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Abstract

Mobile agents have received much attention recently as a way to e�ciently access distributed re-

sources in a low bandwidth network. Planning allows mobile agents to make the best use of the

available resources. This thesis studies several planning problems that arise in mobile agent infor-

mation retrieval and data-mining applications. The general description of the planning problems is

as follows: We are given sites at which a certain task might be successfully performed. Each site has

an independent probability of success associated with it. Visiting a site and trying the task there

requires time (or some other cost matrix) regardless of whether the task is completed successfully

or not. Latencies between sites, that is, the travel time between those two sites also have to be

taken into account. If the task is successfully completed at a site then the remaining sites need not

be visited. The planning problems involve �nding the best sequence of sites to be visited, which

minimizes the expected time to complete the task. We name the problems Traveling Agent Problems

due to their analogy with the Traveling Salesman Problem. This Traveling Agent Problem is NP -

complete in the general formulation. However, in this thesis a polynomial-time algorithm has been

successfully developed to solve the problem by adding a realistic assumption to it. The assumption

enforces the fact that the network consists of subnetworks where latencies between machines in the

same subnetwork are constant while latencies between machines located in di�erent subnetworks

vary. Di�erent versions of the Traveling Agent Problem are considered: (1) single agent problems,

(2) multiple agent problems (multiple agents cooperate to complete the same task) and (3) deadline

problems (single or multiple agents need to complete a task without violating a deadline constraint

at each location in the network). Polynomial and pseudo-polynomial algorithms for these problems

have been developed in this thesis. In addition to the theory and algorithm development for the

various Traveling Agent Problems, a planning system that uses these algorithms was implemented.

Descriptions of the mobile agent planning system with its supporting components such as network
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sensing system, directory service system, and clustering system, are also given in this thesis.
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Chapter 1

Introduction

A mobile agent is a program which can migrate from one machine to another, performing useful

actions, under its own control. It has been the subject of much attention in the last few years due to

its advantage in accessing distributed resources in a low-bandwidth network [59, 30, 27]. One of the

instances where a mobile agent can be very e�ective is in a client/server model. In a client/server

model, a client may need access to a huge database on a server. This requires a large amount of

data transmission over the network and may signi�cantly waste bandwidth if the data transferred

is not useful at the client side. However, a mobile agent can eliminate such wasted bandwidth.

Unnecessary data transmission can be avoided by sending a mobile program to the server and by

performing data manipulation at the server. Another advantage of a mobile agent is that it can

perform robustly even if the connection fails because it does not require a continuous connection

between the server and client.

D'Agents is a complete mobile-agent package developed at Dartmouth College [27]. It is based on

the Tool Command Language (Tcl)[41], Java [10], and Python[11], which are machine-independent

languages and can run on generic UNIX, PC or Macintosh machines. D'Agents is a user-friendly

package. For example, an agent migration can be executed with a single instruction. It also includes

simple instructions for direct communication between agents and for cloning of agents. A security

system has been added so that a malicious agent cannot damage secure resources.

A desired functionality of D'Agents is agent planning based on network conditions or the situa-

tions of other agents. A planning system would decide what an agent should do next to complete

its task given the current condition of the network. Since the condition of a computer network

changes continuously, the sequence of the agent's actions cannot be predetermined. Thus, planning
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for mobile agents needs to be executed in real time, basing decisions on the current condition of

the network. The real-time planning system is necessary for e�cient and robust performance of

D'Agents because a mobile agent can be isolated or terminated due to unexpected disconnection of

links or machine shutdowns.

Planning is a well-studied research topic, especially in the arti�cial intelligence �elds [49, 13, 37,

18, 19]. In general, planning is de�ned to be the selection of a sequence of actions that will result in

the achievement of a desired goal with minimal cost. Planning requires a description of the initial

state of a system, the goal state and a set of possible actions and rules governing transitions between

states together with their costs. Planning produces a sequence of minimal cost actions which takes

the system from the initial state to the goal state.

Many useful planning methods have been proposed to deal with a static environment where the

world does not change during the execution [49, 50, 23]. However, these methods cannot be applied

to our mobile agent planning problem because of the dynamic changes in the problem environment

during execution. Open-world planning [36] is one suitable method to handle a dynamic environment.

This method decides the following action after observing the current state using sensors. It then

executes the corresponding action instead of deciding the sequence of actions before execution. This

open-world planning is also known as closed-loop control in the classical control literature.

The current state of the mobile agent is provided by a network sensing module. Network statistics,

such as disconnection of links, shutdown of machines in the network, reliability of links, latency and

available bandwidth of links, are collected by the network sensing module. Also, a mobile agent

needs to obtain the location of the information resources if it is an information retrieval agent.

Furthermore, it has to know about the location of other agents if it has to cooperate with them.

Hence, a directory service that provides such information would be necessary.

The goal of this thesis is to study planning problems for mobile agents. Instead of solving the

general planning problem, the thesis begins with a speci�c planning problem which is often observed

in information retrieval and data-mining problems. These two applications are chosen as the domain

of the planning problem because they require access to a huge amount of data across a network.

Thus, usage of a mobile agent eliminates wasteful data transmission over the network.

A mobile agent often encounters cases where it has to move among several machines until it
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completes its task. Although a directory service may be available to provide locations where an

agent achieves its task, the service may not necessarily be able to provide the complete knowledge

about a location. Therefore, the agent has to accept uncertainty with respect to successful completion

of its task there. The agent migrates to some other machine if the task is unsuccessful. We assume

that the directory service can provide the location information with a reference ranking, that is, the

probability with which the agent completes its task at the respective location. In this situation, the

planning problem is to decide in what sequence the machines should be visited in order to complete

a task in minimum time.

However, the solution to the problem depends not only on the reference ranking of the machines

but also on the network conditions such as the current latency, bandwidth, and load. For example,

assume that there is a very busy site in Japan where an agent can �nish its task with a high

probability, while several unencumbered machines in the local network are of low probability. In

such a situation it is di�cult to decide whether to migrate to the machine in Japan, despite the

cost of huge latency and computation time, or migrate to the machines in the local network. Thus,

network statistics must be taken into consideration in planning. The mobile agent planning problem

can thus be de�ned as: The problem of �nding an optimal sequence of machines for a mobile agent

to visit in order to complete its task in the minimum expected time, assuming the availability of

the network statistics and the directory service. We named this mobile agent planning problem

Traveling Agent Problem because of its analogy to the Traveling Salesman Problem [25].

Unfortunately, we have found that the problem is not easy to solve because it is NP -complete in

the general formulation. In order to make the problem tractable, simpli�cations must be employed.

We have analyzed how the complexity of the planning problem changes depending on di�erent

assumptions added to the general planning problem. Some of the assumptions that were imposed are:

the network activity is static or dynamic, the agent(s) are single or multiple and the probability of

success is variable or same. Under these assumptions, we have successfully reduced the complexity of

the planning problem to a polynomial-time or pseudo-polynomial-time problem. (Pseudo-polynomial

means polynomial in the values of input time, not the number of bits required to represent them.)

In addition to the development of theories and algorithms for the mobile agent planning problem,

algorithms were implemented as the core of the planning system for D'Agents. The network sensing
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module and the directory service module were also developed as a part of the planning system.

The thesis consists of eight chapters. The �rst chapter introduces the salient features of the

planning problem and mobile agents. The second chapter states the planning problems involved in

mobile agent applications. The third chapter describes general state-of-the-art planning methods

and discusses suitable approaches to the mobile agent planning problem. The main part in the thesis

is the fourth chapter where the Traveling Agent Problem is proposed and where the theories and

algorithms are developed for the problem. The implementation and the experiments of the planning

system are described in the �fth and the sixth chapters. The seventh chapter discusses possible

future work and �nally the eighth chapter covers the conclusions of the study.
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Chapter 2

Problem Statement

The goal of this thesis is to study network and resource planning problems for mobile agents. A

concrete result is a planning module for Agent-Tcl. This module will allow agents to �nish their

task with minimum execution time or with minimal resource conicts, e.g., bandwidth, CPU load

and so on.

One of the biggest potential applications for mobile agents is information retrieval [48] and

data-mining [22], both of which involve access to huge amounts of data across a network. Instead

of transmitting data across the network, an agent migrates to the machine where the database is

located, performs its task there, and then comes back to the original machine carrying a result.

Thus, the mobile agent can utilize the bandwidth of the network much more e�ciently than by

accessing the distributed database remotely using a direct connection. The total computation time

taken can be shortened, especially when data-transmission is the bottleneck of the task.

When an agent migrates to di�erent machines continuously, the total time of the continuous

migration will vary depending on the sequence of machines to visit. In order to minimize the total

execution time of a task, a planning module is required to decide the sequence of machines to visit.

The existence of a planning module becomes especially important if agents have to work in a

dynamically and rapidly changing environment like a wireless network where disconnection of links,

shutdown of computers, and con�guration changes in the network happen frequently. In such an

environment, without a planning module, an agent may not be able to even achieve its task because

it can be isolated or terminated.

Let us consider mobile agent planning for information retrieval and data-mining. Required

components for planning are essentially a directory service and a network-sensing module. The
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directory service provides the mobile agent with a list of possible locations where the agent may be

able to �nd its desired information. The network-sensing module collects network statistics o�-line

and allows the mobile agent to access them in order to obtain the current network status.

This directory is updated in real time as the network con�guration and the contents of distributed

databases change. In our scheme, the directory service provides not only locations where the agent

might �nd the desired information, but also the probability that the agent will successfully �nd the

information at each location.

The network sensing module acquires network statistics such as link status, machine shutdown,

machine loads, link bandwidth, latency and the location of congestion and possibly other status

information. These network statistics help agents determine how e�cient and safe their migration

will be. By referring to the network statistics, the mobile agent can �nd the best route to some

speci�c location, decide if the location can be safely visited, and improve its operation.

The planning module is supposed to provide the sequence of actions that minimizes the agents'

total execution time and maximizes the safety and robustness of their migration. The degree of

safety and robustness can be expressed as part of the expected execution time since an isolated or

terminated agent can be recovered by running a new copy with a startup penalty time. Therefore, we

can rede�ne the planning problem as the problem of deciding the sequence of actions that minimizes

cost, i.e., the agent's total execution time.

In general, the planning problem of minimizing a certain cost is formulated mathematically as

follows:

The Planning Problem { An instance of the planning problem is given by

� = < S;A;C;R; s0; s
� > where

� S = si is the set of states. s(t) is the state at time t.

� A = ai is the set of actions. a(t) is the action taken at time t.

� R = ri is a set of random parameters. r(t) represents the random parameter at

time t.

� C = ci is a set of immediate costs. c(s(t); a(t); r(t)) speci�es the immediate cost for

the action at time t.
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� s0 and s� denote the initial and goal state respectively. The result of planning

should be a sequence < a(1); a(2); :::; a(n) > such that:

total expected cost = Ef

nX
i=1

c(s(i); a(i); r(i))g

is minimized.

In this planning problem, the cost is the time spent in taking an action. The possible set of

states are the network conditions, more precisely, the network statistics, and possibly, the locations

of other mobile agents if there is a need to communicate or cooperate with them. The set of actions

includes migration to some speci�c machine as well as various network sensing actions that actively

obtain more up-to-date network statistics. The mobile agent is allowed to take more complex actions

such as communicating with other agents and making a clone.

Generally, state transition is decided based on the action ai, the state si and the random variable

ri, and is therefore stochastic. However, if the state transition is assumed to be deterministic, ri

does not contribute to the state transition. In mobile agents' planning problems, the state transition

will be stochastic because the state of the system is a function of the network statistics, which do

not change deterministically.

Next, we consider the above de�nition of the planning problem with the help of a concrete

example of a mobile-agent planning problem.

Example:

Assumption { The collected network statistics are the latency and bandwidth of the links between

machines and the load on each machine. When the size (in bytes) of the mobile agent and the expected

duration of its computation are known, the expected value of the agent's traveling and computation

time can be calculated. The network statistics stay the same during the plan's execution.

Planning problem { The task of the mobile agent is to retrieve required information in the

network. Consider the following example shown in Fig.2.1. The agent begins at its home machine

\Tgdwls1". The directory service provides a list of machines (\Lost-ark", \Temple-doom", and

\Bald") with the probabilities that the agent might �nd the information on each machine (0.9, 0.4,

and 0.7, respectively). By referring to the network sensing module, the agent estimates the traveling

time between the machines and the computation time at each machine. The agent is allowed to take
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Lost-ark

Temple-doom

Bald
Tgdwls1

50ms
0.9

2ms
4ms

100ms

3ms

10ms

5ms

20ms
0.4

agent’s home55ms

0.7

* travelling time

* probability
* computation time

Figure 2.1: An example of the planning problem for the mobile agent

an action by migrating to any of the machines. What is the sequence of actions that the mobile

agent should take in order to �nish as quickly as possible? This planning problem is equivalent to

a routing problem for determining the best sequence of machines to be visited.

In this example, a state is a location of the mobile agent. An immediate cost is the traveling

time between machines and the computation time. A random variable is the probability of success-

fully �nding required information. Assuming that the agent migrates the machines in the order of

\Temple-doom", \Lost-ark" and \Bald", the total expected time of this tour will be:

Total Expected T ime = 5+ 20+ f0:4 � 5+ (1� 0:4) � f10+ 50+ f0:9 � 4+ 0:1 � f3+ 55+ 100gggg:

Because of the probability of success in �nding information, this planning problem is stochastic.

In the following chapter, this example will be solved using dynamic programming.
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Chapter 3

Background

3.1 Possible Solution Approaches

This section surveys several state-of-the art planning techniques. Comparisons between these plan-

ning methods will suggest good possible solution techniques for the mobile agent planning problem.

3.1.1 Arti�cial Intelligence

Planning is one of the most studied �elds in Arti�cial Intelligence. Instances of the planning problem,

such as states, actions and state transitions, are represented in propositional logic form. Using

backward or forward reasoning, the state-space is searched for the best path or the best sequence of

actions that connects the start and goal states.

Traditional planning in AI (Arti�cial Intelligence) assumes that the system's state during exe-

cution is known in advance and that no exception will occur. The best known traditional planning

algorithm is POP (Partial-Order Planner) [49, 50]. POP uses the STRIPS language [23] where the

planning problem is described in terms of states, operators (or actions), the initial state and the

goal state. The actions are described in terms of their preconditions and e�ects. POP constructs

the plan, i.e., the sequence of actions, by searching the state space backward from the goal state to

the initial state. The main feature of POP is that it can represent a plan in which some actions are

ordered with respect to each other and others are not. As a result, it can represent all the possible

plans e�ciently.

An example of POP will help us understand the basic concepts of AI planning. The backward

reasoning used in the POP algorithm is fundamental and still widely used in modern planning
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algorithms.

Example { A mobile agent should go and collect information on tomorrow's ight schedule and

weather forecast at sites FS and WF, respectively, and bring this information back to the home

machine. What is the plan for the mobile agent?

Answer { First of all, the planning problem must be described in the STRIPS language. The states

are represented by conjunctions of literals. In our example the initial and goal states are described:

� the initial state: At(Home) ^ : Have(Schedule) ^ : Have(Weather)

� the goal state : At(Home) ^ Have(Schedule) ^ Have(Weather)

The actions (operators) are described as the combination of three components: the operator de-

scription, the precondition, and the e�ect. An action is possible only if the precondition is satis�ed.

Our example has the three operators:

� Go : Op(ACTION: Go(there), PRECOND: At(here),

EFFECT: At(there) ^ : At(here))

� Get : Op(ACTION: Get(x), PRECOND: At(site) ^ O�er(site, x),

EFFECT: Have(x))

� Finish : Op(ACTION: Finish, PRECOND: Have(Schedule) ^

Have(Weather) ^ At(home)).

POP is a backward planner. The �rst step is to �nd an operator that will achieve the goal. It is

not di�cult to see that this operator is the �nish operator. To execute the operator, its precondi-

tion, i.e., Have(Schedule) ^ Have(Weather) ^ At(home), has to be achieved. Thus, POP looks for

operators that will achieve the precondition, Have(Schedule) ^ Have(Weather) ^ At(home). The

Get operators for Schedule and Weather are found and added to the plan. Thus, on each step,

POP extends the plan by adding an operator that achieves the precondition of the current step. If

POP cannot �nd the operator, it backtracks to the previous step. In our example, the next step is

to add the operators that achieve the preconditions of Have(Schedule) and Have(Weather). These

preconditions are At(site) ^ O�er(site, Schedule) and At(site) ^ O�er(site, Weather) respectively.

