
Copyright 1997.
Smart Engineering Systems Design, volume 1, pages 1-13, 1997. 
Available at http://agent.cs.dartmouth.edu/papers/cybenko:3dcad.ps.Z.

Pattern Recognition of 3D CAD Objects :

Towards an Electronic

Yellow Pages of Mechanical Parts�

George Cybenko, Aditya Bhasin and Kurt D. Cohen

Thayer School of Engineering

Dartmouth College, Hanover, NH

3d@lost-ark.Dartmouth.EDU

http://comp-engg-www.dartmouth.edu/~3d

January 25, 1996

Abstract

Industry estimates show that aggressive reuse of existing inventory could reduce the delivered cost
of large, complex manufactured systems by as much as 20%. In most cases these savings are not cap-
tured, principally because the current technology to locate reusable designs and inventory, which uses
taxonomies and other arti�cial indices, is too cumbersome. Furthermore, current systems do not ad-
dress the design phase - where opportunities for reuse �rst arise. This paper describes a computer-based
technology that will be an important step towards solving this problem.

For mechanical parts, the modern design phase starts with computer aided design (CAD) packages.
Given a prototype design of a solid object, the design engineer should be able to determine whether the
part under consideration is already designed or in manufacture. Our system does this by using physical
shape as a direct index to existing designs and manufactured components, eliminating time-consuming
and error-prone searches of the taxonomy. Other applications of this technology include identi�cation
of warehoused parts according to scanned shape and e�cient management of 3-dimensional objects in
computer animation and virtual reality systems.

Our system takes a standard digital representation of a solid object, such as in IGES form, and
produces a surface triangular mesh representing the boundary of the object. The surface mesh allows
a voxel approximation representation of the solid which is computed by 
ood �lling. Zeroth, �rst and
second order geometrical moments are used to normalize the orientation of the solid. Then a variety
of volumetric invariants are computed and used as features. These features determine a hash function
which maps similar shapes to closely related feature vectors. Nearby feature vectors identify a small
subset of objects which are compared using symmetric di�erencing on a voxel by voxel basis. This voxel
symmetric di�erence gives a rank ordering of similarity between 3-dimensional shapes in the database
and the object under consideration. Using this small subset of like-shaped objects, the design engineer
can browse a reasonable subset of parts from the complete database.

The described research has signi�cant applications in industries which seek to reuse existing designs
and inventory thereby reducing manufacturing costs. Applications in aerospace, automobile and machine
tool industries are most promising and urgent. We expect that this research will lead to the commercial
development of software that will enhance existing CAD and database systems.

1 Introduction

With the advent of powerful Computer-Aided Design (CAD) tools in the last two decades, manymanufactur-
ing enterprises use computer software to design and model mechanical parts before building them. Although

1This work was supported in part by Air Force O�ce of Scienti�c Research Grants F49620-93-1-0266 and F49620-95-1-0305;

Navy O�ce of Naval Research Grant N0014-95-1-1204 and NH Space Grant Consortium, NASA Grant 92-05. Thanks to

Markem Corp., Keene, NH, for providing the test dataset.

1



these tools have improved the design process, they have not addressed the problem of reusing previous de-
signs and existing inventory. To determine whether mechanical parts have already been designed, a designer
must resort to legacy taxonomies kept in micro�che and paper records { a time consuming and ine�cient
process. To avoid such searches, designers typically redesign the part, wasting time and money. For instance,
stories of simple fasteners being redesigned in the automobile industry are common. Studies show that while
60 to 80 percent of a product are committed at the design stage, the cost of design engineering is unlikely to
exceed 5 percent of the total budget of the project [Har92]. The use of a product that could facilitate reuse
in this expensive design stage could signi�cantly reduce design times and costs.

The primary reason for the lack of an appropriate electronic database is the inability to search on the basis
of shape. If a designer needs a new cam, for example, a database search on the word cam will undoubtedly
yield far more records than a designer desires. The geometry of cams has no standard description either
within or across companies. The same can be said of other mechanical parts.

