give the fuzzy MHT algorithm originally
developed in [1] a solid theoretical foundation by analytically
characterizing the FIE on which the algorithm is based. Due to
the fact that its mathematical characterization is application-in-
dependent, a natural byproduct of this paper is the broadening of
the range of possible applications of the text-based MHT philos-
ophy. That is, not only is it possible to track mobile man-made
objects, but we will see it is possible to handle information about
any time-varying phenomenon, as long as the phenomenon can
be described by means of a few keywords, and the phenomenon
itself is statistically causal in the sense that the distribution of
future states is statistically dependent on past observed states.

The principal ingredient of the FIE arising in the MHT
algorithm is a variant of well-known fuzzy feedback systems

1063-6706/02$17.00 © 2002 IEEE
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(FFSs). Traditionally such systems have been applied to
control theory so that previous research has focused on issues
specific to this theory. In our case, the quantities that are fed
back to the system are likelihoods accumulated over time
and the consequences of this fact will be explored in detail
in the paper. Though initially motivated by TEXTTRACK, our
study is a general and thorough mathematical analysis of
single-fuzzy-input–single-fuzzy-output feedback systems1

for hypotheses likelihood determination. Consequently, this
system can be used in more applications other than just land
vehicle tracking.

This paper is organized as follows. Section II gives a descrip-
tion of the MHT algorithm and its fuzzy version as well as a re-
view of well-known techniques for rule activation. In Section III
we demonstrate the ability of thefuzzy MHTto discriminate the
most likely hypothesis in a worst-case scenario. This is made
possible by the use of linear operators, such as thesum–product.
Section IV is devoted to calculate the long-term behavior of the
system with a constant input, which turns out to be a function
of the rule database. Our results are validated in Section V by
means of several examples.

We believe that the results obtained in Section IV give great
insight into the system’s behavior, and they provide a great deal
of information relevant to the design of appropriate rule bases
for specific applications even in the absence of data.

II. BACKGROUND

A. The MHT Algorithm

Reid’s [20] MHT algorithm is a well known and widely used
Bayesian approach to multiple target tracking. It is based on
deferring decisions until enough evidence is collected to make
a correct choice. MHT is implemented by explicitly storing as
many hypotheses (i.e., possible classifications into tracks of all
the vehicles so far observed) as possible, together with estimates
of a probability measure of these hypotheses. When a decision
is made, the hypothesis with the current highest likelihood is
taken to be the truth.

Multiple hypothesis tracking algorithms are typically used in
radar applications involving several sensors. The sensors’ prob-
ability of detection is high so there is a large flow of informa-
tion within the system. Sensors returnreportsat discrete time
intervals, producing ascan. Reports from different scans are or-
ganized intotracksaccording to a probabilistic calculus based
on the dynamics of the objects being detected. A track consists
of reports of the same underlying object. A collection of consis-
tent tracks is called ahypothesisand each such hypothesis has
a likelihood. The goal is to maintain the most likely hypotheses
bearing in mind that future reports may dramatically change the
hypotheses’ likelihoods.

To be more specific, and to highlight the recursive nature of
the algorithm, suppose that at time instant, a scan consists of

measurements, which are stored in vector . Suppose
that before receiving this set of measurements, a number of hy-
potheses , i.e., a disjoint set of pre-established tracks, were
stored ( ranges from 1 to the overall number of hypotheses at

1We will only be concerned with single-input single-output systems, so they
will be hereafter referred to as FFS.

time ). Now, each of the observations could be either
a new observation corresponding to one of the existing tracks,
a new target that appears in the sensor’s field of view for the
first time, or a false alarm due to clutter or thermal noise. The
goal of the MHT algorithm is to effectively characterize these
new observations, i.e., to classify them correctly according
to the above three cases, giving rise to a new set of hypotheses

. To that end, it is necessary to build several extended hy-
potheses derived from the most likely associations of new ob-
servations to existing tracks, to compute the new probabilities,
and then to prune the less likely hypotheses (to satisfy finite
storage limitations). The probabilities of the hypotheses are up-
dated recursively as follows.

Hypothesis , i.e., the th hypothesis that includes the ob-
servations , is built by means of appropriately appending
some permutation, , of the new measurements to the hy-
pothesis from the previous time. Thus

(1)

Let denote the set of measurements until time instant; it
consists of

(2)

The goal is to obtain

(3)

that is, to calculate the probability of theth active hypothesis
after associating the observations collected until time instant.
Using Bayes rule, this probability can be shown to be propor-
tional to the product of the following three probabilities

(4)

The last term of this equation is the probability of the parent
hypothesis and is, therefore, available from
the previous iteration. The first factor is the likelihood of the
measurements given an association of measurements to tracks
(which is computed by means of the information on the dy-
namics of the objects involved in the process) and the second
factor is the probability of that specific assignment of observa-
tions to pre-existing tracks.