Using the propositions O�er(FS, Schedule) and O�er(WF, Schedule), we can �nd that the precon-

ditions to be achieved are At(FS) for Have(Schedule) and At(WF) for Have(Weather). Thus, we
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Figure 3.1: A solution to the example problem
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add the Go operators Go(FS) and Go(WF) to the plan, linking them to the At(Home) condition in

the initial state. This means that both Go(FS) and Go(WF) now have the precondition At(Home).

Assume that we take the step Go(FS), which creates the condition At(FS) and deletes At(Home).

Thus we cannot achieve the precondition At(Home) of the condition Go(WF). In the same way, the

Go(WF) does not satisfy the precondition of Go(FS). Thus, if a new step is incompatible with an

existing step, we say that a threat is caused. The threat is resolved by imposing an order to the

incompatible steps. In order to resolve the threat in our problem, for example, we take the Go(FS)

operator �rst and then the Go(WF) operator, by adding the link from site WF to FS. However,

taking Go(WF) after Go(FS) causes a threat with Get(Schedule). This threat can be resolved by

taking Go(WF) after Get(Schedule). Finally, the precondition of the Finish step At(Home) must

be achieved. This can be done by adding the Go operator Go(Home) at the end of the plan. The

solution to the planning problem is shown in Fig.3.1.

End of Example

POP can handle any planning problem as long as it is described in the STRIPS language, but it

does not have an ability to search the state space e�ciently. Thus the main focus of POP research

is to develop an e�cient search algorithm by employing a cost function or by adding constraints, for

example, OPLAN [13]. OPLAN improves POP with a more expressive language that can represent

resources and time. OPLAN then produces a plan that satis�es given resource constraints such as

monetary limit. In OPLAN Resource consumption is associated with actions (steps). If a newly

added action violates the resource constraint, the action is discarded and the search backtracks to

the previous step to look for another action. Once a plan is produced, a scheduler decides when and

where each step in the plan should be performed.

Remember that the above planning algorithms assume static and complete world knowledge.

However, such assumptions are not applicable in the real environment because of the uncertainty and

unpredictability therein. For example, it is very di�cult to obtain a complete world knowledge if the

world is changing. In addition, the e�ect of an action taken during execution may be unpredictable

in the real environment.

To handle the uncertainty or incomplete knowledge of a dynamically changing world, a number

of researchers are working on conditional planning and replanning methods. Conditional plans

12



include conditional branches where a sensing action chooses the appropriate partial plan for current

conditions [37, 18]. The replanning method detects errors by using sensors during execution. If

an error is detected, it re-plans to �nd another way to achieve the goal from the current situation

(PLANEX [19] IPEM [1]).

A conditional planning problem can be expressed in an extended version of STRIPS. A possible

sensing action would be to check if a certain information x is available at site y:

Op(ACTION: CheckInfo(x, y),

PRECOND: At(y),

EFFECT: KnowsWhether(Available(x,y))).

Using the sensing actions at the conditional branches, all possible conditional plans are built.

This conditional planning can deal with incompleteness of the world by taking a sensing action.

However, the scalability of the approach is a problem. The number of possible conditional plans

grows exponentially with the number of conditional branches. Moreover, since only one plan is

actually employed, the computation time needed to �nd the other plans becomes prohibitive.

The replanning method re-calculates the plan once errors are detected. There are two ways

to detect errors in the replanning method. The �rst way, execution monitoring, compares the

preconditions of the remaining steps with information collected by the sensors; any conict is an

error. Thus, even a future error can be detected. The second way, action monitoring, checks the

precondition of the step which is about to be executed. If the precondition is not satis�ed, an error

has occurred. This method is simple and e�cient, but it cannot detect any error that may happen

some time in the future.

The cost of actions or the likelihood of a particular outcome can be taken into account in the

planning process [15]. This information eliminates unlikely plans from consideration and either max-

imizes the likelihood of successful execution or minimizes the cost of execution. Decision networks

[16, 38] and Markov decision processing [5] use probability theory to handle likelihood and use a

cost function to handle costs.

Decision networks use Bayesian networks [43, 44] where causal links between belief states are

weighted with the conditional probabilities. Based on observations or actions, the probability of a

belief state is updated using Bayes' rule. There are decision states where actions should be chosen.
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Actions cost a certain amount and their e�ects on other belief states are described in the conditional

probabilities. The action that increases the probability of the goal state with minimum expected

cost is chosen at the optimal action at each decision state. An advantage of a decision network is

that, for each potential action, it can estimate the likelihood of the goal state without halting the

planning process to perform sensing actions as in conditional planning. Its disadvantage is that the

computation time for a Bayesian network that represents a complex system will be extremely large.

Markov decision processing has gained attention among AI researchers who work in problem

domains that involve uncertainty and incomplete knowledge. In Markov decision processing, a

problem is formulated as a set of states; An agent takes an action to move from one state to

another state until it reaches the goal state; each action has an immediate cost. The objective of

Markov decision processing is to �nd the policy (a map of states and their optimal actions) that

minimizes the total expected cost (an expected accumulated immediate cost). E�ective and simple

calculation methods to �nd the optimal policy are available, such as Dynamic Programming [3, 28].

The advantages and disadvantages of dynamic programming will be discussed below.

3.1.2 Dynamic Programming

Dynamic programming has received increasing attention to treat the planning problem because of

its great ability to deal with incompleteness and uncertainty in the world and to obtain an optimized

plan. Dynamic programming was �rst proposed by Richard Bellman [3] as the modern approach to

sequential decision-making problems.

In dynamic programming a system con�guration is considered as a state, and the system moves

from one state to another by taking an action. The next state depends on the action taken at the

current state. There is a cost and a set of transition probabilities associated with each action at

each state. Each transition probability speci�es the likelihood that the action will lead to a certain

next state. The objective of dynamic programming is to provide a optimal policy, i.e., a set of the

best action at each each state, rather than a sequence of actions to be taken from the initial state

to the goal state so that the expected total cost is minimal.

The essential characteristic of dynamic programming is that once the system is described as a set

of states, actions, costs, and transition probabilities, the optimal actions (i.e., the optimal policy)

can be calculated with simple matrix manipulation. Moreover, the transition probabilities enable
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dynamic programming to handle a stochastic system, i.e., a system with uncertainty.

However, as an assumption, the e�ect of the actions at each state must be independent of

the previous state, i.e., the e�ect of action should depend on the current state only and not on

how the system arrived at that state (Markov property). As long as this assumption is satis�ed,

dynamic programming is a very general method. Because of this generality, it has a large variety of

applications.

The most common algorithms for dynamic programming are the value iteration algorithm of

Bellman [3], and the policy iteration algorithm of Ron Howard [28]. In this subsection, we examine

these two methods.

Formulation of Dynamic Programming

Dynamic programming is formally de�ned by the tuple < S;A; P; C > where

S : a set of states

A : a set of agent actions

P : S �A! S : state transition function

This function speci�es that the outcome state of an action at the current state follows the transition

probability P . P (x; a; y) gives the probability that the system make a transition from state x to

state y when action a is taken at x.

C : S �A! < : immediate cost function

This function speci�es the immediate cost of a action at a state. C(x; a) gives the immediate cost

to take action a at state x. It can be a random variable.

A policy, � : S ! A, speci�es an action for each state. The goal of dynamic programming is to

�nd an optimal policy �� whose expected total cost function V��(x) � V�(x) for all states x and

policies �, where

V�(x) = E[C(x; �(x)) + 
X
y2S

p(x; �(x); y)V�(y)]: (3.1)

 is a discount factor that takes a value between 0 and 1 for the in�nite horizon problem so that V�(x)

has a �nite converged value. A larger discount factor makes the near future cost more important.
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The above equation (3.1) is the basis for dynamic programming. This equation explains that

the total cost from the state x following the policy � is the sum of the immediate cost of the action

suggested by the policy � at the state x and the discounted expected total cost from the next state

y following the policy �.

There are two main algorithms for obtaining an optimal policy ��. The �rst algorithm is value

iteration that obtains the optimal policy by repeated update of the total cost of each state based on

the cost estimates of the other states. This update process is done using the Bellman equation:

V (x; a) = min
a
fE[C(x; a)] + 

X
y2S

p(x; a; y)V (x)�g

where V (x)� = mina V (x; a). Value iteration repeats this update process until the left side con-

verges. Then, the optimal policy V (x)� is obtained by �nding for each state, the action a0 such that

V (x; a0) = mina V (x; a).

The next algorithm is policy iteration. Policy iteration starts with a random policy and tries to

improve this policy by �nding an action which is better than the current one for each state. The

iteration process consists of two steps. The �rst step is to compute V�(x) for each state x 2 S under

the current policy. Then, the next step is to �nd an action a such that

C(x; �(x)) + 
X
y2S

p(x; a; y)V�(y) < V�(x)

for each state x 2 S, and if such an action a is found, �(x) is changed to a. This iteration is repeated

until no policy update is found.

Let us look at the four elements of < S;A; P; C > for the agent planning problems in more detail.

S : a set of states

States in the agent planning problem should describe the situations that a mobile agent encounters

in the network. In other words, the states should contain the parameters that a�ect the agent. Such

parameters include:

1. location of agents

2. a list of machines that the agent is going to visit

3. probabilities that the agent will be able to �nd the desired information on each machine

16



4. available bandwidth between all machines in the network

5. latency between all machines in the network

6. current CPU power of the machines

7. probability of machine breakdown

8. reliability of links

The �rst parameter is obtained by keeping track of the agent migrations. The second and

third parameters are obtained by referring to the directory. The parameters from the fourth and the

seventh are collected by the network sensing module. Since the state space of dynamic programming

is discrete, the value of each parameter has to be quantized. The state space will consist of all

combinations of the quantized values of each parameter. It is easy to imagine how huge the state

space becomes. The size of the state space increases exponentially with the number of parameters.

The level of quantization determines the degree of exponential growth.

A : a set of actions

An action changes the current state to a new state. Possible actions are follows:

� move an agent to one of the sites

� clone an agent

� terminate an agent

� merge two agents

� get more accurate information about the current state

The �rst four actions are basic agent functionalities. The �fth action accesses the network sensing

facilities to collect the most up-to-date network statistics. The state of the network is changing

continuously. As more time passes, the network statistics become less accurate. By collecting the

most up-to- date information, the agent can make better decisions.

P : state transition function (a set of transition probabilities)

The outcome of an action is not always deterministic since unexpected things may happen in the

network during execution. For example, the user of a certain machine may turn it o� unexpectedly
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when the agent is migrating to that machine. Because of such uncontrollable disturbances, the state

transition of an action is stochastic rather than deterministic.

Dynamic programming uses transition probabilities to deal with the stochastic nature of the

world. In practice, these transition probabilities have to be obtained for all possible combinations

of states and actions by collecting a huge amount of state transition data in advance.

C: immediate cost function (a set of costs)

The cost function usually represents the value to be optimized. In this case, since the planning

problem is to minimize the total execution time of a task, the cost should represent time. However,

there are also constraints on an agent's resource usage, so the cost should also include a penalty

for over-usage of the resources. Therefore, the cost in the planning problem is a combination of

weighted time and penalties.

An immediate cost in dynamic programming is the cost that is charged when a certain action

is taken in a state. The total cost is the sum of all immediate costs over the course of execution.

Dynamic programming �nds the best action to be taken at each state to minimize the total cost.

The set of these best actions is the optimal policy.

Example of Dynamic Programming

For a better understanding of how dynamic programming can be applied to the planning problems

of mobile agents, consider the planning problem that was described in chapter 2 (Fig.2.1). We will

solve this problem with value iteration.

Example { In the problem, the state is represented as the current location of the agent plus the

set of machines where the agent has already searched the database. More speci�cally, the state

is represented as a vector of integer elements, each element corresponding to one of the machines

in the network. For example, in the planning problem in Fig.2.1, a state is [s(1) s(2) s(3) s(4)].

Each element s(i) indicates the situation of machine i (\Lost-ark", \Temple-doom", \Bald", and

\Tgdwls1") and takes a value of 0, 1, 2, or 3. The values indicate \not searched yet", \searched

already", \the agent is there without searching the database", and \the agent is there searching the

database", respectively. The initial state is [0 0 0 3] which means that the agent is at the home

machine \Tgdwls1" and has not searched the databases on other machines. Since the agent does

not need to search the database at the home machine, the value of the home machine is set to 3.
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state 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
search at Lost-ark 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
move to Temple-doom 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
move to Bald 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
move to Tgdwls1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

state 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
search at Lost-ark 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0.9
move to Temple-doom 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
move to Bald 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
move to Tgdwls1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.1: The transition probability matrix for state [2 0 0 1] (25)

Terminal states are [1 1 1 3], [1 1 3 1], [1 3 1 1], [3 1 1 1] and [0 0 0 0]. The �rst state shows

that the agent has visited all the machines and returned to the starting machine without �nding

the information. The second shows that the agent has found the information. An action is to move

to a speci�c machine, changing the values of state elements from `0' to `2' and from `3' to `1', or to

search the database at the current location, changing the values of a state element from `2' to `3'.

For example, if the agent moves from \Lost-ark" to \Temple-doom", the state, say [3 0 0 1], changes

into [1 2 0 1]. The cost for an action is the latency to move from one location to another location,

or the overhead of searching a database. These latencies and overheads are depicted in Fig.2.1 in

chapter 2. The transition probability is \1.0" for movement to other locations, meaning that the

state transition for the movement action is deterministic. The state transition for the searching

action is stochastic, and the state may transit to state [0 0 0 0] if the desired information has been

found, or may just change the value of an element from `2' to `3'.

There are 32 states in the state matrix V of the planning problem as shown in Table 3.1. Table

3.1 shows the transition probability matrix P for state [2 0 0 1] (23). Please note that a number

in the parentheses after a state [s(1) s(2) s(3) s(4)] represents its state number assigned in Table

3.1. The columns correspond to the destinations state and the rows correspond to the actions. For

example, the \search at Lost-ark" action has probabilities 0.9 and 0.1 for next states [0 0 0 0] (32)

and [3 0 0 1] (24), since the probability that the agent will �nd the desired information at \Lost-ark"

is 0.9. For the \moving" actions, the probability that the agent will successfully move to its desired

machine is 1. So we see `1' in the entry for states 15, 7 and 1, respectively.
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state 1 2 3 4 5 6 7 8 9 10 11
search at current machine 0 0 0 0 0 0 55 55 55 55 55
move to Lost-ark 4 4 4 4 4 4 3 3 3 3 3
move to Temple-doom 20 20 20 20 20 20 2 2 2 2 2
move to Bald 55 55 55 55 55 55 0 0 0 0 0
move to Tgdwls1 0 0 0 0 0 0 100 100 100 100 100

state 12 13 14 15 16 17 18 19 20 21 22
search at current machine 55 55 55 20 20 20 20 20 20 20 20
move to Lost-ark 3 3 3 10 10 10 10 10 10 10 10
move to Temple-doom 2 2 2 0 0 0 0 0 0 0 0
move to Bald 0 0 0 2 2 2 2 2 2 2 2
move to Tgdwls1 100 100 100 5 5 5 5 5 5 5 5

state 23 24 25 26 27 28 29 30 31 32
search at current machine 50 50 50 50 50 50 50 50 inf inf
move to Lost-ark 0 0 0 0 0 0 0 0 inf inf
move to Temple-doom 10 10 10 10 10 10 10 10 inf inf
move to Bald 3 3 3 3 3 3 3 3 inf inf
move to Tgdwls1 4 4 4 4 4 4 4 4 inf inf

Table 3.2: The immediate cost matrix

The rest of the entries in the matrix are 0. The other states have similar transition matrixes.

The immediate cost matrix is shown in Table 3.2. The columns correspond to the current states

and the rows represent the actions in each state. The cost for each pair has only 2 components. One

represents the searching overhead, and the other represents the movement latency. The expected-

total-cost vector V for each state has one element for each action. Initially, the value of each cost

element has some random value.

Once the problem is described in the form of P , C, and V , the optimal policy can be derived

from Bellman's equation (1). Using value iteration, on each iteration, the expected-total-cost vector

V is updated as:

Vnew  min
a
fC(a) + P (a)Voldg

where a is the policy vector and  is a discount factor. Note that a larger discount factor makes the

near future cost more important. As the number of iterations reaches in�nity, V gets close to the

optimal value V �. Then, the optimal policy a� is obtained by calculating:

a� = arg V (a�):
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State State description Optimal action
1 0003 2
2 0013 2
3 0103 2
4 0113 2
5 1003 3
6 1013 3
7 0021 2
8 0031 2
9 0121 2
10 0131 2
11 1021 3
12 1031 3
13 1121 1
14 1131 terminal
15 0201 4
16 0301 4
17 0211 4
18 0311 4
19 1201 1
20 1301 4
21 1211 1
22 1311 terminal
23 2001 1
24 3001 4
25 2011 1
26 3011 4
27 2101 1
28 3101 4
29 2111 1
30 3111 terminal
31 1113 terminal
32 0000 terminal

Table 3.3: The optimal policy for each state

For example, the value iteration algorithm produces the optimal policy that is shown in Table 3.3.