We have developed a new search technology based on direct three-dimensional representation of an object,
which allows search on the basis of shape. This search engine will be of particular use to heavily design-
dependent industries such as machine tool, automobile and aircraft manufacturers, and would considerably
reduce design time and cost. Moreover, potentially even larger savings could be realized in reduced inventory
and manufacturing costs.

Such a system can be extended to an electronic \yellow pages" of mechanical parts. Manufacturers of
mechanical parts could make networked databases of their products available to designers, allowing them to
search for parts all over the world. Some manufacturing and CAD companies (John Deere and Autodesk) are
already o�ering CD-ROM versions of mechanical parts but searches are presently restricted to text and part
numbers. We o�er the additional ability to search such databases on the basis of shape and to make these
searches possible in a distributed way over computer networks. In this paper, we describe the ingredients of
such a solid object search engine and its current status.

We describe a solid object search engine which can be used in the following applications when customized
appropriately:

� solid object searching by design intensive companies (aerospace, automobile, machine tool, etc.) outside
of any particular CAD system;

� CAD database searching within existing CAD systems (Aries, AutoCAD, etc.);

� multimedia database searching of solid objects (Illustra, see http://www.illustra.com/);

� inventory and warehouse management;

� management of solid objects for virtual environments
(OpenGL, see http://www.sgi.com/Technology/openGL/).

We believe that manufacturing CAD systems and networked multimedia technologies are about to com-
bine to allow new e�ciencies in manufacturing. Exciting new opportunities exist in applying the techniques
we describe here to databases of solid objects descriptions. This area is relatively technically unexplored but
the problem itself is well de�ned and solvable.

2 Background

Our work builds on state-of-the-art ideas in computer representation of solid CAD objects, pattern analysis
and distributed information technology. In this section, we must describe the main conceptual steps of our
approach.

We begin with the international standard Initial Graphical Exchange Speci�cation (IGES) representation
of a mechanical CAD object. Virtually all mechanical CAD systems currently support the export and import
of solid objects de�ned in IGES. An IGES �le is essentially a computer program that describes how a solid
object can be rendered. Two IGES �les describing the same or similar objects will in general be very di�erent,
their structure depending on the sequence of design steps taken to de�ne the object. These design steps will
be di�erent if done by di�erent designers or even the same designer at di�erent times. Therefore, attempting

2



to compare two IGES �les directly is essentially equivalent to asking whether two C programs perform the
same computation. If the two �les are identical then they describe the same object. However, if the �les are
di�erent in any substantive way, it is not possible to make a conclusive statement without further analysis.

Our approach to this analysis involves actually rendering the object represented by an IGES CAD �le and
computing translationally and rotationally invariant features of the resulting object. These steps are quite
di�erent from those arising in solid object recognition for image understanding problems. In that application,
one or more 2-dimensional images of an object are the starting point or key. In our case, we already begin
with a nonunique solid object representation. Object recognition from 2-D image data is notoriously hard
but we are solving a simpler problem in some respects. In our application, a major di�culty arises from the
fact that we are forced to deal with a rigid standardized language (IGES) creating other types of di�culties.

Once the object is rendered into voxels (3-dimensional cells), we compute various moments which can
be used to normalize the orientation of the object. Classical second order moments are among the features
we use as keys. Additional invariant features are volumetric moments described below yielding about a
dozen invariants altogether. These invariants have the property that small changes in the object result in
correspondingly small changes in the features so that these features are robust.

These features are numerical and form the basis for a multidimensional search. The feature vectors de�ne
points. Two points are close if the objects they represent are geometrically similar at least according to the
features we use. Conversely, similar objects map to nearby points. We use Euclidean space distance to
measure nearness of the feature vectors.

Given an object's feature vector, our algorithm's �rst stage returns objects with nearby feature vectors.
In the second stage, those objects are rendered into a voxel representation as well and a voxel by voxel
comparison is made which essentially computes the symmetric di�erence between the two objects in a
normalized orientation. The symmetric di�erence is normalized by volume in turn to give a �nal relevance
ranking between 0 and 1. A score near 1 means high similaritywith smaller values representing proportionally
more dissimilarity.