If text-descriptions (as opposed to radar sensor measure-
ments) are collected, the foregoing scheme is valid provided
that appropriate changes are made. The first factor of equation
(4) is directly used since vehicle dynamics are assumed known;
the third factor does not need any change either; the second
factor, on the other hand, is understood as avehicle compati-
bility measurement, i.e., how likely it is that an observer reports
a car for example and the association is made to a track in
which the vehicle is, possibly, different from a car (a jeep, a
small van or others). The authors demonstrated in [1] that an
MHT-like algorithm so built, will eventually reach a correct
solution in a worst case scenario under a very mild condition,
specifically, provided that the probability of reporting vehicle
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when vehicle is the actual vehicle is greater than the
probability of reporting any other type of vehiclewith .

B. A Fuzzy MHT Algorithm

Because the inputs to the MHT application described in last
section are natural language text messages, a natural alternative
to the Bayesian framework described above is a fuzzy MHT-like
algorithm [1]. The different sources of ambiguity that arise in
this problem, namely, the ambiguity in the description of the
vehicles and the uncertainty in the prediction of future positions
of the objects (since the vehicle dynamics are given in statistical
terms) can be handled with fuzzy logic in a way that appears to
be closer to the human reasoning.

It is clear, however, that a fuzzy MHT algorithm can be easily
generalized to finding associations in a set of reports that de-
scribe, possibly with some ambiguity, some sort of reality about
which previous knowledge is available. Denote byobjectsthe
entities to be tracked, and assume some knowledge is available
about the objects’ behavior (and thus some prediction of the fu-
ture states of the objects is possible). In such a scenario, the
sources of ambiguity would be

1) ambiguity in the description of theobjects;
2) uncertainty in the prediction of the future state of these

objects (some dynamical model is assumed known, per-
haps only in statistical terms).

This ambiguity, inherent both in human natural language and
in stochastic dynamical models, can be modeled by two lin-
guistic variables, namely,reported object(in the case of vehicle
tracking such objects will betruck, van, car …) andprediction
error (small, medium, large …).2 These two variables, together
with a variable calledlikelihood(the values of which are labels
such asunlikely, very likely, and so forth) can be fused together
to create an MHT-like procedure by means of a triple fuzzy rea-
soning, motivated by (4) and driven by the following rules.

1) Rules that play the role of probability

Rule: If is

and is

then is

Rule: If is

and is

then is

Rule: If is

and is

then is

Fact: is

and is

Conclusion: is

2This prediction error must be understood as a measure of the mismatch be-
tween the predicted object state and the observed state. In the case of vehicle
tracking it is a distance error. In other cases appropriate changes must be made.

where, the facts is and is are to be under-
stood as “the last object in the track under analysis is
and the observation is .”

2) With respect to probability , ,
the following rules are appropriate:

Rule: If is

and is

then is

Rule: If is

and is

then is

Rule: If is
and is
then is

Fact: is

and is

Conclusion: is

where is the likelihood derived from the first set of
rules and is the prediction error. is the likelihood of
the hypothesis.

3) Finally, the recursion with the hypothesis likelihood his-
tory

Rule: If is

and is

then is

Rule: If is

and is

then is

Rule: If is

and is

then is

Fact: is

and is

Conclusion: is

where is the hypothesis likelihood history at instant
.

These ideas can be graphically represented as in Fig. 1, where
the first block gives the likelihood of the association of the cur-
rent reported object with the stored object; the second block
weighs this label with the prediction error, to obtain a second
label of likelihood. This second label updates the overall likeli-
hood by means of an inference with the likelihood accumulated
until the previous time instant. As it can be seen, the overall hy-
pothesis likelihood is fed back to the FIE, so we can naturally
denote it as thehypothesis history.
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Fig. 1. A sketch of the fuzzy MHT system.E : prediction error,C : object compatibility,P probability of observation,H : likelihood history.

The key of this system is the last block since it updates all
the previous knowledge coherently with new incoming obser-
vations. As the first and the second blocks do not accumulate
information (they work on “new entries” every time instant),
the way they work is not critical, provided that probable associ-
ations are given higher likelihoods that unprobable. But the third
block is the one which updates the system information using an
FFS. A proper set of rules and fuzzy operations will have to be
chosen to guarantee the correct update of the likelihood history.