The numbers in the optimal action column, 1, 2, 3, 4, and 5 correspond to actions, \search at the

current machine", \move to Lost-ark", \move to Temple-doom", \move to Bald", and \move to

Tgdwls1".

As demonstrated in the example, if a set of states, actions, costs and transition probabilities

are available for the planning problem, the optimal policy can be obtained easily through simple

matrix calculations, such as those of value iteration or policy iteration. The usage of transition

probabilities allows the planer to handle uncertainty and incomplete world knowledge. Moreover,

since dynamic programming produces state-action rules rather than a sequence of actions, replanning
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is not necessary. In short, the ability to represent uncertainty and cost allows dynamic programming

to be applied to a wide range of real world problems.

Di�culties of solving dynamic programming problems

Although dynamic programming is attractive because of its simplicity, exibility and applicability,

it su�ers from several drawbacks. In practice, it is di�cult to use dynamic programming for the

agent planning problem. One reason is that the state space, and thus the computation time, is

extremely large. Another reason is that conventional dynamic programming has problems with

a dynamically changing environment such as a computer network. The �nal reason is that it is

di�cult for conventional dynamic programming to handle an environment where the current state

is not observable. A network sensing module may not be able to measure some of the network

statistics, for example, and thus the agent might not be able to determine its current state. Let us

look at these three di�culties in detail.

The state space is extremely huge

As you have seen before, the state is made up of several di�erent parameters. Moreover, each

parameter has a range of values. It is easy to imagine how large the state space can become. In

particular, the continuous parameters, such as latency and CPU power, will increase the size of the

state space easily if �ner quantization is required . In addition, parameters such as latency and

bandwidth are actually matrices, each of their elements is the value for a link in the network. Thus,

it is almost unrealistic to use all possible parameter combinations as the resulting state-space size

will be enormous. The size of the state space directly a�ects the computation time, so tremendous

computation power will be required to solve the problem unless the size of the state space is somehow

decreased.

The network is dynamically changing

Conventional dynamic programming assumes that the transition probabilities P (x; a; x0) and the

immediate cost function C(x; a) of a system are available a priori. Once the system con�guration

changes, the probabilities and the cost function must be recollected and the optimal policy must be

recalculated from scratch.

However, a computer network can change its con�guration frequently. For example, adding of

new computers, upgrading computers and operating systems, and users leaving and registering are
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all considered con�guration changes and these are observed every few days or hours. In addition, for

wireless computer networks, which are of particular interest in our work , changes in geographical

con�guration can occur every few minutes.

Thus, conventional dynamic programming is not suitable for the agent planning problem in a

dynamic computer network. We have to look for other methods that can obtain the optimal policy

in a dynamically changing system. These methods should not require the transition probabilities

and immediate cost function to be available in advance.

Uncertainty in Network Statistics (partially observable states)

We are studying e�cient network sensing methods to collect network statistics. Most the e�cient

network sensing methods collect information at certain intervals. The information will contain

uncertainty depending on how new it is. Since part of the system's state is determined by network

statistics, determining the state of the system would involve uncertainty. And without knowing the

state, an accurate optimal decision cannot be made.

Actively requesting network statistics would decrease the uncertainty, and make the agent's

decision more accurate. However, this would take time and also require network resources (e.g.,

bandwidth). It is necessary to have some criteria that determines how often the sensing is done.

Questions such as whether the sensing should be done at �xed intervals, or whether it should be

done depending on the agent's current state because some states may involve riskier decisions than

others, now arise.

Overcoming the di�culties

We have surveyed some di�culties that a�ect the agent planning problem. In this section, we discuss

possible solutions to these di�culties. One di�culty is the huge size of state space. There are several

possible ways to reduce the size of the state space. The �rst approach is to use feature extraction

which maps a state i into some small set of features f(i). The second approach is to aggregate states

into subsets. Another di�culty is uncertainty in the dynamically changing system environment.

Q-learning will be a suitable approach to this di�culty. Let us discuss these approaches in detail.

Feature extraction

Decreasing the number of parameters is one way to decrease the size of the state space. Feature

extraction [6] is used to map the original parameters into a small number of parameters, i.e., features,
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that capture the important characteristics of the state. These features are usually identi�ed by

humans based on the knowledge of, or the experience with, a system. This method will be especially

useful when we deal with bandwidth and latency matrices. The matrices will be reduced to vectors

which have much less complexity.

Given a feature vector f(i) = (f1(i); f2(i); :::; fm(i)), one wants to �nd the best coe�cient r(k)

for each elements fk of the vector in the following:

V (f(x); r) =

mX
k=1

r(k) � fk(x)

The best coe�cients will be the one which minimize :

X
fV (x) �

mX
k

V 0(fk(x); r(k))g
2:

These coe�cient can be obtained using linear or non-linear least square methods.

Aggregation method

The aggregation method [5] turns the system into another system of smaller dimension. The states

of the original system are merged into aggregated subsets S1; S2; :::; Sm. These subsets must cover

the entire space

S = S1
[

S2
[

:::
[

Sm:

Aggregation of states is useful when the transitions between subsets capture the global behavior of

the original system. In this case, the states in each aggregated subset have similar state transitions.

Q-learning

As mentioned before, conventional dynamic programming is not suitable for a system whose envi-

ronment is dynamically changing. Recently, Q-learning [58] was introduced as a potential solution to

this problem. Unlike conventional dynamic programming, Q-learning does not require the transition

probabilities and immediate cost function to be available a priori. Thus, Q-learning can handle a

system whose behavior (whose transition probabilities and cost function) is unknown or a dynami-

cally changing system whose behavior become unknown every time the system changes. However,

application of Q-learning to a dynamically changing system requires the change to be enough slow so

that Q-learning can obtain the optimal solution because the convergence proof Q-learning requires
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stationarity of the system (i.e., the transition probabilities and immediate cost function stay the

same).

Q-learning uses additional notations compared to conventional dynamic programming. Let us

de�ne Q�(x; a) as a Q-factor, the expected cost of taking action a in state x followed by the optimal

policy. The optimal cost of x, V �(x) can be expressed as:

V �(x) = min
a

Q�(x; a):

Thus equation (3.1) can be written as:

Q�(x; a) = C(x; a) + 
X
x0

P (x; a; x0)min
a0

Q�(x0; a):

Then the optimal policy ��(x) = argminaQ
�(x; a).

The Q-factors can be calculated on-line without using C and P as follows:

Q(x; a) = (1� �)Q(x; a) + �fc(x; a) + max
a0

Q(x0; a0)g

where c(x; a) is the observed cost for action a at state x, x0 is the observed next state, and 0 �

� �< 1.

Q(x; a) will converge with probability 1 to the optimal value Q�(x), if (1) each action at each

state is executed an in�nite numbers of times and (2) � satis�es the following:

For all x, a,

X
i(x;a)

�i(x;a) =1 and
X
i(x;a)

�2i(x;a) � 1

where i(x; a) is the number of updates of Q(x; a).

As we can see, Q-learning derives the optimal policy based on history samples only. One require-

ment is to control the system so that all actions in all the states are explored an in�nite numbers

of times. Then, the optimal policy can be found even if the system is dynamically changing as long

as the system's change is slow enough. However, this requirement is hard to satisfy in real systems.

Although error bounds are used to get convergence in a �nite number of iterations, the convergence

rate of Q-learning is still very slow, which makes the application of Q-learning less attractive.
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model-based cost uncertainty optimization scalability
partial order planning yes possible no no no
conditional planning yes possible yes no no
re-planning yes possible yes no no
dynamic programming yes yes yes yes no
Q-learning no yes yes yes no

Table 3.4: Performance Table

3.2 Comparison of the Di�erent Approaches

We have considered several di�erent planning methods. In this subsection, we compare these ap-

proaches using several criteria. The result of the comparisons is shown in Table 3.4.

� Model-based

Any method that requires a complete model of the problem domain is called a model-based

method. The �rst four methods are model-based, while the last, Q-learning, is a model-free

method. Unlike conventional dynamic programming, Q-learning does not require transition

probabilities or the cost function to be known in advance. Although known as a model-free

method, the state space and actions for Q-learning must be known in advance, and they cannot

be altered during execution. The model-free method is best applied to situations where the

environment changes dynamically, i.e., where the transition probabilities or the cost function

changes during the execution.

� Representation of cost

All the methods in Table 3.4 are able to represent cost (or time). Although the �rst three

methods do not have the ability to represent cost by themselves, a \post-process" scheduling

step can be performed to impose cost constraints on their generated possible plans. An ability

to represent cost is built-in for dynamic programming as well as Q-learning. The handling of

cost is much more e�cient in dynamic programming than in the previous three methods.

� Handling of uncertainty

Traditional POP assumes that perfect world knowledge is available before execution and that

the world never changes during execution. Thus, it cannot handle uncertainty from lack of

world knowledge and any unexpected change in the world. The second and third methods
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compensate for the �rst one's (i.e., POP's) lack of handling of uncertainty and a dynamically

changing world with a feature to detect an error of a plan and to alter the plan during execution.

Both dynamic programming and Q-learning are designed to e�ciently handle the stochastic

world where uncertainty can be represented with probabilities.

� Availability of optimization theory

One advantage of dynamic programming and Q-learning over AI planning methods is that the

optimality of their solutions has been proved mathematically [5, 3, 58].

� Scalability

All the methods su�er from a scalability problem. For example, in the AI planning methods,

the size of the state space increases exponentially as the number of literals used in the problem

description increases. In the same way, with dynamic programming and Q-learning, the size

of the state space increases exponentially as the number of parameters used to describe the

state increases. Aggregating states into subsets is one common method to solve the scalability

problem in all �ve methods.

To summarize, dynamic programming, including Q-learning, is more suitable to the problem of

minimizing cost or time in an uncertain environment than AI planning methods because (1) there

is mathematical guarantee of optimality and (2) they can handle uncertainty more easily or more

e�ciently. If the environment changes during the execution or its transition probabilities and cost

function are not available a priori, Q-learning is the method of choice among dynamic programming

methods because of its model-free nature. However, Q-learning has to overcome the problem of slow

convergence in addition to the scalability problem. On the other hand, if it is feasible to assume a

stationary environment during the entire execution, conventional dynamic programming should be

employed as the solution to the planning problem, as this would avoid the slow convergence problem

of Q-learning.

This thesis assumes that the environment is stationary or that the dynamically changing environ-

ment can be considered as a sequence of di�erent stationary environments. The transition between

one stationary environment to another can be handled by the re-planning method that detects the

change of the environment and recalculates a plan in the new environment. This can be seen in

27



the example of dynamic programming solution in section 3.1.2, where a change of network statistics

(e.g., latencies and CPU load) results in a new plan based on the new network statistics.

Thus, conventional dynamic programming is employed as the solution to the mobile agent plan-

ning problem and overcoming its scalability problem is one of the main topics of this thesis.
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Chapter 4

Theory and Algorithm

Dynamic programming is suitable technique for the mobile agent planning problems, in uncertain

environments, as mentioned in the previous chapter. However, dynamic programming cannot be

applied to the planning problem without solving several challenging subproblems, such as those of

scalability and complexity.

In this chapter, the sequencing problem which arises naturally in the planning of mobile agents is

proposed. We name the problem the Traveling Agent Problem(TAP). It isNP -complete in its general

formulation. However, by making simplifying assumptions, we have proved that the complexity of

the problem can be reduced to be polynomial or pseudo-polynomial. This chapter is devoted to the

study of several simpli�ed subproblems along with proofs of their complexity and solution algorithms

that use dynamic programming.

This chapter consists of 5 sections. The �rst section proposes TAP with a proof of its NP -

complete complexity. The second section introduces assumptions such as (1) constant latencies

between machines in the network and (2) constant latencies between machines in the same subnet-

work, which successfully reduce the complexity of TAP. The third section deals with the Traveling

Multiple Agent Problem where multiple agents cooperate with each other to complete a same task

in the network. The fourth section introduces the deadlines after which resources in the network

become unavailable. The �nal section concludes this chapter by solving TAP with deadlines where

multiple agents are involved.
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4.1 Traveling Agent Problem

Suppose you are shopping for a speci�c item known to be sold in n+ 1 stores, si where 0 � i � n.

The probability that store i has the item is known and given by pi. Moreover, it takes a known time

ti to navigate through store i to the section where the item is stocked thereby determining whether

the item is available or not. Going from store i to store j requires travel time lij . Starting and

ending at store s0, with 0 = t0 = p0, what is the minimal expected time to �nd the item or conclude

that it is not available?

As this shopping analogy suggests, once the item is found, you are done and can return to s0 by

the most expedient route which may or not may be taking the direct path requiring li0 travel time

if the item was found at si. With probability

nY
i=1

(1� pi) =

nY
i=0

(1� pi)

all sites must be visited. Moreover, once a store is visited and found not to have the item in stock,

there is no reason to go back to that store. Probabilities for success at di�erent sites are assumed

independent. Site s0 is the start and end of the shopping task and can be considered as \home."

Since 0 = p0 = t0, s0 only contributes to the problem through latencies.

This problem arises when planning the actions of mobile software \agents" [27, 30, 59]. Using

the shopping metaphor from above, the \stores" are information servers such as databases or web

servers. The probabilities of success, pi can be thought of as estimated from relevance scores given

by search engines such as Altavista, Infoseek and others. Computation times, ti, and latencies, lij ,

are obtained from the network sensing module.

In this framework, an agent has a speci�c information request to satisfy, such as �nding a

topographical map of a given region. The search engine or directory service identi�es locations, si

for i = 1; :::; n, together with probabilities (relevance scores), pi, for �nding the required data at the

corresponding sites.

The agent then queries the network status monitor to �nd latencies and estimated computation

times, lij and ti, for those sites. Based on this information, an autonomous agent must plan its

itinerary to minimize expected time for successfully completing the task. In addition to this mo-

bile agent application, there are numerous other planning and scheduling problems which can be
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formulated in these terms [42].

Formally, the Traveling Agent Problem is de�ned as follows:

The Traveling Agent Problem { There are n+ 1 sites, si with 0 � i � n. Each site has

a known probability, 0 � pi � 1, of being able to successfully complete the agent's task,

and a time ti > 0, required for the agent to attempt the task at si regardless of whether

it is successful or not. These probabilities are independent of each other. Travel times

or latencies for the agent to move between sites are also known and given by lij � 0 for

moving between site i and site j. When the agent's task has been successfully completed

at some site, the agent must return to the site from which it started (i.e., site 0). For

site 0, p0 = t0 = 0. The Traveling Agent Problem is to minimize the expected time to

successfully complete the task.

Several comments are appropriate.

� The latencies, lij , can be assumed to be the minimal travel time between nodes i and j as they

would typically be used in network routing. This observation avoids the situation where an

indirect path between nodes, without \stopping" at the sites along the indirect path, might

be shorter that the direct path.

� The probabilities, pi, can be thought of as conditioned on attempting the task at site i. That

is

pi = Prob(success at site i j site i not visited yet):

Accordingly,

Prob(success at site i j site i has been visited) = 0 or 1:

This formally handles the site revisiting issue.

� This problem can be formulated as a Markov Decision Problem or discrete stochastic control

problem [5, 28] in which the state space consists of vectors indexed by sites with coordinate val-

ues indicating whether a site has been visited already or not. Standard dynamic programming

algorithms could be used on this formulation but since the state space is exponentially large

in the number of sites, this formulation is not scalable. However, we will see that in certain
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cases, the state space can be simpli�ed leading to e�cient dynamic programming solutions.

This will be shown in the following sections.

� If all sites must be visited (so that pi is irrelevant), then the problem reduces to the classical

Traveling Salesman Problem (TSP) which is known to be NP -Complete.

A solution to the Traveling Agent Problem consists of specifying the order in which to visit the

sites, namely a permutation < i1; i2; :::; in > of 1 through n. Such a permutation will be called a

tour in keeping with the tradition for such problems.