The voxel representation uses much memory and the voxel-by-voxel comparison is extremely time con-
suming. This is the reason we use relatively small feature vectors in the �rst stage. Those feature vectors can
be computed once for each object's IGES representation. These feature vectors require little additional mem-
ory to store and are quickly compared. Only the subset of objects with similar feature vectors are subjected
to the more intensive voxel comparison. This is an important step in making our approach tractable.

Our approach is based on geometric moments and not on geometric \features" that a purely rule-based
approach might take. That is, one could try to decompose solid objects into cannonical solids such as spheres,
cylinders, boxes, and so on, with some spatial relationships between those subobjects. Such approaches
have been tried with varying success for two dimensional object matching and could be extended to three
dimensions but we are not aware of any such attempts yet. If such a method is tried, it would be appropriate
to compare performance with the method described here.

We are not aware of any development e�orts along the lines of the work described here. A new company,
Illustra (see http://www.illustra.com/) is developing multimedia database systems but we are not aware
of any solid object capabilities yet.

An outline of the system is shown in Figure 1 below.

3 Algorithmic Approach

3.1 Translation From CAD Format to Solid Object

The �rst problem we address is that of translating a CAD description of an object to a format which can
be used to standardize the object and determine it's geometric features for use in the pattern matching.
We use triangular surface meshes to represent the object, a format from which recreating the solid object is
practical.

Due to the proprietary nature of various CAD �le formats, we investigated CAD interchange formats to
perform this �rst translation step, and evaluated both the IGES and DXF formats.

3



Search Results - Similarly Shaped Parts

Normalize solid object to

Canonical Representation.

Search database on geometric

features, select similar ones.

Perform voxel-voxel

symmetric difference search

Translate CAD format to solid

object representation.

3D CAD Representation of Required Object

Figure 1: System Overview

3.1.1 Format Translation

AutoCAD ASCII Drawing Interchange Format (DXF) This format supports three dimensional
entities by using a series of 3DLINE, 3DFACE and 3DPOLYMESH primitives, representing three dimensional
lines, faces, and the polygons bounding a three dimensional surface respectively. In trying to implement some
kind of translator from DXF to three �nite element surface mesh mentioned above, we encountered some
problems with the format itself. First, there is no standard for how a particular object or face should be
represented using combinations of these primitives. For example, a solid sphere created using a particular
software package saved the sphere as a series of 3DLINEs, whereas another used arc primitives to generate
the same wireframe e�ect. Secondly, the primitives themselves are somewhat loosely de�ned. The 3DFACE
primitive, for example, may save a face as a set of 3-dimensional points, or four, and there is no requirement
that the points should be coplanar. Last, even though the surface primitives are available, the software
packages we tested tended not to use them for the simple models we tried. The ambiguities in the \standard"
led us to look elsewhere for a more complete and hopefully more rigid format.

Initial Graphics Exchange Speci�cation (IGES) File Format The IGES �le format, designed by
National Bureau of Standards [US 88] is a very complete and widely used format in the industry. Three
dimensional surfaces can be de�ned in a large number of formats, such as trimmed (parametric) surfaces,
spline surfaces, non-uniform rational B-splines (NURBS) surfaces, etc. Again, we found that there were
many ways of representing the same surface, and only the NURBS entities lent themselves to triangular
mesh generation. However, there are still problems with this approach. Among them, the IGES speci�ca-
tion does not insist on NURBS surfaces sharing boundaries completely, and so there could be holes in the
resulting mesh. This would not allow a complete reconstruction of the object from the mesh, which depends
on the mesh forming a completely closed region.

Until a suitable interchange format can be found, we are using more time-intensive methods to generate
the triangular meshes we need from solid object representations in the IGES format, since it is a more
complete and widely used format. These approaches include obtaining surface meshes from Finite Element
(FE) analysis systems and Stereolithography (SL) modules. Currently, our system supports FE and SL �le
formats from the MSC/ARIES CAD system, and the T-GRID FE format from the Fluent/GEOMESH CAD
system. Work is currently underway to automate this process using new �le formats such as STEP and SGI
Inventor, the software we use to render and view the images.