We will demonstrate, in the worst case, that provided that the
rule base is correctly designed, the system is able to discriminate
the most likely hypothesis. In addition, we will also prove that
the system output is stable when the input is constant, so we can
guarantee the correct functioning of the whole system in time.

For the sake of clarity, we illustrate the procedure of the
fuzzy MHT algorithm by means of two examples. First, we
consider a land-vehicle tracking application, as in [1]. Over a
known space, we receive text information on the position of
these vehicles. The input patterns will be the description of the
vehicles (truck, van, car …). So the rules that play the role of

will be

Rule: If is

and is

then is

Rule: If is

and is

then is

Rule: If is

and is

then is

Fact: is

and is

Conclusion: is

The prediction error in this application will be the absolute
difference between the predicted and the reported position of
the vehicles. This measure could be fuzzified, so the input to
the system will be a label such aslarge.

Another interesting (though still unimplemented) example
would be the tracking of nonauthorized users on a computer
network. When a user tries to enter a machine by a certain port,
a message could be sent to the tracking system, which could
predict the next step of the user. Input patterns to the system
would be some kind of user identifier, and the prediction error
could be represented by a linguistic variable which modeled
the mismatch of the “next step” prediction.

C. System Inputs and Activation of Rules

The inputs to our system have the particularity of being lin-
guistic variables, the values of which for the third block are like-
lihood labels. This obliges us to define a method for rule activa-
tion with fuzzy sets as inputs.

The problem is posed as finding the activation of a rule

If is then is

when is input, with , and fuzzy sets.
The solution must be some sort of composition of
in a way that the intersection of the sets and is
weighed to end up with

(5)

Several strategies can be considered to solve the above men-
tioned problem. These strategies have been calledinterpolation
methodselsewhere [12].

Definition 1 (Max–Min Method) [12], [16]: The composi-
tion is

(6)

This method is theModus Tollensproposed by Zadeh [23],
and seems to be so far the most popular method.

Definition 2 (Sum–Product Method):Kosko [14] proposes
the following rule activation method:

(7)

for a continuous variable. Its discrete version can be trivially
rewritten as

(8)
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with a normalizing factor.3 This method, as opposed to the
former, takes into account the area enclosed under the whole
product of the two fuzzy sets, and not only the maximum value
of the product. Kosko’s operator is linear which makes analysis
far more tractable, and it is the basis for SAMs procedures.

Definition 3 (Max–Product Method) [5]:An alternative to
the foregoing proposals is a hybrid method expressed as

(9)

This method seems to inherit the advantages of performing an
intersection with a product, but does not consider the whole area
under the intersection; the max operator will greatly reduce the
tails that may show up in the output fuzzy set.

Definition (Sum–Min Method):A different possibility is to
calculate the area under the intersection of the fuzzy sets
and , as follows:

(10)

or, for a continuously valued variable

(11)

III. H YPOTHESISDISCRIMINATION CAPABILITY OF THE FUZZY

MHT ALGORITHM

A fuzzy MHT system must be able to associate a greater like-
lihood to the actual hypothesis after enough information has
been collected. In this section, we demonstrate that, if the rule
base is correctly designed, the system proposed in [1] and gener-
alized in Section II-B will correctly discriminate the most likely
hypothesis versus others. As we have seen, the third block in
Fig. 1 is in charge of making this discrimination.

Denote by the likelihood label associated to theth hy-
pothesis that uses the data received at time instantand by

the accumulated likelihood associated to this hypothesis
until the previous time instant. is the updated likelihood his-
tory.

The variablelikelihoodwill be modeled as a linguistic vari-
able, sayprobability, defined by means of several fuzzy sets
(likely, very likely, unlikely, and so forth) [12] withpseudotrape-
zoid-shaped(PTS) membership functions [25], as is shown in
Fig. 2.

is then a fuzzy set with membership function
and is a second fuzzy set with membership function

. In order to avoid excessive notation, we will refer to
the membership functions with the same symbol as the fuzzy
set.

According to [25], if are consistent and normal
fuzzy sets in with PTS membership functions

( ), then there
exists an ordering in such that

(12)

3In subsequent sections, we will drop thex in the notation unless necessary,
i.e., we will writea (A ) = (1=K) a A .

Fig. 2. Components of the linguistic variableLikelihood.

(a) (b)

(c) (d)

Fig. 3. An illustration of an ambiguous situation. (a) A track associated to a
single vehicle exists. (b) A new observation from the same vehicle comes up.
(c) Hypothesis 1 (right): The track is enlarged with the new observation. (d)
Hypothesis 2 (wrong): A new track is created. Two vehicles are now assumed
to be present in the scenario.