The expected time to complete the task or visit all sites in failure, for a tour T =< i1; i2; :::; in >

is

CT = l0i1 + ti1 + pi1 li10 +

nX
k=2

8<
:(

j=k�1Y
j=1

(1� pij ))

9=
; (lik�1ik + tik + pik lik0) +

nY
j=1

(1� pj)ln0: (4.1)

This formula can be understood as follows. The �rst site, si1 , on the tour is always visited and

requires travel time l0i1 to be reached. Upon arrival, time ti1 must be spent there regardless of

success or failure. With probability pi1 the task is successfully completed in which case the agent

can return to site 0 with time cost li10. However, with probability (1 � pi1) there was failure and

the agent proceeds to site i2. The expected value of the contribution involving moving from site i1

to site i2 and succeeding there is

(1� pi1)(li1i2 + ti�2 + pi2 li20):

Here the factor (1� pi2) is the probability of failing at site i2. The third term comes from failing at

sites i1 and i2 and so has the probability (1� pi1)(1� pi2) which is multiplied by the expected time

for success at site i3. The general term then has the form:

(probability of failure at the �rst k � 1 sites)� ( expected time for success at site ik):

Finally, the last term arises when failure occurs at all nodes and we must return to the originating

site. We have used independence of the various probabilities here. Not surprisingly, this problem is

NP -complete [31] as will be shown below. Note that in the proof, the question is altered so that

we are asking whether there is a tour whose cost, as above, is smaller than or equal to some total

length B. This can be used in a binary search method to �nd the minimum.

32



Theorem 1 The Traveling Agent Problem (TAP) is NP -Complete.

Proof { We start by showing that TAP belongs to NP . Given a tour, T , we can verify if the total

expected length CT is smaller than or equal to B by merely using the formula. This veri�cation can

clearly be performed in polynomial time (O(n2) steps speci�cally). Thus, TAP belongs to NP .

Next, we show that the problem is NP -Hard, by proving that the Hamiltonian Cycle Problem

[25] can be reduced to TAP. A Hamiltonian Cycle in graph G =< V;E > is a simple circuit that

includes all the vertices V . Thus, a cycle is expressed as an ordering of the vertices < v1; v2; :::::; vk >

such that fvi; vi+1g 2 E for 1 � i � k and fvk; v1g 2 E.

De�ne TAP with probabilities strictly between 0 and 1 and

lij + tj =

�
0 if i; j 2 E
1 if i; j =2 E;

so that tj = 0 for any vertex on an edge in E and lij = 0 for any edge in E. This formation can be

done in polynomial time.

The graph G has a Hamiltonian cycle if and only if the corresponding TAP has a tour with

expected cost of 0. To see this, assume that the graph G has a Hamiltonian cycle H . The corre-

sponding tour T in TAP will have cost 0 because all the time costs for T are 0. On the other hand,

if the tour T has cost 0, the latencies and site times must all be 0 along this tour by construction.

Here we use the fact that the probabilities are strictly between 0 and 1 so that the only way for the

cost to be 0 is for the times to be 0 along the tour. Thus graph G has a Hamiltonian cycle since all

the edges in the tour T have to belong to E by construction again. Q.E.D.

4.2 Single Agent

4.2.1 Constant Latencies

The complexity of the problem can be reduced when latencies between nodes are equal. For example,

if the processing time at each node is extremely large (compared to the latency between the nodes),

di�erences among the latencies could be ignored, or even taken to be zero. Alternately, if no

information about internodal latencies is known, we might assume all of them to be constant. The

constant latency assumption is reasonable in the case of a single subnetwork as well. Accordingly,

the assumption that we employ in this section is:
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Assumption 1 Latencies between nodes are all the same.

Under this assumption, it turns out that TAP can be solved in polynomial time, as we will see

below.

Theorem 2 Assume that in TAP l = lij = lkm � 0 for all i; j; k;m, namely Assumption 1. Com-

putation times, ti, and probabilities, pi, can be arbitrary. Then the optimal tour for TAP is attained

if the nodes are visited in decreasing order of pi=(ti + l).

Proof { The proof uses an interchange argument commonly used in �nance and economics. See

[4] for example. For notational convenience and without loss of generality consider the speci�c tour

T = < 1; 2; 3; :::; n >. The total expected cost for the tour T is as in equation (1) with notational

changes:

CT = l01 + t1 + p1l10 +

nX
k=2

f(

k�1Y
j=1

(1� pj))g(lk�1k + tk + pklk0) +

nY
j=1

(1� pj)ln0

= l + t1 + p1l +

nX
k=2

f(

k�1Y
j=1

(1� pj))g(l + tk + pkl) +

nY
j=1

(1� pj)l

= 2l + t1 +
nX

k=2

f
k�1Y
j=1

(1� pj)g(tj + l)

where we have used the fact that

pk � l �

k�1Y
j=1

(1� pj) + l �

kY
j=1

(1� pj) = l �

k�1Y
j=1

(1� pj):

This also eliminates the last term so note that pn does not explicitly arise in the �nal expression

because regardless of the value of pn, we return to s0 after visiting sn.

Now consider the e�ect of switching the order of two adjacent sites on the tour, say i and i+ 1

for some 1 � i � n� 1. Call this new tour, T 0.

In the above expression for the expected cost, only the ith and (i+1)st terms are a�ected by the

switch. The terms appearing before the ith term do not contain anything which involves i or i+ 1.

On the other hand, terms that follow the (i+ 1)st term all contain (1� pi) � (1� pi+1) in precisely
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the same way but no other ingredients that depend on either i or i + 1. Note that for i + 1 = n

there are no terms following the two terms we are isolating so we can handle that case as well by

the following argument.

The di�erence in expected cost between T and T 0 can be calculated by comparing only these two

terms. The di�erence in the expected cost is therefore:

CT � CT 0 = (ti + l)

i�1Y
j=1

(1� pj) + (ti+1 + l)

iY
j=1

(1� pj)

� (ti+1 + l)

i�1Y
j=1

(1� pj)� (ti + l)(1� pi+1)

i�1Y
j=1

(1� pj)

= (ti + l + (ti+1 + l)(1� pi)� ti+1 � l � (ti + l)(1� pi+1))

i�1Y
j=1

(1� pj)

= (pi+1(ti + l)� pi(ti+1 + l))

i�1Y
j=1

(1� pj):

Thus, T is a better tour (has smaller expected cost) if

pi+1(ti + l) < pi(ti+1 + l)

or equivalently,

pi
ti + l

>
pi+1

ti+1 + l
:

This shows that when two adjacent sites have the above ratios out of order (that is the ith site

on the tour has a smaller ratio than the (i + 1)st site), then we can decrease the expected cost by

switching them.

So we can, for example, perform a Bubble Sort on any initial tour ordering and every swap in the

Bubble Sort will decrease the expected time for the tour. The optimal value is then the sequence

with decreasing ratios as above. Q.E.D.

Since it is possible for some of the pi and/or (ti + l) to be zero, we should handle that case as

well. Clearly, any site for which pi = 0 should not be visited at all, that is, it should be dropped

from any prospective tour. Moreover, it might be that ti + l = 0 for some of the remaining sites.

In that case, we can modify the �nal steps of the above proof so that we visit the sites in order of

increasing (ti + l)=pi since pi 6= 0.
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Theorem 3 Suppose that all latencies are the same and that some pi = 0 and ti + l = 0. Then the

optimal tour consists of:

� First dropping sites with pi = 0;

� Secondly, sorting the ratios for the remaining sites,

ti + l

pi
;

into increasing order and visiting the sites in that order.

An important observation is the fact that ti + l is the expected time to reach site i and process

there after failing at site i� 1. We would obtain the same results if we used the expected time after

site i but before reaching sites i+ 1 or the home sites, s0. That expected time is

ti + (1� pi)l + pil

which is equal to ti + l and does not change the above result.

In fact, the expected time, ti + l can be replaced by any expected time which is independent of

the position of the site within the tour. This will be of key importance in the next subsection.

This observation and a small construction allows us to solve the following modi�ed problem.

Theorem 4 Suppose the latency from the home site, s0, to all the other sites is a constant, l0 6= l,

where l is the latency between sites i and j for 1 � i; j � n. Then the optimal tour is still obtained

by:

� Dropping sites with pi = 0;

� Sorting the sites into increasing order of

ti + l

pi
:

Proof { Create a new site, s�, whose latency to all sites si for i > 0 is l and whose latency to site

s0 is l
0� l (this might be negative but it does not a�ect the argument). Consider any tour, T , using

this site, s�, as the home. Call the cost of the tour using s� as home, DT . Let the cost of the tour

for the original problem be CT .
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Then the relationship between the costs of the tours is

DT = CT � 2(l0 � l)

because any tour must start and end at either s0 or s
�, even if l0� l < 0. Because of this relationship

between costs, the minimal expected time tour for the two problems are the same. The best tour

using s� can be computed using Theorem 1 and by the above, is the best tour for this modi�ed

problem as well. Q.E.D.

We will use a simple technical lemma based on the proof of Theorem 1. For this lemma, suppose

that we have a general TAP with arbitrary latencies. This means that the expected time to visit

site si is measured from the time an agent arrives at si until it either successfully �nishes or travels

to the next site. If site si is followed by site sj , then that time is

t�i = ti + pili0 + (1� pi)lij :

In general, this time is variable but the lemma addresses the case when a subsequence of a tour can

be rearranged without a�ecting these expected times.

Theorem 5 Suppose that we have a general TAP with a tour, T =< s1; s2; s3; :::; sn >. Suppose

that for a subsequence of the tour, < si; :::; sj > for i < j, any permutation of the sites si; :::; sj

results in the same expected execution times, t�i , for each of those sites, then the optimal ordering

for the subsequence (that is, the permutation of the subsequence that minimizes expected time) is

obtained by the permutation < ski ; ski+1 ; :::; sij > in which

t�ki
pki
�

t�ki+1

pki+
� ::: �

t�kj
pkj

:

Proof { As in the proof of Theorem 2, consider switching two adjacent sites, say skm ; skm+1 , in any

ordering of the subsequence in question. Call the original tour T and the tour with switched sites

T 0. Since the expected times for these sites are independent of their ordering in the subsequence,

we as above see that

CT � CT 0 = P (pkm+1t
�
km
� pkmt

�
km+1

) � 0

if and only if

t�km+1

pkm+1

�
t�km
pkm

:
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Thus this sorted order minimizes the expected time for the subsequence of sites. Q.E.D.

4.2.2 The Multiple Subnetwork Case

Assumption 1 and Theorem 2 address the case of completely constant latencies. Theorem 3 o�ers a

small generalization in which latencies to the home node can be di�erent but still constant. However,

many situations can be modeled by variable latencies which are constant within subnetworks and

across subnetworks. Speci�cally, consider the case of two subnetworks (one in Japan and one in the

US). Latencies between any two nodes within the same subnetwork are constant as are latencies

across the two subnetworks. That is, for sites in Japan, latencies are a constant, lJ , and in the USA

they are lU . Latencies between two nodes, one in Japan and one in the USA, are a third constant,

lJU . Formally, we de�ne the Two Subnetwork Traveling Agent Problem (TSTAP) as follows.

Assumption 2 The relevant sites belong to two subnetworks, S1 and S2. Sites in Si are sij where

1 � j � ni. There are three latencies: L1; L2; L12 � 0. For s1j 2 S1; s2k 2 S2, l1j2k = l2k1j = L12

while for s1j ; s1k 2 S1, we have l1j1k = l1k1j = L1. Similarly, for s2j ; s2k 2 S2, we have l2j2k =

l2k2j = L2. Probabilities, pmj > 0 are nonzero and independent as before. Computation times

tmj � 0 are arbitrary but nonnegative. Latencies between the home site, s0, and sites in Si are L0i.

We assume that L0i; Li2 � Li. That is, latencies within a subnetwork are smaller than latencies

across networks and to the home sites.

Under Assumption 2, the Two Subnetwork Traveling Agent Problem (TSTAP) can be solved

in polynomial time using the results of Theorem 5 and dynamic programming. The result can

be generalized in several ways but we defer that discussion until after the basic case is handled.

Formally, we will show:

Theorem 6 The optimal (minimal expected time) sequence for the TSTAP can be computed in

polynomial time, O(n1 logn1 + n2 logn2 + (n1 + 1)(n2 + 1)).

Outline of the proof { The proof consists of two steps. The major di�erence between this problem

and the previous cases of all constant latencies is that now the optimal solution requires making

choices about whether to stay in the same subnetwork or to cross over to the other subnet after each

site is visited.
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We �rst show that the order in which sites are visited in one of the subnets is given by the

ordering speci�ed by Theorems 2, 3 and 4. This greatly reduces the number of choices necessary {

after visiting a site, we only need to decide which of the eligible sites, one per subnetwork at most,

should be visited next. The sorting requires O(n1 logn1 + n2 logn2) steps.

This sorted ordering is used in the second step where a dynamic programming algorithm is used

to compute the optimal solution. Even though the problem is stochastic, it can be solved by a

deterministic dynamic programming algorithm in roughly O((n1 + 1)(n2 + 1)) steps.

Proof { As before, we eliminate all sites with pij = 0 since they contribute time but no possibility

of solution.

Assertion 1 { Suppose that the optimal tour is

< sirjr >=< si1j1 ; si2j2 ; :::; siM jM >

where M = n1n2. Without loss of generality, let the sites in Si be visited in this order:

si1; si2; si3; :::; sini :

Then

ti(j�1) + pi(j�1)Li0 + (1� pi(j�1))Li

pi(j�1)
�

ti(j) + pi(j)Li0 + (1� pi(j))Li

pi(j)

for 1 � j � 1 � ni � 1.

We will show the result for subnetwork 1 and then see that it applies by symmetry to subnetwork

2 as well.

First of all, note that if a tour consists of consecutive visits to sites within S1, then those sites

within S1 must be ordered according to the claim of the theorem by the interchange argument of

Theorems 2, 3 and 4. That is, switching any two adjacent sites, s1j and s1(j+1), within S1 (without

a intervening trip to S2) leads to a di�erence in the expected time that is precisely of the form seen

before. This means that the ordering has to follow

t�1j=p1j � t�1(j+1)=p1(j+1):

Notice that although the last site within S1 before crossing over to S2 has a latency L12 > L1 but

this latency is independent of which S1 is the last.
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The only remaining case is when two sites within S1 are separated on a tour by a visit to some

sites within S2. This case establishes the claim of the theorem by using aggregated sites and works

only for the optimal tour, not any valid tour. We will point out where optimality of the tour is used.

De�ne metasites to be aggregated sites within subnetwork 2 that are visited between visits to

subnetwork 1. Using the above notation, suppose that between visiting s1j and s1(j+1) we visit only

sites within subnetwork 2, say s2k; :::; s2m. We will treat the subnetwork 2 sites s2k; :::; s2m as if they

were a single site.

The expected time from starting at s1j and arriving at s2k is technically t1j+p1jL10+(1�p1j)L12

and the probability of success is p1j . However, let us de�ne a modi�ed site, s�1j with

t�1j = t1j + p1jL10 + (1� p1j)L1

as the new expected time and probability of success p�1j = p1j as before.

For the metasite ms2k:2m, de�ne the expected time to be

tms2k:2m = L12 � L1 + t2k + p2kL20 + (1� p2k)L2

+ (1� p2k)(t2(k+1) + p2(k+1)L20 + (1� p2(k+1))L2 + :::+ (1� p2m)L12::)))):

The probability of success for this metasite is

pms2k:2m = p2k + (1� p2k)p2(k+1) + (1� p2k)(1� p2(k+1))p2(k+2) + :::

m�1Y
i=k

(1� p2i)p2m:

This time is merely the expected time to start at s2k and either �nish successfully or travel and start

at site s1k together with the di�erence L12 � L1, which is leftover from the s1j to s2k travel time

that is not accounted for in t�1j .

By splitting the expected time for site s1j and the metasite ms2k:2m in this way, we see that

the expected time to complete visiting s1j and ms2k:2m is independent of whether another S1 node

follows s1j or such a metasite follows s1j . Similarly, the time for ms2k:2m is independent of which

S1 site precedes it.

To reiterate, we have rede�ned the expected time for s1j so that it is as if the next site were an

S1 site instead of ms2k:2m. Moreover, the excess latency we removed from s1j has been added to

the time for ms2k:2m.
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Figure 4.1: De�nition of sites a; b; c; d; e.

This means that as long as either another S1 site follows s
�
1j or ms2k:2m follows s�1j , the expected

time for s�1j is constant. Similarly, as long as the site preceding ms2k:2m has a latency of L1 to reach

the site following it (that is, it is an S1 site), the expected time for ms2k:2m is constant.

For notational simplicity, we will use the following names:

� The site preceding s�1j in S1 is called a where an agent makes a decision whether to stay in

S � 1 or move to another subnetwork;

� Sites s1j ; ms2k:2m; s1(j+1) are called b; c; d respectively;

� The site following d is called e.

This situation is depicted in Figure 4.1.