4



Using these �nite element or stereolithography translation modules, our system produces a surface tri-
angular representation of an object. The surface triangles are used to create a voxel representation for the
discretized object. We use recursive 
ood �lling to �ll the exterior of the object and then complement that
to get the discretized object in a voxel representation. This voxel representation is the basis for moment
computations and subsequent voxel-by-voxel intersection operations which are explained below. It is impor-
tant to point out that we have done theoretical analyses of this discretization step and can quantify feature
computation errors that arise here. Those errors �gure into determining acceptable variances for features.

3.2 Normalization of the Object to a Canonical Representation

Once the objects have been appropriately represented, they need to be normalized to a canonical orientation
to allow accurate voxel-voxel comparison.

Normalization is a process which transforms an object to a standard orientation. This canonical repre-
sentation retains all of the geometric information and meets a set of normalization criteria imposed on the
moments of the objects [GC93]. The object orientation which satis�es the normalization criterion is not
necessarily unique however [AMP85]. This is discussed at greater length in the section on degeneracy. For
an object de�ned by the density function �(x; y; z), the three dimensional moments of order lmn are de�ned
as:

mlmn =

Z 1Z
�1

Z
xlymzn�(x; y; z) dx dy dz l;m; n = 1; 2; 3; : : :

The normalization criteria achieve standard translation, volume and orientation.

3.2.1 Canonical Position

Position is normalized by aligning the centroid of the object with the origin of the coordinate system. The
centroid is de�ned as

(x̂; ŷ; ẑ) = (
m100

m000

;
m010

m000

;
m001

m000

):

The position-normalized density function is

�̂(x; y; z) = �(x � x̂; y � ŷ; z � ẑ):

Moments of this density function are central moments �lmn.

3.2.2 Canonical Size

Normalization of size is achieved by scaling the object to a speci�ed volume, C. A scaling factor � is applied
so that

m000 =

Z 1Z
�1

Z
�̂(�x; �y; �z) = C:

3.2.3 Canonical Orientation

The criteria for normalization of orientation are imposed on the central moments of the object, �lmn. The
�rst condition is met by applying a rotation to the object so that the matrix of second-order central moments,
M, becomes diagonal. Using the notation �xy = �110 and so on, the moment matrix is de�ned as

M =

0
@ �xx �xy �xz

�xy �yy �yz
�xz �yz �zz

1
A

When properly oriented, this matrix is diagonal �xy = �xz = �yz. This rotation, which is computed from
the eigenvectors of the original moment matrix, aligns the principal axes of the object along the coordinate
axes. These are at least eight symmetries which satisfy this. To remove this ambiguity, further conditions
are imposed on the orientation. We further require that �xx � �yy � �zz and that the maximum extent of
the object is greater in each positive half-space.

5



3.2.4 Degeneracy

When two or more of the diagonal central moments, or extents in the positive and negative directions are
equal, this method will not produce a unique normalized orientation. This is a problem in practice when these
quantities are equal to within the variances/tolerances expected given the discretization procedure. Objects
which are symmetric about one axis can be recognized [Mar89]. Two dimensional rotationally symmetric
objects can be normalized as well [PL92, TC91]. Some of the methods used to normalize 2-D objects can
be extended to 3-D objects, but the computation of the necessary descriptors is complicated and may be
inaccurate due to numerical computations. When degeneracy is a problem, various rotations and discrete
symmetries can be compared against the template, or other features can be used. Canonical orientation is
important only for voxel-by-voxel comparisons and do not a�ect the rotationally invariant features that we
use in the �rst stage of the procedure.

3.3 Feature Extraction and Database Searching

Once we have the normalized, digital representation of the object, we extract features from the objects which
make searching the database e�cient.

3.3.1 Rotation-Scale-Translation Invariants

RST invariants are features which are invariant to rotation, shifting, and translation. These features can
be used to compare all objects including discrete density functions sampled at a di�erent rate, and objects
which are rotationally symmetric.

3.3.2 Second-Order 3D Moment Invariants

Second-order 3D moment invariants combine second order moments of the density function to produce an
RST invariant. Three of these features are extracted. These features are made invariant to translation by
using central moments. The central moments are made invariant to scaling by normalizing with respect to
the volume, �000.