In our case

The fuzzy MHT algorithm should guarantee that the accu-
mulated likelihoods of two hypotheses are ordered
provided that at time instantthe hypothesis is more likely
than hypothesis . In order to demonstrate that this is actually
the case, we consider a worst-case scenario (see Fig. 3), in which
two hypotheses only differ in the probability of one assignment.

1) At time instant the system has one hypothesis in
memory, with some likelihood label. Assume that,
without loss of generality, the likelihood label is the
maximum, i.e., .

2) At this time, and observation comes up. Assume two dif-
ferent associations of the observation to tracks are pos-
sible, giving rise to two possible hypotheses.

a) Hypothesis , from which a label of likelihood
is calculated (by the two first blocks

in Fig. 1), with the maximum fuzzy set of the
linguistic variable, i.e.,very likely.

b) Hypothesis , from which a label of likelihood
is calculated, with .
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3) Subsequent observations will give rise in both hypotheses
to the maximum value of likelihood, i.e.,

with .
Fig. 3 depicts graphically the problem statement for the case

of vehicle tracking. In Fig. 3(a), a track associated to a single
vehicle exists ( ); for instance, observations through time
of a truck. Suppose a new observation of the same vehicle comes
up [Fig. 3(b)]; however, due to the ambiguity in the description
and the right turn of the vehicle (which is difficult to predict),
two hypotheses are sensible to be considered.

• Hypothesis 1 ( ): the new observation is considered to
come from the same truck, which has made a right turn
[Fig. 3(c)]. The track is enlarged with this new observa-
tion.

• Hypotheses 2 ( ): the new observation is in this case
considered as the first report of a second vehicle which
has just appeared in the field of view of the reporter. No
information is assumed to be given about the truck in this
time instant [Fig. 3(d)].

Theorem: We state that the fuzzy MHT algorithm is able to
discriminate that

Proof: Our demonstration will have two stages. The first
step shows that we can state that . The second step is
an inductive method derived from the former, and allows us to
order the hypotheses at arbitrary future time instants.

A. First Stage: Analysis at Time Instant

Consider a reasoning with a SAM (as proposed by [13] and
[14]) inference engine and thesum–productmethod for rule ac-
tivation. We have chosen these methods because they both are
linear, making a formal study easier; furthermore, we follow the
conclusions presented in [1], where the results using Kosko’s
operators were similar to those of Bayesian case, versus the
max–min approach which had the poorest results.

For rules as the following:

If is and is then is

we can write that at time instant

(13)

which can be further expressed

(14)

According to our problem statement, the likelihood at time
instant , , so, according to (14) we can write

(15)

and

(16)

A further step needs the following.
Proposition 1: If are consistent and normal fuzzy

sets that give rise to a complete partition of , with
PTS membership functions

, each membership function, but those of the
smallest and the greatest set, will intersect one and only one
membership function in every extreme.

Remark 1: Each fuzzy set intersects with two sets, each at
every side of the maximum of the set, but the setsand
will only intersect one fuzzy set.

Proof: Since we are dealing with normal and consistent
fuzzy sets each set will only intersect with one set because, oth-
erwise, the set would have a nonnull value in the normal subset
of the other set, and thus the property of consistency would not
hold. In addition, since the partition is complete, two consecu-
tive sets should intersect.

In the demonstration, we assume, without loss of generality
that . If the property holds for it
will necessarily hold for .

For , since proposition 1 holds, the following table of ac-
tivated rules applies:

with the centroids of the fuzzy sets . With respect
to the antecedent composition, Proposition 1 allows us to write

if

if

if

(17)

with . In our case, and
, where both depend on the actual activation

method (max–min, sum product, and so forth).
Similarly, for

The crisp likelihood value will be obtained by the method of
centroids, i.e.,

(18)
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which in our case results in

(19)

for and

(20)

for . Mild restrictions are needed in our rule base to guarantee
correct discrimination. Since our system is a likelihood compar-
ison system, greater inputs draw greater outputs. Specifically,
output for inputs and should be greater than output
for inputs and . When inputs are and
we can only state that the output will be less than or equal to the
output for inputs and . These restrictions give rise to the
following relations: , , , ,

, , , , ,
, , , and .

Centroids can be compared by writing

(21)

(22)

If we calculate the difference of the numerators

and making use of the relations just mentioned

(23)

we observe that all the elements are positive but
and . However, the following inequalities hold:

(24)

since and . Therefore, we can write

(25)

and consequently , or equivalently, .
The equality is obtained when and

, which is avoidable by a proper selection of the rule

base. If we assume the rule base is properly designed, we can
state

(26)

Q.E.D.