Now suppose that the �ve sites, a; b; c; d; e, form part of the optimal tour. Our goal is to show

that

pb=tb =
p1j

t1j + p1jL10 + (1� p1j)L1
= p1j=t

�
1j

� pd=td =
p1(j+1)

t1(j+1) + p1(j+1)L10 + (1� p1(j+1))L1
= p1(j+1)=t

�
1(j+1):

We do this in two steps:

1. Showing that pb=tb � pc=tc;

2. Showing that pc=tc � pd=td.

Step 1 { Let the cost of the optimal tour with the subsequence a; b; c; d; e be Cabcde and consider

the cost of the tour with sites b and c switched. Let the cost of the tour with b and c switched be
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Cacbde. Then by optimality

0 � Cabcdef � Cadcbef

= P � (Lx1 � Lx2 + (tb + pbL10 + (1� pb)L12) + (1� pb)(tc + pcL20 + (1� pc)(L21)

� (tc + pcL20 + (1� pc)L21)� (1� pc)(tb + pbL10 + (1� pb)L1))

= X � X � P � (Lx1 � Lx2 + L21 � L1):

Here P > 0 is the probability that failure has occurred at all nodes preceding b in the tour so that

we in fact visit b. Lx1 and Lx2 are the latencies from a to S1 and S2 respectively since a can be

either in S1, S2 or s0, the home site. The other terms arise from the parts of the tours between b

and d. Note that once we arrive at d, the remaining costs are identical for both tours and therefore

cancel each other in the di�erence. The term L12 � L1 arises as the di�erence in latencies in going

from a to b versus a to c.

Finally, we note that Lx1�Lx2+L21�L1 is 0, 2L12�L1�L2 or L01�L02+L12�L1 = L12�L1

depending on whether x is 1, 2 or 0 which are all nonnegative by assumptions on the latencies. This

explains the last inequality.

Continuing, we have

0 � X � P � (Lx1 � Lx2 + L12 � L1)

= P � (tb + pbL10 + (1� pb)L1 + (1� pb)(tc + L21 � L1 + pcL20 + (1� pc)L12)

� (tc + pcL20 + (1� pc)L21 + L12 � L1)� (1� pc)(tb + pbL10 + (1� pb)L1))

= P � (pctb � pbtc)

which shows that tb=pb � tc=pc as claimed. This shows that Cabcde � Cacbde implies tb=pb � tc=pc.

Step 2 { We now switch c and d in an optimal tour as above, and with the same notational

conventions, we have

0 � Cabcde � Cabdce = P � (L12 � L1 + tc + pcL20 + (1� pc)L12 + (1� pc)(td + pdL10 + (1� pd)L1x)

� (td + pdL10 + (1� pd)L12)� (1� pd)(tc + pcL20 + (1� pc)L2x)

= X � X � P � (1� pc)(1� pd)(L1x � L2x + L12 � L1)

= P � (tc + (1� pc)td � td � (1� pd)tc)

= P � (pdtc � pctd)
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so that tc=pc � td=pd. Again, L1x � L2x + L12 � L1 is nonnegative as in step 1.

The two inequalities derived from Steps 1 and 2 combine to show that if abcde is part of the

optimal tour then tb=pb � tc=pc � td=pd as claimed.

Assertion 2 { TAP of Theorem 6 can be solved in O((n1 + 1)(n2 + 1)) time using

dynamic programming after the nodes are sorted as speci�ed in Step 1 which requires

O(n1 logn1 + n2 logn2) steps.

By Assertion 1, we can assume that the nodes have been ordered into the required sequence

which dictates the order in which they are visited in each subnetwork. We de�ne a Markov Decision

Problem (MDP) with states

S = f(i; j; k)j0 � i � n1; 0 � j � n2; k = 0 or 1g
[
fFg

where state (i; j; k) means that an agent has already visited sites s11; :::; s1i and s21; :::; s2j and is

presently on subnetwork k. The terminal state is F . The states (0; 0; 1) and (0; 0; 2) are the same

initial state.

For instance, (0; 3; 2) means that sites s21; s22; s23 have been visited and the agent is at subnet-

work 2 while no sites from subnetwork 1 have yet been visited.

In the MDP framework, we need to describe actions for each state, corresponding transition

probabilities and immediate costs. For the state (i; j; 1) there are two possible actions: G1 and G2,

meaning attempts to go to the next site in subnet 1 or subnet 2. For state (i; j; 1) and action G1

the next state is (i + 1; j; 1) with probability (1 � p1i) and F with probability p1j . The expected

immediate cost is

t1j + p1jL10 + (1� p1j)L1:

For state (i; j; 1) and action G2, the next state is (i; j + 1; 2) with probability (1 � p1j) and F

with probability p1j . The expected immediate cost is

t1j + p1jL10 + (1� p1j)L12:

The same de�nitions apply to states (i; j; 2) with actions G1 and G2 as above with appropriate

changes.
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For states (n1; j; k) the only allowable action is G2 and for states (i; n2; k) the only allowable

actions are G1. For state (n1; n2; k) there is only one action, to go to the terminal state F with

appropriate costs.

This MDP has no cycles and so the optimal cost-to-go values can be computed using backtracking

from the terminal node in time proportional to the total number of states which is (n1+1)(n2+1).

Q.E.D.

The above algorithm and results apply to situations with multiple subnetworks providing that

internetwork latencies and latencies to the home site are larger that internetwork latencies which

are constant. In that case, the algorithm requires time

(n1 + 1)(n2 + 1):::(nm + 1)

for m subnetworks. In the case where ni = 1, this reduces to the general case of TAP which is

NP -Hard and the algorithm is exponential.

We can use these results as approximation methods for general TAP's by organizing subnetworks

with constant latencies that approximate the original latencies.

We have shown that TAP is NP -complete in the general formulation. However, by clustering

multiple sites and approximating latencies among them to be constant, the complexity of the problem

is decreased into a polynomial time computation.

The problems dealt with in this paper assumes that a single agent executes a task. In many

cases, a task can be �nished in a shorter time by multiple agents rather than a single agent. TAP

should be extended to the case where multiple agents are involved in the same task.

4.3 Multiple Agents

Consider a planning problem where multiple agents cooperate to complete a task, for example, to

search for some information. Intuitively, the total expected time should be smaller than in the

single agent case. In this section, we consider the Traveling Multiple Agent Problem (TMAP). If the

multiple agents are viewed as multiple processors and the sites to be visited by agents are the tasks

to be assigned to the processors, TMAP becomes equivalent to the multiple processor scheduling

problem with probabilistic success. In TMAP, we assume that the agents (processors) communicate
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with each other and as soon as one of them completes the task successfully, the other agents stop

execution. Formally, we de�ne the Traveling Multiple Agent Problem (TMAP) as :

The Traveling Multiple Agent Problem - There are n+1 sites, si with 0 � i � n. Each site

has a probability, 0 � pi � 1, of being able to successfully complete the agent's task and

a computation time, ti > 0, required for the agent to attempt the task at si regardless

of whether successful or not. These probabilities are independent of each other. Travel

time or latency is constant, i.e., l = lij = lkq 2 Z+ for all sites i; j; k; q. There are m

agents that cooperate each other complete a task. When one of the agents successfully

completes the task, the agent must return to site 0 from which it started and at the

same time, the rest of agents stop the execution of their tasks. For site 0, p0 = t0 = 0.

The Traveling Multiple Agent Problem is to minimize the expected time to successfully

complete the task.

A solution of the Traveling Multiple Agent Problem is give in a form of a multiple agent schedule

as shown in Fig.4.2. In the diagram, �i represents the starting time of the task at site i. ti + l

represents the sum of the computation time at task i and the travel time to move from the previous

site to the current site.

The expected time to complete the task or visit all sites in failure for a schedule T (a set of

agents' tours) is

CT = (�i1 + l + ti1) +

nX
k=2

f(

k�1Y
j=1

(1� pij )) � f(�ik + l + tik )� (�ik�1
+ l + tik�1

)gg (4.2)

where ik is the kth task to �nish according to the schedule T (refer to Fig.4.2).

Please note that �ij is equivalent to X
k2Aj

tk

where Aj is a set of sites visited before the site ij by the same agent that visits the site ij .

Unfortunately, this Traveling Multiple Agent Problem is NP -complete. The proof of TMAP's

NP -completeness is shown as follows:

Theorem 7 The Traveling Multiple Agent Problem (TMAP) is NP -complete
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Figure 4.2: Schedule T for multiple agents

Proof { First, we show that TMAP belongs to NP . Given the m-agent schedule T as a certi�cate,

the veri�cation checks if the schedule T satis�es the deadline D by calculating CT in (4.2) and

comparing its value with D. This veri�cation can be performed in polynomial time. Thus, this

problem belongs to NP .

Next, we show TMAP belongs to NP -hard by proving that PARTITION [31] problem can be

reduced to TMAP. Let the �nite set of sites be A and a given size sa for each a 2 A be an instance

of PARTITION. Let B =
P

a2A sa. Then, we let each site a 2 A with its size sa correspond to a site

a0 in TMAP with its time ta0 = sa and pa0 = 0. Let m = 2 be the number of agents. Note that ta0

includes both the constant latency and the computation time at the site a0. This TMAP instance

can be easily constructed in polynomial time from the PARTITION instance.

To complete the proof, we show that there is a subset A" � A for PARTITION such that

X
a2A"

sa =
X

a2A�A"

sa =
B

2
(4.3)

if and only if there is a schedule T that meets the overall deadline D = B=2.

Suppose that all sites a which correspond to a 2 A" are assigned to the �rst agent and the rest of

the sites a0 for a0 2 A�A" are assigned to the second agent. If the site number is given in increasing

order of �nishing time of a task at the site, the expected overall length C is calculated as:

C = (�2 � �1) +

jX
i=2

Aj(�i+1 � �i)

= �jAj+1 � �1 = �jAj+1
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where �1 = 0.

�jAj+1 is the time when the agent leaves the last site and it can be calculated by taking the

largest value in the overall time for each agent, i.e.,

�jAj+1 = maxf
X
i2A

ti;
X

j2A�A"

tjg

Since ta = sa for a 2 A, when (4.3) is satis�ed, the schedule T that can meet the overall deadline

D = B=2 = �jAj+1. On the other side, if there is a schedule T that can meet the overall deadline

D = B=2, it is easy to observe

X
i2A"

ti =
X

j2A�A"

tj =
B

2

from the argument leading to (4.3).

Thus, the desired subset A" exists for the instance PARTITION if and only if there is a schedule

T for TMAP that meets the overall deadline D = B=2. Q.E.D.

We now explore optimal solutions for TMAP when we impose some assumptions. Ideally, we

seek realistic assumptions that reduce the complexity of the problem.

4.3.1 Probability of Success = 0

Assumption 3 Probabilities of success are all zero.

Theorem 8 Under the Assumption 3, the Traveling Multiple Agent Problem is exactly the same

as the Multiple Processor Scheduling Problem[25], and the optimal solution can be obtained using

dynamic programming in pseudo-polynomial time for a �xed number of agents. Pseudo-polynomial

means polynomial in the values of input time, not the number of bits required to represent them.

The proof is given as follows:

Proof { Suppose that the probability of success is pi = 0 for site i, namely, Assumption 3 and that

the number of agents m is �xed. Let n be the number of sites and B =
Pn

i=1 ti where ti is the sum

of the latency to move from the previous site and the computation time at the current site i. For

integer 1 � i � n and 1 � jk � B where 1 � k � m�1, let e(i; j1; j2; :::; jm�1) denote the function

which is true if there is a partition fA1; A2; :::; Am�1g of the set of sites < 1; 2; :::; i > that consists
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of disjoint subsets A1; A2; :::; Am�1 whose total tour times are j1; j2; :::; jm�1, respectively. Note

that the order of a site in the tour at each subset does not a�ect the total time because pi = 0 for

all i.

The value of e(i; j1; j2; :::; jm�1) is obtained easily by dynamic programming. The num-

ber of combinations of possible parameter values in the function e are n � Bm�1. The value of

e(i; j1; j2; :::; jm�1) is computed for each combination. We start with i = 1 and then increase the

value of i. For i = 1, e(i; j1; j2; :::; jm�1) is true if and only if either j1 = j2 = ::: = jm�1 = 0

or only one jk for 1 � k � m � 1 equals t1 and the rest of jk's are all 0. For i � 2, the value of

e(i; j1; j2; :::; jm�1) is true if and only if either e(i � 1; j1; j2; :::; jm�1) is true or ti � jk and

e(i � 1; j1; j2; :::; jk � ti; :::; jm�1) is true for some 1 � k � m � 1. It is easy to see that the

calculation of values for each possible combination of parameters can be performed in polynomial

time, i.e., n�Bm�1 in terms of the number of sites (n). Recall that B =
Pn

i=0 ti.

The subset Ak corresponds to the set of sites assigned to the agent k. The sites assigned to agent

m are the sites that were not assigned to any agent k for 1 � k � m� 1. The maximum time of

the agent tours is the overall time of the schedule for TMAP. During the calculation of the values of

e(i; j1; j2; ::; jm�1), the overall time can be obtained and it can be veri�ed whether the overall time

does not exceed the deadline D. This veri�cation can be done in polynomial time. Thus, TMAP can

be solved in polynomial time, provided it satis�es the following condition. The condition is that the

sum of time spent at all the sites, B, and the number of agents, m, should be bounded in advance.

Because of this condition, this problem is called as a pseudo-polynomial time problem instead of a

polynomial time problem. Q.E.D.

If probabilities of success are unknown, it is reasonable that the probability at each site is set to

be 0.

4.3.2 Probability of Success = 1

Next, we assume that all probabilities of success are 1, which means that the mobile agent can

certainly complete its task at the �rst site to visit. The problem becomes a sorting problem which

can be solved in polynomial time even for an arbitrary number of agents m.
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Theorem 9 If a probability of success pi is 1 for all sites i, this problem can be solved in polynomial

time even for arbitrary m.

Proof { Suppose that pi = 1 for all the sites i. Then, a task is completed when the agent leaves the

�rst site. There is no need of scheduling for the rest of the sites. Hence, scheduling for the TMAP

is to �nd a task i� such as ti� = minni=0 ti where n is the number of sites and ti is the computation

time at site i. This process can be done easily in a polynomial time. Q.E.D.

4.3.3 Constant Probability � 0.5

The complexity of the original TMAP problem can be reduced to polynomial time under the assump-

tion that the probabilities of success are all the same and are none less than 0.5. This assumption

is not unrealistic. For example, if our only knowledge about sites is that they all have relatively

large probabilities, we might be able to assume that the probabilities of all the sites are same and

are larger than or equal to 0.5.

Accordingly, the assumption that we employ here is:

Assumption 4 Probabilities of success pi are constant and pi = p � 0:5 for all i, while the sum of

latency and computation time, i.e., ti + l can be arbitrary. There are m agents that cooperate with

each other to complete a task.

Under this assumption, it turns out that TMAP can be solved in polynomial time as shown

below. We will start by proving a preliminary theorem (Theorem 10) that states that the sites

visited by the same agent should be sorted in increasing order of p=(ti + l). Then, we prove a main

theorem (Theorem 11) which states that the optimal schedule of TMAP under the above assumption

can be obtained in polynomial-time.

Theorem 10 Under Assumption 4, the optimal sequence of sites visited by the same agent is ob-

tained by sorting the sites in increasing order of p=(ti + l), i.e., in decreasing order of ti + l.

Proof { The proof begins with obtaining the formula for the total expected cost of a schedule for

an m agent problem, which is used in the rest of the proof.
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The expected total time for an m-agent scheduling S can be obtained by setting pi = p in (4.2),

and it is then given by:

CS = (�1 + t1 + l) +

nX
i=2

f(

i�1Y
j=1

(1� p))(�i + ti + l � �i�1 � ti�1 � l)g (4.4)

where site i is the ith site in the list of sites sorted in the increasing order of its task's �nishing time.

�i is a time when a task starts at site i, and n is the total number of sites. �i+ ti+ l��i�1� ti�1� l

stands for the time di�erence between the completion times of a task at site i� 1 and at site i.

The above equation (4.4) simpli�es as:

CS = (1� (1� p)) � (�1 + t1 + l) +

n�1X
i=2

(

i�1Y
j=1

(1� p)) � (1� (1� p)) � (�i + ti + l)

+(

n�1Y
j=1

(1� p))(�n + tn + l)

= p � (t1 + l) +
n�1X
i=2

(1� p)i�1 � p � (�i + ti + l) + (1� p)n�1(�n + tn + l)

Please note that �i is equal to
P

k2Ti
(tk + l) where Ti is a set of sites visited by the same agent

that visits site i before site i.

Next, we show that the optimal schedule of sites visited by a single agent is obtained by sorting

sites in decreasing order of ti + l.

Suppose that there is an m-agent schedule, S =< s1; s2; :::; sn >, where the sites are in increasing

order of the agent's leaving time at each site as shown in Fig.4.3. Thus, si < sk if �i + ti � �k + tk.