�lmn =

R 1R
�1

R
xlymzn�(x; y; z) dx dy dz

�
5

3

000

l +m + n = 2

Since the characteristic function is invariant under rotation, the characteristic equation, P (�) = �3 + a�2 +
b�+ c, of the matrix yields translation and scale invariant second-order features. Namely, the coe�cients a,
b, and c are the features we use [SH80, LD89].

3.3.3 Spherical-Kernel Moment Invariants

Like the second-order moment invariants, the spherical-kernel moment invariants use central moments to
achieve invariants to translation. The centroid of the object is the center of a spheres Sr used as the kernel
of the moment. Sphere features are generated by the equation:

(Sf)r =

Z 1Z
�1

Z
Sr�(x; y; z) dx dy dz:

In addition to being invariant to translation, these features are also invariant to rotation since the sphere is
invariant to rotation. Scale invariance is achieved by normalizing these features with respect to a volume
and by using the density function of an object which has been scaled to a standard volume. Two sets of
spherical-kernel moment invariants have been tested. The �rst set is generated by a set of sphere with radii
that increase linearly and are normalized with respect to the maximum value the sphere feature, Sf1, could
attain.

S1r =
SfrR

2�

0

R �
0

R i
0
d� d� dr

6



These features weight all radii equally paying no particular attention to any region of the object. The second
set of spherical-kernel moment invariants pays more attention to the outer edge of objects where similar
objects may di�er. These features are generated with a set of spheres with radii increasing as r3 and are
normalized with respect to the volume of the object:

S2i =
Sfi

m000

:

3.3.4 Other Features

Various heuristic features are calculated while calculating the above features. Such features include the
dimensions of the smallest rectangular box aligned with the coordinate axes which contains the object. The
centroid of the object is another of these features, and the surface area of the object is the �nal feature
calculated.

3.4 Searching the database

After normalizing the object, the system places the normalized form in a database. The object is completely
described within this database by three kinds of �les

1. A list of triangular surface mesh nodes and connectivities that de�ne the object

2. the RST invariant features calculated for the object, and,

3. the digital voxel representation of the object.

The database is �rst searched by performing a cosine query on relevant features in the feature �le.
The features extracted from the objects are normalized to be of order one. These feature vectors are

compared based on the angle between them. The comparison metric we use is:

Cxy = 1� 2
arccos

�
x�y
jxj jyj

�
�

This procedure is very fast, and e�cient for searching through a large database of objects not only
because of its speed, but also because of its computationally inexpensive nature. A more intensive (but less
e�cient) search can be performed between two objects by comparing them voxel-for-voxel.

3.4.1 Voxel-Voxel Comparison

Template matching is an approach to comparing two 3D objects. Mismatch between two normalized objects
with density functions f and g can be computed as

Z 1Z
�1

Z
(f � g)2 dv =

Z 1Z
�1

Z
f2 dv +

Z 1Z
�1

Z
g2 dv � 2

Z 1Z
�1

Z
fg dv:

For given objects,
R 1R
�1

R
f2 dv and

R 1R
�1

R
g2 dv are �xed. The mismatch is small only if the match

R 1R
�1

R
fg dv is large [RK76]. For digital representations of the objects, normalized voxel-voxel match Mfg

is measured in an analogous way.

Mfg =

P
i

P
j

P
k

f(i; j; k)g(i; j; k)

Max(
P
i

P
j

P
k

f(i; j; k);
P
i

P
j

P
k

g(i; j; k))

7



Client 3DBase Server

STEP 1.
Agent takes example
file to server, requests
compare with database.

Server performs cosine query
on database files, sends
results back with agent

STEP 2.

determine which files are to
be downloaded, agent sets
up FTP session for files.

User uses results to
STEP 3.

perform the voxel compare locally
User has files and can
STEP 4.

Figure 2: Schematic of the Agent-based Network Implementation

This compares f and g voxel-for-voxel, so it measures both the similarity in shape as well as di�erences in
orientation. If both objects are manipulated to a canonical position, size and orientation, the voxel-voxel
match measures geometric similarity.