B. Second Stage: Likelihoods at Arbitrary Future Time Instants

The problem is now posed as follows.

• The two hypotheses and have accumulated likeli-
hoods and , respectively, and we have shown that

.
• Suppose now that , , i.e.,

that subsequent observations causes the maximum output
in the second block of Fig. 1 for both hypotheses.

Our goal is to demonstrate that for .
This can be easily done by simple induction, using the result of
the previous stage.

Defining the following parameters:

(27)

the accumulated histories at time instant are

(28)

(29)

which can be written recursively as

(30)

From these two equations it is obvious that if holds,
then must necessarily hold. Q.E.D.

The behavior of the system when in (30) is not
obvious; common sense dictates that if more observations with
the greatest likelihood are given to both hypotheses, the overall
likelihood of both hypotheses should increase, they should be
progressively closer to the maximum and, consequently, the
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differences between both should decrease. In the next section, we
accomplish suchan study andwe obtainclosed-formexpressions
of the long term behavior of the system when the input is held
constant. Interesting comparative conclusions can be drawn
about the methods used for rule activation.

IV. SYSTEM ANALYSIS FOR A STEADY INPUT

As previously mentioned, the key of the system is the third
block in Fig. 1, which is known as an FFS. This block is critical
since it performs the accumulation of likelihoods in time, so
it is the responsible of assuring the long term behavior of the
algorithm.

FFSs have been studied in the literature. Some brief back-
ground material follows.

A. FFS

FFSs have been traditionally used as controllers, where
they have demonstrated their effectiveness in a myriad of
applications. The stability of these controllers is usually studied
by nonlinear analysis techniques, such as Lyapunov’s methods
[9], [14], [17], which give a confidence of the reliability of the
system, but they do not characterize its recursive behavior. So,
the design of these controllers has been traditionally donead
hoc, due to the difficulty in developing a theoretical basis that
mathematically characterizes that behavior.

There have been several interesting attempts to rigorously for-
malize FFSs. The first one is due to Tong [22] in 1980. The FFS
proposed is the one shown in Fig. 4.

The author obtains a theoretical description of the closed loop
response as a function of the initial state, specifically,

, where is a mapping defined by amax–mincompo-
sition. The transfer function depends on the constant input

and on the system components (, and ), which are
defined as fuzzy relations. Due to the difficulty to solve some
complex relational equations to find , the problem has only
solution under certain conditions in which the author forces the
controller into some desired form.

Despite the fact that the result is not directly applicable to
others systems in use, it is clearly a first approach to a rigorous
characterization of the FFS.

An interesting further effort in this direction is made by Chen
and Tsao in [4]. The authors state thatthe main cause of the
failure of FFSs is due to the use of the max–min operator. This
operator has the side effect of flattening the fuzzy set member-
ship functions. When a FFS is described recursively, the accu-
mulation of this effect makes the monitorization of the system
evolution an impossible task. To overcome this problem, the au-
thors propose the use of concepts of nonlinear system analysis,
specifically, thecell-to-cell mappingdeveloped by Hsu [10], to
analyze the global behavior of nonlinear dynamical systems.

The FFS used by the authors is represented in Fig. 5, and it
has been used as the paradigm of fuzzy control by others [7],
[17]. The input is basically the difference (the error) between
the output of the plant and a control signal. The input–output
relation is expressed recursively by , with a
relation derived from the rule set.

Fig. 4. Closed-loop system (Tong).

Fig. 5. Fuzzy control system (Chen–Tsao).

Fig. 6. Single-input–single-output fuzzy dynamic system (Kang).

Broadly speaking, the key in [4] is to map the fuzzy system
into a nonfuzzy system so that its behavior can be better un-
derstood. This way, the global behavior of the system dynamics
can be extracted by Hsu’s method. The problem of the accumu-
lation of fuzzinessin each iteration is circumvented, since the
fuzzy part is restricted to the transformation from one domain
to the other. However, this method can only give an approxi-
mate prediction of the behavior of the system; furthermore, the
cell-to-cell method cannot be applied to all dynamical fuzzy sys-
tems, and onlyintuitive criteria to find out which systems fit
within this framework are given in [4].

Kang [11], in the early 1990s, proposed a systematic design
method of linguistic fuzzy controllers. His control system is
shown in Fig. 6.