Now, we exchange the order of two adjacent sites si and si+k, both of which are visited by the agent

1. Assume that ti < ti+k . Note that the total expected time for the original schedule S is:

CS = p � (t1 + l) +

n�1X
i=2

(1� p)i�1 � p � (�i + ti + l) + (1� p)n�1(�n + tn + l): (4.5)

Swapping the two sites may a�ect the order of �nishing time of the rest of the sites. Because

ti < ti+k, some sites between the sites si and si+k in the original schedule S may �nish before the

swapped site ti+k in the new schedule S0. For example, assume that we swap two sites si and si+k
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Figure 4.3: A schedule for the m agent problem

in the original schedule S where the sites are sorted in increasing order of the �nishing time as

s1; s2; ::; si; ::; si+k; :::; sn

. Then the new schedule S0 is

s1; s2; :::; si�1; si+1; :::; si+h; si+k; si+h+1; :::; si+k�1; si; si+k+1; :::; sn

where 0 < h < k. These sites are sorted in increasing order of �nishing time. Thus the order of the

unswapped sites from si+1 to si+h is shifted earlier by one.

If swapping si and si+k a�ects the order of the unswapped sites, as in the above case, the total

expected time of the new schedule S0 is:

CS0 = p � (t1 + l) + (

i�1X
j=2

(1� p)j�1 � p � (�j + tj + l)) + (1� p)i�1 � p � (�i+1 + ti+1 + l)

+::::+ (1� p)i+h�2 � p � (�i+h + ti+h + l) + (1� p)i+h�1 � p � (�i + ti+k + l)

+(1� p)i+h � p � (�i+h+1 + ti+h+1 + l) + :::+ (1� p)i+k�2 � p � (�i+k�1 + ti+k�1 + l)

+(1� p)i+k�1 � p � (�i+k + ti + l) + (1� p)i+k � p � (�i+k+1 + ti+k+1 + l)

+:::+ (1� p)n�1 � p � (�n + tn + l):

.

Otherwise, the total expected time of the new schedule S0 is:

CS0 = p � (t1 + l) + (

i�1X
j=2

(1� p)j�1 � p � (�j + tj + l)) + (1� p)i+h�1 � p � (�i + ti+k + l)
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+(1� p)i+h � p � (�i+1 + ti+1 + l)

+:::+ (1� p)i+k�2 � p � (�i+k�1 + ti+k�1 + l)

+(1� p)i+k�1 � p � (�i+k + ti + l)

+(1� p)i+k � p � (�i+k+1 + ti+k+1 + l)

+:::+ (1� p)n�1 � p � (�n + tn + l):

The di�erence between schedules S and S0 is:

� In the case where the order of unswapped sites is changed:

CS � CS0 = (1� p)i�1 � p � (�i + ti � �i+1 � ti+1)

+(1� p)i � p � (�i+1 + ti+1 � �i+2 � ti+2) + ::+

(1� p)i+h�2 � p � (�i+h�1 + ti+h�1 � �i+h � ti+h)

+(1� p)i+h�1 � p � (�i+h + ti+h � �i� ti+k)

+(1� p)i+k�1 � p � (�i+k + ti+k � �i+k � ti); (4.6)

� In the case where the order of unswapped sites is not changed:

CS � CS0 = (1� p)i�1 � p � (�i + ti � �i � ti+k)

(1� p)i+k�1 � p � (�i+k + ti+k � �i+k � ti)

= (1� p)i�1 � p � (ti � ti+k) + (1� p)i+k�1 � p � (ti+k � ti) (4.7)

Note that all the terms in the �rst case are non-positive except for the last one. In order to

prove that the sum of all the terms are non-positive. If we increase the power of (1� p) in each of

non-positive terms, which increases each value of these terms. Then the di�erence CS � CS0 in the

�rst case can be expanded as follows:

CS � CS0 � (1� p)i+h�1 � p � (�i + ti � �i+1 � ti+1)

+(1� p)i+h�1 � p � (�i+1 + ti+1 � �i+2 � ti+2) + ::+

(1� p)i+h�1 � p � (�i+h�1 + ti+h�1 � �i+h � ti+h)

+(1� p)i+h�1 � p � (�i+h + ti+h � �i� ti+k)
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+(1� p)i+k�1 � p � (�i+k + ti+k � �i+k � ti)

= (1� p)i+h�1 � p � (ti � ti+k)

+(1� p)i+k�1 � p � (ti+k � ti) (4.8)

Since in the above ti � ti+k is non-positive and (1� p)i+h�1 � p > (1� p)i+k�1 � p, CS � CS0 in

the �rst case is non-positive. In the same way, CS � CS0 in the second case is non-positive, too.

Therefore, the original schedule S has a smaller total expected time.

Before we reach a conclusion, we have to consider the case where the site si+k in the above

argument is the last site, i.e., sn because the last term in the form of the expected time for a

schedule is di�erent from the rest of the terms. Setting i+ k = n requires minor changes in CS and

C 0
S . For example, the form of CS has to be changed to:

CS = p � (t1 + l) +
i+k�1X
i=2

(1� p)i�1 � p � (�i + ti + l) + (1� p)i+k�1(�n + ti+k + l):

and the form of CS0 in the �rst case has to be changed to:

CS0 = p � (t1 + l) + (

i�1X
j=2

(1� p)j�1 � p � (�j + tj + l)) + (1� p)i�1 � p � (�i+1 + ti+1 + l)

+::::+ (1� p)i+h�2 � p � (�i+h + ti+h + l) + (1� p)i+h�1 � p � (�i + ti+k + l)

+(1� p)i+h � p � (�i+h+1 + ti+h+1 + l) + :::+ (1� p)i+k�2 � p � (�i+k�1 + ti+k�1 + l)

+(1� p)i+k�1 � (�i+k + ti + l)

When i + k = n, it should not be di�cult to understand that the form (4.6) (in the �rst case)

becomes:

CS � CS0 � (1� p)i+h�1 � p � (ti � ti+k)

+(1� p)i+k�1 � (ti+k � ti)

� (1� p)i+k�2 � (p� (1� p)) � (ti � ti+k)

= (1� p)i+k�2 � (2p� 1) � (ti � ti+k)

, which is non-positive if p � 0:5. In the same way, the value of the modi�ed version of the form

(4.7) (in the second case) can be derived to be non-positive.
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Thus, CS � CS0 is non-positive if p � 0:5, which implies that sites visited by the same agent

should be sorted in increasing order of ti + l. Q.E.D.

The result of Theorem 10 is necessary as a preliminary theorem in the proof of the following

theorem, Theorem 11.

Theorem 11 Assume that in TMAP l = lij = lkq � 0 for all i; j; k; q, namely Assumption 3.

Probabilities pi = p � 0:5 for all i, while computation times ti can be arbitrary (Assumption 4).

There is a sorted list of sites in increasing order of ti + l. The sites in the list is assigned to m

agents where m > 1. The optimal schedule for the m agent TMAP is attained by the greedy algorithm

based on ti+ l (i.e., by assigning a �rst unassigned site in the list to the agent that becomes available

�rst).

Proof { This proof consists of 4 steps. In the �rst 3 steps, we arbitrarily choose 2 agents from the

m agents and consider the optimal schedule of sites visited by these 2 agents. The last step expands

the result from the previous step into the m-agent optimal schedule.

The summary of each step is as follows: The �rst step shows that the last two sites in the optimal

2-agent schedule should be visited in increasing order of ti + l by di�erent agents. The second step

shows that the third site from the last in the optimal schedule has to be visited just before the

second last site by a di�erent agent assuming the last two sites are optimally scheduled. In order to

use the induction reasoning to prove this Theorem 11, the third step shows that assuming the last

k � 1 sites are optimally scheduled by the greedy method (i.e., they are visited in increasing order

of ti + l by di�erent agents alternatively), the kth site from the last should be visited just before

the lst k � 1th site by a di�erent agent. The last step generalizes the 2-agent optimal schedule into

m-agent optimal schedule.

Step 1 { We show that the last two sites in the sorted list should be visited in the same order by

di�erent agents. This proof consists of two steps. The �rst step shows that the last two sites has to

be visited in a same order of the sorted list if they can be visited in sequence by di�erent agents.

The second step shows that the last two sites have to be visited in sequence by di�erent agents.

There are three possible con�gurations for the last two sites if an agent can leave these sites in

sequence, as shown in Fig.4.4. The sites in the �rst and second rows in the schedules are visited by

agent1 and agent2, respectively. Sites in the last row are visited by the rest of the agents, i.e., m�2
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Figure 4.4: The optimal assignment of the last two sites

agents. Sizes of yi and zi vary, while ti > tj if i > j. x and y0 stand for the total time of sites visited

by each agent before site Sn�1 is visited. In the second case of Fig.4.4, x0+tn+l <
Pr

i=0 yi+tn�1+l,

while in the third case of Fig.4.4, x0 + tn + l �
Pr

i=0 yi + tn�1 + l.

Assume that
Pr

i=0 yi � x < tn�1 + l. The total costs of the two con�gurations are as follows:

� Case 1

CS11 = py0 + p(1� p)x+ p(1� p)2(y0 + y1) + p(1� p)3(y0 + y1 + y2)

+:::+ p(1� p)r+1(

rX
i=0

yi) + p(1� p)r+2z0

+:::+ p(1� p)r+a+1(

a�1X
i=0

zi) + p(1� p)r+a+2(x + tn�1 + l)

+p(1� p)r+a+3(

aX
i=0

zi) + :::+ p(1� p)r+b+2(

b�1X
i=0

zi)

+p(1� p)r+b+3(

rX
i=0

yi + tn + l) + p(1� p)r+b+4(

bX
i=0

zi)
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+:::+ p(1� p)r+c+3(

c�1X
i=0

zi)

+(1� p)r+c+4(

cX
i=0

zi)

� Case 2

CS12 = py0 + p(1� p)x+ p(1� p)2(y0 + y1) + p(1� p)3(y0 + y1 + y2)

+:::+ p(1� p)r+1(

rX
i=0

yi) + p(1� p)r+2z0

+:::+ p(1� p)r+a
0+1(

a0�1X
i=0

zi) + p(1� p)r+a
0+2(x+ tn + l)

+p(1� p)r+a
0+3(

a0X
i=0

zi) + :::+ p(1� p)r+b
0+2(

b0�1X
i=0

zi)

+p(1� p)r+b
0+3(

rX
i=0

yi + tn + l) + p(1� p)r+b
0+4(

b0X
i=0

zi)

+:::+ p(1� p)r+c+3(

c�1X
i=0

zi)

+(1� p)r+c+4(
cX

i=0

zi)

� Case 3

CS13 = py0 + p(1� p)x+ p(1� p)2(y0 + y1) + p(1� p)3(y0 + y1 + y2)

+:::+ p(1� p)r+1(
rX

i=0

yi) + p(1� p)r+2z0

+:::+ p(1� p)r+a
00+1(

a00�1X
i=0

zi) + p(1� p)r+a
00+2(x+ tn�1 + l)

+p(1� p)r+a
00+3(

a00X
i=0

zi) + :::+ p(1� p)r+b
00+2(

b00�1X
i=0

zi)

+p(1� p)r+b
00+3(

rX
i=0

yi + tn + l) + p(1� p)r+b
00+4(

b00X
i=0

zi)
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+:::+ p(1� p)r+c+3(

c�1X
i=0

zi)

+(1� p)r+c+4(

cX
i=0

zi)

Note that because tn > tn�1 a
0 � a and b0 � b in the second case, and a00 � a and b00 � b in the

third case.

The di�erence of CS11 and C1S2 is:

CS11 � CS12 = p(1� p)r+a+2f(x+ tn�1 + l)� (

aX
i=0

zi)g

+(1� p)r+a+3f(
aX
i=0

zi)� (
a+1X
i=0

zi)g+ :::+ (1� p)r+a
0+2f(

a0�1X
i=0

zi)� (
a0X
i=0

zi)g

+p(1� p)r+a
0+3f(

a0X
i=0

zi)� (x+ tn + l)g

+p(1� p)r+b
0+3f(

b0X
i=0

zi)� (

rX
i=0

yi + tn�1 + l)g

+p(1� p)r+b
0+4f(

b0+1X
i=0

zi)� (

b0X
i=0

zi)g+ :::+ p(1� p)r+b+2f(

b�1X
i=0

zi)� (

b�2X
i=0

zi)g

+p(1� p)r+b+3f(

rX
i=0

yi) + tn + l)� (

b�1X
i=0

zi)g

= p(1� p)r+a+2(x+ tn�1 + l �

aX
i=0

zi)

+(1� p)r+a+3(�za+1) + :::+ (1� p)r+a
0+2(�za0)

+p(1� p)r+a
0+3(

a0X
i=0

zi � x� tn � l)

+p(1� p)r+b
0+3(

b0X
i=0

zi �

rX
i=0

yi � tn�1 � l)

+p(1� p)r+b
0+4(zb0+1) + :::+ p(1� p)r+b+2(zb�1)

57



+p(1� p)r+b+3(
rX

i=0

yi + tn + l �
b�1X
i=0

zi)

(4.9)

Using the same technique to derive (4.8) in the proof of Theorem 10, the above di�erence CS11�

CS12 , i.e., (4.9) continues as:

CS11 � CS12 � p(1� p)r+a
0+3(x+ tn�1 + l �

aX
i=0

zi)

+p(1� p)r+a
0+3(�za+1) + :::+ (1� p)r+a

0+3(�za0)

+p(1� p)r+a
0+3(

a0X
i=0

zi �

rX
i=0

yi � tn � l)

+p(1� p)r+b
0+3(

b0X
i=0

zi � x� tn�1 � l)

+p(1� p)r+b
0+3(zb0+1) + :::+ p(1� p)r+b

0+3(zb�1)

+p(1� p)r+b
0+3(

rX
i=0

yi + tn + l�

b�1X
i=0

zi)

= p(1� p)r+a
0+3(tn�1 � tn) + p(1� p)r+b

0+3(tn � tn�1) (4.10)

(4.10) is non-positive because tn � tn�1 and p(1�p)
r+a0+3 � p(1�p)r+b

0+3. Thus, the di�erence

CS11 � CS1�2 is non-positive.

In the same way, the di�erence CS11 � CS1�3 is

CS11 � CS13 = p(1� p)r+a+2(x+ tn�1 + l �

aX
i=0

zi)

+(1� p)r+a+3(�za+1) + :::+ (1� p)r+a
00+2(�za00)

+p(1� p)r+a
00+3(

a00X
i=0

zi �
rX
i=0

yi � tn�1 � l)

+p(1� p)r+b
00+3(

b00X
i=0

zi � x� tn � l)

+p(1� p)r+b
00+4(zb00+1) + :::+ p(1� p)r+b+2(zb�1)
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+p(1� p)r+b+3(
rX

i=0

yi + tn + l�
b�1X
i=0

zi)

� p(1� p)r+a
00+3(x�

rX
i=0

yi) + p(1� p)r+b
00+3(

rX
i=0

yi � x) (4.11)

(4.11) is also non-positive because
Pr

i=0 yi � x and p(1� p)r+a
0+3 � p(1� p)r+b

0+3. Thus, the

di�erence CS11 � CS1�3 is non-positive.

Because both of (4.10) and (4.11) are non-positive, the �rst schedule S11 has the smallest ex-

pected time.

In the above, we assume that the total time in the last row, i.e.,
Pc

i=0 zi is larger than the total

time in both of the �rst and second rows. Either site sn or sn�1 was not the last site in the tour.

However, if either one is the last site, the expected time of a schedule changes a little, although the

result (CS1 is the best schedule) remains same, as shown below.

If a task in both sites sn and sn�1 �nishes earlier than
Pc

i=0 zi in the above three schedules in

Fig.4.4, i.e., c = 0, the di�erence of the expected time of schedules CS11 �CS1�2 and CS11 �CS1�3

become as follows:

CS11 � CS12 = p(1� p)r+3(tn�1 � tn) + (1� p)r+4(tn � tn�1)

= (1� p)r+3(2p� 1)(tn�1 � tn) (4.12)

and

CS11 � CS13 = p(1� p)r+3(x�
rX
i=0

yi) + (1� p)r+4(
rX

i=0

yi � x)

= (1� p)r+3(2p� 1)(x�

rX
i=0

yi) (4.13)

Thus, both (4.12) and (4.13) are non-positive if p �> 0:5.