In the voxel-voxel comparison, the density functions are directly compared against each other. It can be
more e�cient to extract features form the objects and compare based on those features. The features should
contain much of the information found in the density function, but in a more compact representation. These
features may also overcome the problems of comparing rotationally symmetric objects if they are invariant
to rotation.

3.5 Agent-Based Networked Implementation

All the steps above have been put together to create a system that may be used as a networked yellow pages
of mechanical parts. We use an agent-based architecture to implement such a network so that queries may be
made over the entire network. An intelligent agent system is being concurrently developed at Dartmouth for
use in this application (see http://www.cs.dartmouth.edu/~agent) [Gra95]. The structure of the system
is shown in �gure 2.

In order to perform a search, a user at a client machine generates a rough query in their CAD system,
and exports it to the 3dbase system in one of the available Finite Element or Stereolithography formats.
3dbase then generates the canonical representation, calculates the features, and sends the features of the
object to the remote 3dbase server on which a query is to be carried out, using an agent (step 1). The
server then performs the fast feature comparison, and return the results, via the same agent, back to the
querying machine(step 2), where the user can determine which �les they want to study more carefully. The
local agent then automatically sets up a File Transfer Protocol (FTP) session to download the �les from the
remote machine that have been tagged by the user (step 3). The more exhaustive voxel-by-voxel searches
can be then performed by communicating entire object �les back to the local machine so as to minimize
resource utilization on the remote machine (step 4).

3.6 Results

We obtained a small collection of experimental parts from a local hardware manufacturer to test the database.
The CAD descriptions of these parts were supplied to us in IGES format. Each �le was then read into the
MSC/ARIES CAD package from which we obtained a triangular mesh of the object using the stereolithog-
raphy package. Once all the �les were meshed, they were read into the 3dbase system, where they were

8



part 1 '17' part 2 'bov' part 3 'cube' part 4 'cyl' part 6 'p1d'

part 7 'p1e' part 8 'p1f' part 10 'p1h' part 11 'p2a' part 15 'p3a'

part 19 'p3d' part 23 'p6c'

part 25
'pyramid'

part 26 'ram'

Figure 3: Selected parts from the experimental database

digitized and normalized as explained above, at three separate resolutions (10, 20 and 100 thousand voxels).
Samples from the database, in their canonical forms, are shown in �gure 3.

The database consists of di�erent classes of objects, screws, washers, nuts, gears, and some standard
objects: a cylinder, a cube and a pyramid. We performed both the feature and voxel-by-voxel compares on
this database with a view to determining :

� if the system was able to recognize similar objects as a human expert would

� how the feature-based algorithm compared with the \brute-force" voxel-by-voxel algorithm as a mea-
sure of similarity

Figure 4 shows the results of the feature compare of the database against itself. Each small square in
the plot represents the similarity coe�cient of the two objects compared. A white square is a perfect match
(similarity=1.0) and a black square indicates no similarity at all. One noticeable feature in the plot is the
presence of light square regions along the main diagonal. This can be attributed to the fact that like objects
in the database are numbered sequentially (e.g. parts 5-9 (Fig 3) are all screws). The light squares thus show
that the feature compare identi�es similar looking parts correctly. Figure 5 shows the results of a feature

9



0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

5

10

15

20

25

series 1

s
e

ri
e

s
 2

Feature Results @ 10,000 voxels

Figure 4: Database feature-compared to itself, objects at 10 Kvoxels

compare of all the screws at all three resolutions, which emphasizes this point, and shows additionally that
there is no signi�cant e�ect of resolution on the similarity coe�cients generated. This plot indicates that
the last screw is somewhat di�erent from the rest of the screws. Figure 3 con�rms this, the last screw (part
10), has a shorter, wider stem, and a longer, wider head than the rest of the screws.

Figure 6 shows the database compared to itself using the voxel-voxel symmetric di�erence compare. Once
again, we can see the lighter square regions near the diagonal indicating the high similarity coe�cients of
like objects. Both the feature and the voxel plots also exhibit distinct dissimilarities between objects 15-19
and the rest of the database. This is because these objects are all washers (Figure 3), which have holes in the
middle of them, whereas most of the objects are �lled solids. It is important to note that this phenomenon
is more obvious in the voxel compare than in the feature compare. The voxel compare yields a very low
similarity coe�cient because of the volume normalization of the symmetric di�erence, whereas the feature
compare yields a higher one because of the radial symmetries of the objects. This also indicates an additional
shortcoming in the voxel compare in that it is highly sensitive to the orientation of the object if the object
is rotationally symmetric.