When the input is suppressed, the author can express the
system output with the recursive equation
(the matrix composition is not a power, but ath composition
of the form ), with a transition matrix
which depends on the rule set and on the fuzzy sets membership
functions. This matrix has a size , being the size of the
discrete fuzzy sets considered. The operatormax–minis always
used. The author states that if there exists a positive integer
from which then reaches a steady-state, i.e.,

. The author forces a fuzzy relation (not indi-
cated in Fig. 6) between the two inputs,and , to guarantee
the system stability.

Although the three papers give a good theoretical basis for
the analysis of stability of FFS, they are not suitable for our
purpose. The first two give only an approximate solution of the
system behavior, and the stability relation proposed in the
third method does not fit our system. Therefore, in next section



368 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 3, JUNE 2002

we develop a different and complete steady state analysis, but
that will make use of some of the ideas previously proposed.

Further information on the area of fuzzy control and FFSs can
be found in [2], [17], and [18]. Other sources of introductory
material and related topics on FFS are [6], [7], [15], [19], and
[21].

B. The Fuzzy MHT Architecture as a FFS

As we have seen, the third block in Fig. 1 is a FFS, similar
to the one proposed in [11] (Fig. 6). However, our system has a
number of particularities that should be taken into account in any
analysis. First, it has a single input (thelikelihoodlabel) but two
entries to the FIE: the system input, and the accumulated history
of likelihoods that comes directly from the feedback. Second,
the input and the output of this block are all fuzzy sets.

According to [4], where the authors state thatthe main cause
of the failure of FFSs is due to the use of the max–min operator,
we have built the FIE upon linear operators, such as SAM and
sum–product, as described in Section III. This eases consider-
ably the process of theoretically describing the system behavior.
Furthermore, as we will show in Section V, thesum–product
is the only method that gives an acceptable response from the
system.

C. Analysis for a Steady Input: General Case

We will use a similar paradigm as others previously reported
[11] (Section IV-A): we will keep an input constant and we will
study the system output as it evolves in time. We will search a
recursive input–output relation and we will end up with a tran-
sition matrix between states. A composition of the matrix gives
the output at arbitrary future time instants, so, at infinity, the
steady-state behavior will be obtained.

As we have previously done, we will consider the linguistic
variable likelihood, consisting of fuzzy sets
with a normal PTS membership function, and the sets constitute
a consistent partition. If we use the SAM philosophy, at time
instant, say 0, a hypothesis will have a likelihood given by

(31)

with a set of coefficients which depend on the rule activation
method, and is a normalizing constant which turns out to be

.
The system output at time instant 1 for a given input can be

written

where the coefficients depend on the rule activation method.
The coefficients will be function of the coefficients in the
previous time step

...
...

As we use a linear activation method (sum–product), the re-
lation between coefficients and will be also linear as fol-
lows:

...
...

We can generalize the foregoing expression to any time instant,
provided that the input is held constant

...
...

These linear relations suggest that a transition matrix(as in
[11], but here we use linear operators) can be defined so

(32)

Proceeding recursively

(33)

Matrix is diagonizable, since it is the matrix of a system for
which a solution always exists. So, if we write

(34)

with a diagonal matrix (the entries of which are the eigen-
values of matrix ) (33) becomes

(35)

and the output crisp value is easily found as the centroid of the
fuzzy set

(36)

where the are the centroids of the fuzzy sets.
The problem now is to calculate the limiting value of equation

(36) when . To that end, thepower method for the dom-
inant eigenvalue[8] can be readily applied; assume the largest
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eigenvalue in matrix is located at theth row of matrix , i.e.,
, . We can write (34) as

...
...

...
...

. . .

. . .

...
...

. . .
...

(37)

As can be seen, as all the entries in the diagonal matrix
tend to zero, but the one in theth row. Therefore, after some
algebra, the centroid turns out to be

...

...

(38)

i.e.,

(39)

with the centroids of the output space fuzzy sets and
the eigenvector associated to

[remember that are the eigenvalues of the transition

matrix between the system output at timeand , defined
in (32)]. Note that the dependence withhas disappeared, i.e.,
there is not any dependence on the initial state.

Several conclusions can be drawn from (39).

• The convergence value of the system with a steady input is
independent of the initial system state, and it only depends
on the input value and on the rule base.

• The convergence value is a weighted sum of the centroids
of the rule base. The weighting coefficients are the compo-
nents of the eigenvector associated to the maximum eigen-
value of the system matrix. Moreover, these values depend
on the rule activation method applied. Therefore, for a
given data set we will obtain different convergence values
according to the activation method.