If a task only one of sites sn and sn�1 �nishes earlier than
Pc

i=0 zi in Fig.4.4, i.e., if x0+ tn+ l <Pc
i=0 zi <

Pr
i=0 yi + tn�1+ l or if

Pr
i=0 yi + tn�1+ l <

Pc
i=0 zi < x0 + tn + l, the situation changes

a little. It is not di�cult to understand that the di�erences CS11 � CS12 and CS11 � CS13 becomes

CS11 � CS12 = p(1� p)r+a+2(x+ tn�1 + l�

aX
i=0

zi)
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+(1� p)r+a+3(�za+1) + :::+ (1� p)r+a
0+2(�za0)

+p(1� p)r+a
0+3(

a0X
i=0

zi � x� tn � l)

+(1� p)r+c+3(tn � tn�1)

� p(1� p)r+a
0+3(tn�1 � tn) + (1� p)r+c+3(tn � tn�1)

= (1� p)r+a
0+3(p� (1� p)c�a

0

)(tn�1 � tn)

and

CS11 � CS13 = p(1� p)r+a+2(x + tn�1 + l �

aX
i=0

zi)

+(1� p)r+a+3(�za+1) + :::+ (1� p)r+a
0+2(�za0)

+p(1� p)r+a
0+3(

a0X
i=0

zi �

rX
i=0

yi � tn�1 � l)

+(1� p)r+c+3(
rX

i=0

yi � x)

� p(1� p)r+a
0+3(x�

rX
i=0

yi) + (1� p)r+c+3(
rX

i=0

yi � x)

= (1� p)r+a
0+3(p� (1� p)c�a

0

)(x �

rX
i=0

yi)

Thus, if p � 0:5, both of the above di�erences are non-positive.

As a summary, if p � 0:5, schedule CS1 has the smallest expected time, which implies that tn

has to be visited later than tn�1.

In the above, we have assumed that
Pr

i=0 yi < x+ tn�1 + l according to Fig.4.4. There were no

other sites in the agent 2's tour whose tasks are �nished between site sn�1 and sn.

Now, we will take a look at the case where
Pr

i=0 yi > x+ tn�1 + l where a task of some sites in

the agent 2's tour can be �nished between site sn�1 and sn. Then we show that tasks of the last

two sites in the optimal schedule have the largest computation time (i.e., they have to be tn and

tn�1), and these sites have to be visited by di�erent agents in increasing order of computation time

(i.e., in the order of sn�1 and sn).
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Figure 4.5: The optimal assignment of the last two sites (2)

In the following three cases, we assume that there are r+1 sites visited by agent 2 before site n,

as shown in Fig.4.4, Fig.4.5 and Fig.4.6. In the �rst case (Fig.4.5),
Pr

0 yi > x + tn�1 + tn + 2l. In

the second case (Fig.4.6), x+ tn�1 + l < (
Pr

i=0 yi) < x+ tn�1 + tn +2l. In the third case (Fig.4.7),

(
Pr

i=0 yi) > x+ tn�1 + l and (
Pr�1

i=0 yi) < x+ yr + tn�1 + l. Basically what we are going to observe

a result of these three cases is that site tn and tn�1 have to be the last two sites to be visited in the

optimal schedule.

Note that in Fig.4.5, g0 � h � h0 � i. The �rst schedule in Fig.4.5 has a longer expected time

until agent2 �nishes the entire tour after the �nishing time of the last site n. This is shown as

follows. The expected time for respective schedules in Fig.4.5 are:

� The �rst schedule:

CS21 = px+ p(1� p)y0 + p(1� p)2(y0 + y1) + :::+ p(1� p)h(y0 + :::+ yh�1)

+p(1� p)h+1(x+ tn�1 + l) + p(1� p)h+2(y0 + :::+ yh)

+:::+ p(1� p)j+1(y0 + :::+ yj�1) + p(1� p)j+2(x+ tn�1 + tn + 2l)

+p(1� p)j+3(y0 + ::+ yj) + :::+ (1� p)r+2(y0 + :::+ yr � 1)

+p(1� p)r+3z0 + p(1� p)r+4(z0 + z1)

+:::+ p(1� p)r+a+2(z0 + :::+ za�1) + p(1� p)r+a+3(y0 + :::+ yr)

+p(1� p)r+a+4(z0 + :::+ za) + :::+ p(1� p)r+b+3(z0 + :::+ zb�1)
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+(1� p)r+b+4(z0 + :::+ zb)

� The second schedule:

CS22 = px+ p(1� p)y0 + p(1� p)2(y0 + y1) + :::+ p(1� p)g
0

(y0 + :::+ yg0�1)

+p(1� p)g
0+1(x+ yr) + p(1� p)g

0+2(y0 + :::+ y0g)

+:::+ p(1� p)h
0+1(y0 + :::+ yh0�1) + p(1� p)h

0+2(x+ yr + tn�1 + l)

+p(1� p)h
0+3(y0 + :::+ yh0) + :::+ p(1� p)j

0+2(y0 + :::+ yj0�1)

+p(1� p)j
0+3(x+ yr + tn�1 + tn + 2l) + p(1� p)j

0+4(y0 + :::+ yj0)

+:::+ p(1� p)r+3(y0 + :::+ yr�1) + p(1� p)r+4z0

+:::+ p(1� p)r+b+4(z0 + :::+ zb)

The di�erence of the expected time of the above two schedules is :

CS21 � CS22 = p(1� p)g
0+1(

g0X
i=0

yi � x� yr)

+p(1� p)g
0+2yg0+1 + :::+ p(1� p)hyh�1

+p(1� p)h+1(x+ tn�1 + l �

h�1X
i=0

yi)

+p(1� p)h
0+2(

h0X
i=0

yi � x� yr � tn�1 � l)

+p(1� p)h
0+3yh0+1 + :::+ p(1� p)j+1yj�1

+p(1� p)j+2(x+ tn�1 + tn + 2l �

j�1X
i=0

yi)

+p(1� p)j
0+3(

j0X
i=0

yi � x� yr � tn�1 � tn � 2l)

+p(1� p)j
0+4(yj0+1) + :::+ p(1� p)r+2(yr�1)

+p(1� p)r+3(z0 � y0 + :::+ yr�1) +

+p(1� p)r+4(z1) + ::+ p(1� p)r+a+2(za�1)
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Figure 4.6: The optimal assignment of the last two sites (3)

+p(1� p)r+a+3(y0 + :::+ yr � z0 � :::� za�1) (4.14)

Since each term in the di�erence (4.14) is non-negative, the whole di�erence is non-negative,

which implies that the second schedule in Fig.4.5 has a smaller expected time. If
Pr

i=0 yi >
Pb

i=0 zi

or if
Pr�1

i=0 yi > z0 and b = 0, CS2�1 � CS22 is still non-negative as long as p � 0:5, which can be

proved by adding a minor modi�cation to the above di�erence (4.14).

It is easy to understand from the result that moving a site from the tour of agent 2 to the tour

of agent 1 in the �rst schedule in Fig.4.5 to decrease agent 2's expect time after site n, reduces the

total expected time of the schedule.

There may be a question as to which site should be moved from agent 1 to agent 2. We can have

a smaller expected time by moving some other site rather than ym from agent 1 to agent 2. This

is valid because this movement still contributes to the reduction of the time di�erence between the

tours of agent 1 and agent 2.

Next, in the schedule in Fig.4.5, we set j�1 to be r, which means that
Pr

i=0 yi < x+tn�1+tn+2l.

The diagram for this situation is described in Fig.4.6. The situation will be observed if we follows

the result of the case in Fig.4.5 and move a site from the agent 2's tour to the agent 1's tour.

The total expected costs of CS201
and C2S02

are:
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� The �rst schedule:

CS201
= px+ p(1� p)y0 + p(1� p)2(y0 + y1) + :::+ p(1� p)h(

h�1X
i=0

yi)

+p(1� p)h+1(x+ tn�1 + l) + p(1� p)h+2(
hX
i=0

yi)

+:::+ p(1� p)r+1(

r�1X
i=0

yi) + p(1� p)r+2z0

+p(1� p)r+3(z0 + z1) + ::+ p(1� p)r+a+1(

a�1X
i=0

zi)

+p(1� p)r+a+2(

rX
i=0

yi) + p(1� p)r+a+3(

aX
i=0

zi)

+:::++p(1� p)r+b+2(

b�1X
i=0

zi) + p(1� p)r+b+3(x + tn�1 + tn)

+p(1� p)r+b+4(

bX
i=0

zi) + :::+ p(1� p)r+c+4(

cX
i=0

zi)

� The second schedule:

CS20
2

= px+ p(1� p)y0 + p(1� p)2(y0 + y1) + :::+ p(1� p)g(

g�1X
i=0

yi)

+p(1� p)g+1(x+ yr) + p(1� p)g+2(

gX
i=0

yi)

+:::+ p(1� p)h
0+1(

h0�1X
i=0

yi) + p(1� p)h
0+2(x + yr + tn�1 + l)

+p(1� p)h
0+3(

h0X
i=0

yi) + :::+ p(1� p)r+2(

r�1X
i=0

yi)

+p(1� p)r+3z0 + :::+ p(1� p)r+b
0+2(

b0�1X
i=0

zi)

+p(1� p)r+b
0+3(x+ yr + tn�1 + tn + 2l) + p(1� p)r+b

0+4(

b0X
i=0

zi)
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+:::+ p(1� p)r+c+4(

cX
i=0

zi)

The di�erence of the total expected costs becomes:

CS201
� CS202

= p(1� p)g+1(

gX
i=0

yi � x� yr)

+p(1� p)g+2yg+1 + :::+ p(1� p)hyh�1

+p(1� p)h+1(x+ tn�1 + l �

h�1X
i=0

yi)

+p(1� p)r+2(z0 �

r�1X
i=0

yi) + p(1� p)r+3z1

+:::+ p(1� p)r+b+2zb�1 + p(1� p)r+b+3(x+ tn�1 + tn �

bX
i=0

zi)

+p(1� p)r+b+4z0 + :::+ p(1� p)r+b
0+2(zb0)

+p(1� p)r+b
0+3(

b0�1X
i=0

zi � x� yr � tn�1 � tn � 2l) (4.15)

The di�erence of the total expected times (4.15) is non-negative because all the terms in (4.15)

is non-negative. If x+ ym+ tn�1+ tn +2l >
Pb0

i=0 zi in Fig.4.6, CS20
1
�CS20

2
is still non-negative as

long as p � 0:5, which can be proved by adding a minor modi�cation to the above di�erence (4.15).

The above result implies that a site has to be moved from the tour of agent 2 to that of agent 1 to

get smaller total expected time as long as y0 + :::+ yr�1 � x < yr + tn�1 + tn + 2l.

Next, we will observe what happens if y0+ :::+ yr�1� x � yr + tn�1+ tn+2l, which is the case

in Fig.4.7. This case will be encountered if we move a site from the tour of agent 2 to the tour of

agent 1 in order to decrease the total expected time in the previous case (Fig.4.6).

The total expected cost for each schedule is, respectively,

� The �rst schedule:

CS31 = px+ p(1� p)y0 + p(1� p)2(y0 + y1) + :::+ p(1� p)r(y0 + :::+ yr�1)

+p(1� p)r+1z0 + :::+ p(1� p)(r + a)(z0 + :::+ za�1)
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Figure 4.7: The optimal assignment of the last two sites (4)

+p(1� p)r+a+1(x+ tn�1 + l) + p(1� p)(r + a+ 2)(z0 + ::+ za)

+:::+ p(1� p)r+b+1(z0 + :::+ zb�1) + p(1� p)r+b+2(y0 + :::+ yr)

+p(1� p)r+b+3(z0 + :::+ zb) + :::+ p(1� p)r+c+2(z0 + :::+ zc�1)

+p(1� p)r+c+3(x + tn�1 + tn + 2l) + p(1� p)r+c+4(z0 + :::+ zc)

+:::+ p(1� p)r+d+4(z0 + ::::+ zd)

� The second schedule:

CS32 = px+ p(1� p)y0 + p(1� p)2(y0 + y1) + :::+ p(1� p)h(y0 + :::+ yh�1)

+p(1� p)h+1(x+ yr) + p(1� p)h+2(y0 + :::+ yh)

+p(1� p)h+3(y0 + :::+ yh+1) + ::::+ p(1� p)r+1(y0 + :::yr�1)

+p(1� p)r+2z0 + p(1� p)r+3(z0 + z1)

+:::+ p(1� p)r+a
0+1(z0 + :::+ za0�1)

+p(1� p)r+a
0+2(x+ yr + tn�1 + l) + p(1� p)r+a

0+3(z0 + :::+ za0)

+:::+ p(1� p)r+c
0+2(z0 + :::+ zc0�1)

+p(1� p)r+c
0+3(y0 + ::+ yr�1 + tn + l)
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+p(1� p)r+c
0+4(z0 + ::+ zc0)

+:::+ p(1� p)r+d+4(z0 + :::+ zd)

Then, the di�erence of the total expected cost between the above schedules is:

CS31 � CS32 = p(1� p)h+1(
hX
i=0

yi � x� yr)

+p(1� p)h+2yh+1 + :::+ p(1� p)ryr�1

p(1� p)r+1(z0 �

r�1X
i=0

yi)

+p(1� p)r+2(z1) + :::+ p(1� p)r+a(za�1)

+p(1� p)r+a+1(x+ tn�1 + l�

a�1X
i=0

zi)

+p(1� p)r+a
0+2(

a0X
i=0

zi � x� yr � tn�1 � l)

+p(1� p)r+a
0+3(za0+1) + :::+ p(1� p)r+b+1(zb�1)

+p(1� p)r+b+2(

rX
i=0

yi �

b�1X
i=0

zi)

+p(1� p)r+c
0+3(

c0X
i=0

zi �

r�1X
i=0

yi � tn � l)

+p(1� p)r+c
0+4(zc0+1) + :::+ p(1� p)r+c+2zc�1

+p(1� p)r+c+3(x + tn�1 + tn + 2l�
c�1X
i=0

zi) (4.16)

All the terms in the above equation (4.16) are non-negative. Thus the second schedule has a

smaller total expected time. This result implies that the last two sites n�1 and n have to be �nished

at the end of each tour of agent 1 and agent 2. Thus, if y0 + ::: + yr�1 � x � yr + tn�1 + tn + 2l,

the site has to be moved from the tour of agent 2 to that of agent 1 and the last site n has to be

appended at the end of the tour of agent 2 to get a smaller total expected time.

Note that in case where
Pc

i=0 zi < x + tn�1 + tn + 2l in Fig.4.7, the di�erence of the expected
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Figure 4.8: The optimal assignment of the last two sites (5)

time between the two schedule CS31 � CS32 is still non-negative as long as p � 0:5. This can be

veri�ed with a minor modi�cation in (4.16). Thus the above result holds in this case, too.

Next is the �nal case in the step1 proof. It will show that two sites sn�1 and sn have to be the

last two sites in the optimal tour and they have to visited by di�erent agents. Now we considered

the two assignments depicted in Fig.4.8. The case in Fig.4.8 is observed if we move a site from the

tour of agent 2 to the tour of agent 1 in order to decrease the total expected time in the previous

case (Fig.4.7).