On the whole, the feature and voxel compares are not extremely di�erent. Figure 7 shows the di�erence
in similarity coe�cients of the two compares. Most of the squares are very dark (indicating almost no
di�erence) except for parts 11 and 26, both of which are rotationally symmetric objects for which the voxel
compare yields very low similarity coe�cients.

On this small database of mechanical parts, the 3dbase system performs very well in determining the
similarities of various objects in the database.

4 Summary

We have described a working system for CAD solid object indexing and retrieval. The system begins
with IGES �le formats and extracts various geometric moments that are rotationally, translationally and
scale invariant. Those moments are used as features to index the objects and compare them for similarity.
Finer resolution comparisons are done using voxel by voxel symmetric di�erencing. Our implementation
and experiments indicate that the method is very promising for more complete automation. Our work
addresses shape matching and recognition but does not at present deal with text that is embedded in the
CAD �les. Virtually all mechanical design CAD systems allow annotation of the �le in various ways. This
text can be extracted from an IGES representation and used in a free text search to complement the purely

10



0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

screws

s
c
re

w
s

Feature Results: screws vs. screws

Figure 5: All screws feature compare, objects at all resolutions

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

5

10

15

20

25

Voxel Results @ 10,000 voxels

series 1

s
e

ri
e

s
 2

Figure 6: Database voxel-compared to itself, objects at 10 Kvoxels

11



0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

5

10

15

20

25

Difference in Feature and Voxel Results

series 1

s
e

ri
e

s
 2

Figure 7: Di�erence between feature and voxel similarity coe�cients

geometric search we currently perform. This text often contains taxonomic references, dimensions, material
composition, machining information and end application of the part. Software systems for free text searching
are relatively mature and widely available. They typically return a numerical \relevance" ranking which can
be combined with the geometric ranking we now provide. The combination can be in the form of a linear
combination speci�ed by the user. Future work on this project includes scalability studies to see if the
approach scales to thousands of objects and development of text search capabilities.

References

[AMP85] Yaser S. Abu-Mostafa and Demetri Psaltis. Image normalization by complex moments. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-7(1):46{55, January 1985.

[GC93] J.M. Galvez and M. Canton. Normalization and shape recognition of three-dimensional objects by
3d moments. Pattern Recognition, 26(5):667{680, 1993.

[Gra95] Robert S. Gray. Agent tcl: A transportable agent system. In Proccedings of the CIKM Workshop
on Intelligent Information Agents, Fourth International Conference on Information and Knowledge
Management (CIKM 95), December 1995.

[Har92] J.R. Hartley. Concurrent Engineering : Shortening Lead Times, Raising Quality, and Loweing
Costs. Productivity Press, 1992.

[LD89] Chong-Huah Lo and Hon-Son Don. 3-d moment forms: Their construction and application to
object identi�cation and positioning. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 11(10):1053{1064, October 1989.

[Mar89] Giovanni Marola. On the detection of the axes of symmetry of symmetric and almost symmetric
planar images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1):104{108,
January 1989.

[PL92] Soo-Chang Pei and Chao-nan Lin. Normalization of rotationally symmetric shapes for pattern
recognition. Pattern Recognition, 25(9):913{920, 1992.

[RK76] Azriel Rosenfeld and Avinash C. Kak. Digital Picture Processing. Academic Press, 1976.

12



[SH80] Firooz A. Sadjadi and Ernest L. Hall. Three-dimensional moment invariants. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-2(2):127{136, March 1980.

[TC91] Wen-Hsiang Tsai and Sheng-Lin Chou. Detection of generalized principal axes in rotationally
symmetric shapes. Pattern Recognition, 24(2):127{136, 1991.

[US 88] US Department of Commerce. Initial Graphics Exchange Speci�cation 4.0, June 1988.

13