Equation (39) is, in fact, the operation that calculates a cen-
troid from the involved fuzzy set. This lets us state that this is
the centroid of . Consequently, we
can state that the steady-output fuzzy set of our FFS with con-
stant input is

(40)

with the components of the eigenvector associated to the
largest eigenvalue of the system matrix.

Finally, we can conclude that we can knowa priori the state
that the system will converge to with the only knowledge of
the rule set. Conversely, this result enables us to fine tune the
rule set so as to converge to a desired state when the input is
held constant. To further illustrate convergence, we consider a
particular case.

D. A Particular Case: A Three-Set Space

We study the case of the linguistic variable likelihood with
three values , expressed in an increasing order
of plausibility. For simplicity, since normal and consistent PTS
fuzzy sets are considered, we will assume that

if

if

if .

(41)

The history at time instant 0 will be

We use the (fairly strict) set of rules shown in the first three
columns of Table I. We also assume the input is constant and
equal to ; with this input, every rule is activated as shown in
the last column of Table I. The activated rules give the relation
among coefficients shown in Table II; matrixturns out to be

(42)

Centroids are calculated as in (36)

(43)
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TABLE I
RULE BASE FOR THEEXAMPLE (THREELEFT COLUMNS) AND ACTIVATION OF

RULES WHEN THE INPUT ISA (RIGHT COLUMN)

TABLE II
COEFFICIENTRELATION

For our steady input we can write (44) as shown at the bottom
of the page.4 The limit of the foregoing expression can be calcu-
lated by analyzing the asymptotic behavior of each of the matrix
eigenvalues. After some algebra, the behavior of the eigenvalues
is

(45)

(46)

(47)

and, consequently

(48)

4This expression has been obtained setting� = � = 0 for simplicity, since
the limit does not depend on the initial state.

Fig. 7. Fuzzy sets of the linguistic variable likelihood.

The behavior of the system is as shown in (39). According to
(40) the output fuzzy set can be written

(49)

with the components of the eigenvector associated to the
largest eigenvalue of the system matrix.

In order to show the goodness of fit of equations (48) and (49)
consider the three normal PTS fuzzy sets shown in Fig. 7; the
system input is held constant an equal to the maximum fuzzy set
in Fig. 7. We will consider two initial states, namely, a maximum
and a minimum likelihood.5 The evolution of the two cases [rep-
resented in dashed line in Fig. 8(a)] has been calculated by sim-
ulating a SAM system with a sum–product procedure for rule
activation; the solid line in the figure shows the application of
(44) for different values of , for the two initial states. The final
limiting value, which analytically turns out to be 0.5927, coin-
cide with the two simulated cases. Convergence is achieved both
in terms of centroids and in terms of the whole output fuzzy set.
Fig. 8(b) shows the output fuzzy set after 300 inputs (dashed
line), and the output fuzzy set calculated with (49) (in solid line).
As can be seen, the match is virtually perfect.

V. A COMPARISON OFSTRATEGIES FORRULE ACTIVATION

As our foregoing analysis has highlighted, the position of the
output centroid depends on both the rule base and the method for
rule activation. In this section, we will show that the method for
rule activation plays a critical role in a FFS applied to likelihood
discrimination.

We model the linguistic variablelikelihood as a five-valued
variable, the values of which areVery Unlikely, Unlikely, Pos-
sible, Likely, Very Likely, were all of them are consistent and
normal fuzzy sets with a PTS membership function (see Fig. 2).
These sets give rise to a complete partition. The sets are ordered
asVery Unlikelybeing the smallest andVery Likelythe greatest.

5For this second case, (48) does not hold, but only in the limit. However, only
trivial changes in the expression are needed to make it hold8 k.

(44)
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(a)

(b)

Fig. 8. (a) Centroid positions as a function of time. Solid line: analytical results
[ (44)] ofC for the values ofk shown in the horizontal axis. Dashed line: results
after simulation. (b) Output fuzzy sets for the example. Solid line: (49); Dashed
line: simulated results.

For simplicity, we will use the following notation: , , ,
, . Therefore, . We will use the

set of rules shown in Table III, taken directly from [1].
As a previous example, we have entered the inputsVery

Likely and Possibleto the rule base, and we have made the
inference process with each of the four methods for rule
activation proposed in Section II-C. Fig. 9 shows the output
fuzzy sets. Table IV shows the defuzzified values with the
method of centroids.

The figure shows that thesum–productmethod draws the
least-significant side tails off the main lobe. This is due to the
fact that the product operator for the intersections makes values
smaller than one decrease, while when the maximum value of
the intersection is unity, its height is held. This gives rise to a
fuzzy set that is very concentrated about its maximum value,
and, consequently, the defuzzified value is fairly close to the
maximum.

The case of the max–min operator is quite the opposite: the
fuzzy output for the max–min operator is “fuzzier” (i.e., there
is a greater dispersion about the maximum value of the set) and
will be progressively farther from the original values of the lin-
guistic variable. Indeed, the output set will have nonnull values
in more points with this method than with the other methods,
and this will produce a shift of the defuzzified output value to-
ward the average of those values. The other two operators show
intermediate behaviors.

With this previous knowledge, we will monitor the system
behavior (i.e., the behavior of the third block in Fig. 1) by means
of three illustrative cases whose labels and descriptions are as
follows.

TABLE III
RULE SET FOR THE FUZZY MHT

Fig. 9. Output fuzzy sets for each of the four activation methods.

TABLE IV
DEFUZZIFIED VALUES USING THE METHOD OFCENTROIDS

1) Maximum:The input will always be the maximum label
of likelihood (say, the labelVery Likely). The output cen-
troid as a function of time will be represented with a cross
( ).

2) Maximum After Medium:An intermediate label of
likelihood (say, labelPossible) starts the procedure, and,
thereon, maximum inputs will be fed into the system.
The output will be represented with a dashed line.

3) Maximum After Minimum:In this case, aVery Unlikely
fuzzy set is input, and thereafter, as before, the inputs will
be maximum. We will represent it with a solid line.

Output centroid values as a function of time are shown in
Fig. 10 for each of the four rule activation procedures. It is clear
that there is a convergence in all of the four cases, but there is a
clear difference both in the limit and in the time instant at which
convergence is obtained.

• ForSum-product[Fig. 10(b)] the limit value is 0.9, which
lies in the range of the labelVery Likely. In addition, this
procedure reaches a steady state before any other. Also,
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(a) (b)

(c) (d)

Fig. 10. Output time evolution. (a) Max–min. (b) Sum–product. (c) Sum–min. (d) Max–product.

(a) (b)

(c) (d)

Fig. 11. Output time evolution for the second rule set. (a) Max–min. (b) Sum–product. (c) Sum–min. (d) Max–product.

the output for the constant-input case (line with crosses)
is fairly constant as well.

• In the three other cases, the situation is very different: the
convergence value is some intermediate value in the al-
lowable range. This is due to the importance of the side

tails out of the main lobe of the fuzzy set. In the case of
themax–minprocedure, the centroid at steady-state lies in
the range of the labelPossible. For the two other methods
[Fig. 10(c) and (d)] results are far from the maximum as
well.
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TABLE V
STRICTER RULE SET FOR THE FUZZY MHT

We have repeated the aforementioned experiments for a
stricter set of rules (see Table V). The outputs are shown in
Fig. 11.

The results in this case confirm the former. Indeed, since rules
are now stricter, i.e., unlikely labels have greater weights, side
tails get higher and convergence is achieved much faster than
in the previous case (note the difference in the time scale in
Fig. 11). The results also show that we can calculate a dynamic
range in which all the output values will be encountered. The
range, as many other parameters we have described in the paper,
depends on the rule base and on the activation method used.

These examples show clearly that thesum–productmethod is
the only suitable method for our application. Since we are man-
aging likelihoods, we are interested in maintaining a maximum
output when the input is maximum. Because of the influence of
the side tails, the max–min have a deflection to middle values
when the number of iterations in the FFS is high. The result of
using this operator will be a growth of the uncertainty for long
tracks.

VI. CONCLUSION

In this paper, we have presented a thorough analysis of a FFS
that implements a fuzzy version of the well-known MHT Reid’s
algorithm. An important result in the paper is the demonstration
that, under very mild conditions, the fuzzy MHT algorithm will
necessarily be able to discriminate the most likely hypothesis.

In addition, a second important contribution of the paper is
the analytical characterization of the FFS as a function of time,
and, in particular, its asymptotic behavior when the input is held
constant. The importance of this result is twofold.

1) Since the asymptotic behavior is a function of the rule
activation method, a designer can choose the method that
matches his/her needs. In our case, in which we have dealt
with probabilities, we can conclude that thesum–product
methods clearly outperforms the others. However, dif-
ferent applications may prefer other methods.

2) The asymptotic behavior is also a function of the rule base
itself; an analytical fine tune of the rules can be devised
with our closed-form expressions. This issue is an inter-
esting effort to be considered in the future.

As a concluding remark, we want to highlight the impor-
tance of the linear operations and thesum–productactivation
method to analytically characterize FFSs. Other types of opera-
tions make this analysis far more difficult.
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