The total expected cost of each assignment is, respectively,

CS41 = px+ p(1� p)y0 + p(1� p)2(y0 + y1) + :::+ p(1� p)r(y0 + :::+ yr�1)

+p(1� p)r+1z0 + p(1� p)r+2(z0 + z1)

+:::+ p(1� p)r+a(z0 + :::+ za�1) + p(1� p)r+a+1(y0 + :::+ yr)

+p(1� p)r+a+2(z0 + :::+ za) + :::+ p(1� p)r+b+1(z0 + :::+ zb�1)

+p(1� p)r+b+2(x+ tn�1 + l)

+p(1� p)r+b+3(z0 + :::+ zb) + :::+ p(1� p)r+c+2(z0 + :::+ zc�1)

+p(1� p)r+c+3(y0 + :::+ yr + tn + l) + p(1� p)r+c+4(z0 + :::+ zc)

+:::+ (1� p)r+d+4(z0 + :::+ zd)
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and

CS42 = px+ p(1� p)y0 + p(1� p)2(y0 + y1)

+:::+ p(1� p)k(y0 + :::+ yk�1) + p(1� p)k+1(x+ yr)

+p(1� p)h+2(y0 + ::+ yk) + p(1� p)r+1(y0 + :::+ yr�1)

+p(1� p)r+2z0 + :::p(1� p)r+b
0+1(z0 + :::zb0�1)

+p(1� p)r+b
0+2(x+ yr + tn�1 + l) + p(1� p)r+b

0+3(z0 + :::+ zb0)

+:::+ p(1� p)r+c
0+2(z0 + :::+ zc0�1) + p(1� p)r+c

0+3(y0 + :::+ yr�1 + tn + l)

+(1� p)r+c
0+4(z0 + :::+ zc0) + :::+ (1� p)r+d+4(z0 + :::+ zd)

The di�erence of the above two total expected costs is:

CS41 � CS42 = p(1� p)k+1(

kX
i=0

yi � x� yr)

+p(1� p)k+2yk+1 + :::+ p(1� p)ryr�1

+p(1� p)r+1(z0 �
r�1X
i=0

yi)

+p(1� p)r+2z1 + :::+ p(1� p)r+aza�1

+p(1� p)r+a+1(

rX
i=0

yi �

a�1X
i=0

zi)

+p(1� p)r+b+2(x+ tn�1 + l �

bX
i=0

zi)

+p(1� p)r+b+3(�zb+1) + :::+ p(1� p)r+b
0+1(�zb0�1)

+p(1� p)r+b
0+2(

b0�1X
i=0

zi � x� yr � tn�1 � l)

+p(1� p)r+c
0+3(

c0X
i=0

zi �

r�1X
i=0

yi � tn � l)

+p(1� p)r+c
0+4zc0+1 + :::+ p(1� p)r+c+2zc�1
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+p(1� p)r+c+3(

rX
i=0

yi + tn + l �

c�1X
i=0

zi)

� p(1� p)k+1(

kX
i=0

yi � x� yr)

+p(1� p)k+2yk+1 + :::+ p(1� p)ryr�1

+p(1� p)r+a+1(z0 �

r�1X
i=0

yi)

+p(1� p)r+a+1z1 + :::+ p(1� p)r+a+1za�1

+p(1� p)r+a+1(

rX
i=0

yi �

a�1X
i=0

zi)

+p(1� p)r+a+1(x+ tn�1 + l �

bX
i=0

zi)

+p(1� p)r+a+1(�zb+1) + :::+ p(1� p)r+a+1(�zb0�1)

+p(1� p)r+b
0+2(

b0�1X
i=0

zi � x� yr � tn�1 � l)

+p(1� p)r+c
0+3(

c0X
i=0

zi �

r�1X
i=0

yi � tn � l)

+p(1� p)r+c
0+4zc0+1 + :::+ p(1� p)r+c+2zc�1

+p(1� p)r+c+3(

rX
i=0

yi + tn + l �

c�1X
i=0

zi)

= p(1� p)k+1(

kX
i=0

yi � x� yr)

+p(1� p)k+2yk+1 + :::+ p(1� p)ryr�1

+p(1� p)r+a+1(yr + xn�1 + l �
b0�1X
i=0

zi)

+p(1� p)r+b
0+2(

b0�1X
i=0

zi � x� yr � tn�1 � l)
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+p(1� p)r+c
0+3(

c0X
i=0

zi �

r�1X
i=0

yi � tn � l)

+p(1� p)r+c
0+4zc0+1 + :::+ p(1� p)r+c+2zc�1

+p(1� p)r+c+3(

rX
i=0

yi + tn + l �

c�1X
i=0

zi) (4.17)

All the terms in (4.17) are non-negative, thus the di�erence CS41 � CS42 is non-negative. This

implies that if there is a site which �nishes its task between the starting time of the site sn�1 and

sn, as described in Fig.4.9, the site yr in Fig.4.9 should be moved to agent 1 to get a smaller total

expected cost. Note that even if
Pc0

i=0 zi <
Pr

y=0+tn + l, we can obtain the same result by adding

a monitor modi�cation to (4.17).

From the results of the situations in Fig.4.4 through Fig.4.9, We have proved that sites sn�1 and

sn should be visited at the end of the optimal schedule in sequence by di�erent agents

Step2{ In this step, we will show that the last three sites in the optimal schedule are sn�2, sn�1

and sn, and these sites have to be visited in the sequence alternately by di�erent agents.

In the three assignments in Fig.4.10, their total expected costs are:

� The �rst schedule:

CS51 = pz0 + p(1� p)y0 + p(1� p)2x

+p(1� p)3(z0 + z1) + :::+ p(1� p)a+1(z0 + :::+ za�1)

+p(1� p)a+2(y0 + yr) + p(1� p)a+3(z0 + :::+ za)

+:::+ p(1� p)b+2(z0 + :::+ zb�1) + p(1� p)b+3(x+ tn�2 + l)

+p(1� p)b+4(z0 + :::+ zb) + :::+ p(1� p)c+3(z0 + :::+ zc�1)

+p(1� p)c+4(y0 + yr + tn�1 + l) + p(1� p)c+5(z0 + :::+ zc)

+:::+ p(1� p)d+4(z0 + :::+ zd�1) + p(1� p)d+5(x + tn�2 + tn + 2l)

+p(1� p)d+6(z0 + :::+ zd) + :::+ p(1� p)e+5(z0 + :::+ ze�1)

+(1� p)e+6(z0 + :::+ ze)
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Figure 4.9: The optimal assignment of the last two sites (6)
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� The second schedule:

CS52 = pz0 + p(1� p)y0 + p(1� p)2x+ p(1� p)3(z0 + z1)

+:::+ p(1� p)a
0+1(z0 + :::+ za0�1) + p(1� p)a

0+2(x + yr)

+p(1� p)a
0+3(z0 + :::+ za0) + :::+ p(1� p)b

0+2(z0 + :::+ zb0�1)

+p(1� p)b
0+3(y0 + tn�2 + l) + p(1� p)b

0+4(z0 + :::+ zb0)

+:::+ p(1� p)c
0+3(z0 + :::+ zc0�1) + p(1� p)c

0+4(x+ yr + tn�1 + l)

+p(1� p)c
0+5(z0 + :::+ zc0) + :::+ p(1� p)d

0+4(z0 + :::+ zd0�1)

+p(1� p)d
0+5(y0 + tn�2 + tn + 2l) + p(1� p)d

0+6(z0 + :::+ zd0)

+:::+ p(1� p)e+5(z0 + :::+ ze�1) + (1� p)e+6(z0 + :::+ ze)

� The third schedule:

CS53 = pz0 + p(1� p)y0 + p(1� p)2x+ p(1� p)3(z0 + z1)

+:::+ p(1� p)a"+1(z0 + :::+ za"�1) + p(1� p)a"+2(y0 + tn�2 + l)

+p(1� p)a"+3(z0 + :::+ za") + :::+ p(1� p)b"+2(z0 + :::+ zb"�1)

+p(1� p)b"+3(x+ yr) + p(1� p)b"+4(z0 + :::+ zb")

+:::+ p(1� p)c"+3(z0 + :::+ zc"�1) + p(1� p)c"+4(y0 + tn�2 + tn�1 + 2l)

+p(1� p)c"+5(z0 + :::+ zc") + :::+ p(1� p)d"+4(z0 + :::+ zd"�1)

+p(1� p)d"+5(x+ yr + tn + l) + p(1� p)d"+6(z0 + :::+ zd")

+p(1� p)e+5(z0 + :::+ ze�1) + (1� p)e+6(z0 + :::+ ze)

The di�erences of the total expected time CS5�1 � CS52 and CS51 � CS53 are:

CS51 � CS52 = p(1� p)a+2(y0 + yr �
aX
i=0

zi)

+p(1� p)a+3(�za+1) + :::+ p(1� p)a
0+1(�za0�1)

+p(1� p)a
0+2(

a0�1X
i=0

zi � x� yr) + p(1� p)b
0+3(

b0X
i=0

zi � y0 � tn�2 � l)
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+p(1� p)b
0+4(zb0+1) + :::+ p(1� p)b+2(zb�1)

+p(1� p)b+3(x+ tn�2 + l �

b�1X
i=0

zi)

+p(1� p)c+4(y0 + yr + tn�1 + l �

cX
i=0

zi)

+p(1� p)c+5(�zc+1) + :::+ p(1� p)c
0+3(�zc0�1)

+p(1� p)c
0+4(

c0�1X
i=0

zi � x� yr � tn�1 � l)

+p(1� p)d
0+5(

d0X
i=0

zi � y0 � tn�2 � tn � 2l)

+p(1� p)d
0+6(zd0+1) + :::+ p(1� p)d+4(zd�1)

+p(1� p)d+5(x+ tn�2 + tn + 2l�

d�1X
i=0

zi)

� p(1� p)a
0+2(y0 � x) + p(1� p)b

0+3(x � y0)

+p(1� p)c
0+4(y0 � x) + p(1� p)d

0+5(x� y0)

and

CS51 � CS53 = p(1� p)a+2(y0 + yr �
zX
i=0

zi)

+p(1� p)a+3(�za+1) + :::+ p(1� p)a
00+1(�za00�1)

+p(1� p)a
00+2(

a00�1X
i=0

zi � y0 � tn�2 � l)

+p(1� p)b
00+3(

b00X
i=0

zi � x� yr)

+p(1� p)b
00+4(zb00+1) + :::+ p(1� p)b+2(zb�1)

+p(1� p)b+3(x+ tn�2 + l �
bX

i=0

zi)
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+p(1� p)c+4(y0 + yr + tn�1 + l �

cX
i=0

zi)

+p(1� p)c+5(�zc+1) + ::::+ p(1� p)c
00+3(�zc00�1)

+p(1� p)c
00+4(

c00�1X
i=0

zi � y0 � tn�2 � tn�1 � 2l)

+p(1� p)d
00+5(

d00X
i=0

zi � x� yr � tn � l)

+p(1� p)d
00+6(zd00+1) + :::+ p(1� p)d+4(zd�1)

+p(1� p)d+5(x + tn�2 + tn�1 + 2l�

d�1X
i=0

) (4.18)

� p(1� p)a
00+2(ym � tn�2 � l) + p(1� p)b

00+3(tn�2 + l � ym)

+p(1� p)c
00+4(ym � tn�2 � l) + p(1� p)d

00+5(tn�2 + l � ym)

In the di�erence CS51�CS52 , y0�x is non-positive, p(1�p)
a0+2 � p(1�p)b

0+3 and p(1�p)c
0+4 �

p(1� p)c
0+4. Thus CS51 � CS52 is non-positive. In the same way, in CS51 � CS53 , ym � tn�2 � l is

non-positive because the task of site sn�2 is larger than any other task except those of sn�1 and sn.

p(1 � p)a
00+2 � p(1 � p)b

00+3 and p(1 � p)c
00+4 � p(1 � p)d

00+5. Thus the di�erence CS51 � CS53 is

also non-positive.

If
Pe

i=0 zi < x+ tn�2+ tn+2l, the last part of the equations of di�erences CS51 and CS52 change

a little. However, both the di�erences can be proved easily to be non-positive as long as p � 0:5.

Thus, we have proved that the third site from the last in the optimal schedule should be the

site sn�2 if the last two sites are sn�1 and sn, and that those three sites are visited alternately by

di�erent agents as shown in the �rst schedule in Fig.4.9. In other words, we have proved that the

optimal schedule of the last three sites is obtained by the greedy method based on the computation

time of the task.

Step3 {We now assume that the schedule of the last k�1 sites is obtained by the greedy method

based on the computation time of the task, as depicted in the �rst �gure of Fig.4.10. Under such an

assumption, we show that the kth site from the last also should be decided by the greedy method for

the optimal schedule. This can be simply proved using the result of the previous proof. As we can
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Figure 4.10: The optimal assignment of the last two sites (7)

see in Fig.4.10, the schedules of sites < yr; sn�k; sn�k+1; sn�k+2 > are identical to the schedules in

Fig.4.9 where k = 2, and the �rst schedule has the smallest total expected cost in Fig.4.9. Since the

schedule of sites sn�k+3 through sn are decided by the greedy method based on the computation

time of the task, the calculations of the di�erences of the expected times CS61�CS62 and CS61�CS63

will have the same pattern as that of the calculation of the sites sn�1 through sn in the previous

case (Fig.4.9), which shows the �rst schedule is the best. Thus both di�erences CS61 � CS62 and

CS61 � CS63 are non-positive.

By using induction reasoning based on the results from the step1, step2 and step3, we can now

prove that the optimal scheduling of 2 agents can be obtained by the greedy method based on the

computation time of the task.

Step4 { As an extension of the previous step, the optimal schedule of the sites visited by multiple

agents (m � 2) also should be obtained by the greedy method because this is the only schedule that

allows the schedule of two arbitrary agents to be the same as the one that is obtained by the greedy

method.
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4.3.4 Constant Computation Time

Assuming that the computation time at all the sites are same, TMAP becomes the simple sorting

problem that can be solved in polynomial time.

Theorem 12 Computation time at each site is constant, i.e., ti = t for all i. Latencies between

machines are constant, i.e., lij = l for all i; j. Probabilities of success, pi, are arbitrary. TMAP

with m agents can be solved in polynomial time.

proof { Let Jk be the number of sites visited by agent k. Let the jth site visited by the kth agent

be ijk where 1 � j � Jk and 1 � k � m. Now we convert the m-agents into one agent that can

visit m sites at one period of a stage. The length of the period is t+ l. We can imagine that all the

sites visited by the new agent in one stage are merged into one site. The probability of success at

the merged site p(ij) is

p(ij) = 1�

mY
k=1

(1� p(ijk))

where p(ijk) = 0 if there is no jth site visited by the kth agent.

Note that p(ij) monotonically increases as any p(ijk) increases.

If m = 1, the optimal schedule S will be achieved if sites are visited in decreasing order of

probabilities of success. Moreover, the larger the probabilities are in an earlier stage, the smaller

the expected total time of the schedule is. Thus, the optimal multiple agent schedule S is obtained

if we assign the �rst m sites in the list of sites sorted in decreasing order of probabilities, into the

next available stage. The assigned sites at each stage can be assigned into the m-agent arbitrarily.

This assignment does not a�ect the expected total time.

It is easy to see that both construction of the above optimal scheduling and its veri�cation can

be performed in polynomial time. Q.E.D.

4.4 The Traveling Agent Problem with Deadlines

The above results are relevant to agent planning problems without deadlines. In this section, we

address the important problem of handling a deadline for each site (The Traveling Agent problem

with Deadlines). For example, agents encounter this situation when they have information regarding
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when sites are going to shutdown or be isolated due to link disconnection. The goal of the problem

is to obtain tours that �nish an agent's task with the highest probability of success before machines

become unusable. We present a pseudo-polynomial algorithm for �nding such optimal tours below.

Assumption 5 Each site i (including the home site s0) has a deadline, Di, by which an agent must

visit the site or else the site will become unavailable.

Theorem 13 Assume in TAP that l = lij = lkm � 0 for all i; j; k;m, namely Assumption 1.

Computation times, ti, and probabilities, pi, can be arbitrary. The agent must �nish its task by

visiting sites and returning to the home site before the respective deadlines. The optimal tour for

this TAP with Deadlines maximizes the probability of success without exceeding a deadline at each

site. (The deadline time Di is measured from the time the agent leaves the home site.) Such an

optimal tour can be computed in pseudo-polynomial time using a dynamic programming algorithm.

Input times are assumed to be integers and pseudo-polynomial means polynomial in the values of

input time, not the number of bits required to represent them.

Proof { The proof consists of four steps. In the �rst step, we formalize the concept of task

completion before deadlines. The second step shows that sites should be visited in increasing order

of deadlines in order to obtain the optimal answer. The third step introduces two array e(j; s) and

p(j; s). The �rst array is the boolean function which tells if there is a subset which consists of the

�rst through jth sorted sites and which has the total time equal to s. The second array is the total

probability of success p(j; s) of the subset that makes e(j; s) = true. The fourth step constructs

these arrays in pseudo-polynomial time using dynamic programming. The optimal tour is the sorted

subset that maximizes p(j; s).

Step 1 - In this step we formalize the meaning of task completion before deadlines. We assume

that the agent start time is � = 0 and that the agent must visit site i before � = Di. If an agent

visits si, this means that it failed at every site it visited before. The time required to visit all sites

before im in failure for a tour T 0(m) = < i1; i2; ::::; im > where m < n and return to the home site

is:

CT 0(m) = l01 + ti1 +
mX
k=2

(lik�1ik + tik )
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=

mX
k=1

(l + tik )

= m � l +

mX
k=1

tik

The above CT 0(m) cannot be greater than the deadline Dim at the site im and, in addition, the

total time for all tours T 0(k) for k < m should not exceed the deadline Dik . Although the order for

visiting sites does not a�ect the total time CT 0(m) and the total probability of success for the tour,

changing the order might violate the deadline constraints.

The tour which maximizes the probability of successful completion can be computed in pseudo-

polynomial time using dynamic programming in the following steps.

Step 2 - We show that all sites should be visited in increasing order of deadline. Without loss of

generality, let the sorted sequence be a tour T =< 1; 2; ::::; n >. This tour has a minimum maximum

lateness which for a tour T � =< i1; i2; :::; in > is de�ned to be minT�fmax
n
k=1(C

0
T�(k)�Dik)g where

C 0
T�(k) represents the completion time at the ikth site [29].

Step 3 - We introduce two arrays of size n (number of sites) by min(B;D0 � l) where B =Pn
k=1 tk +n � l (total possible time for visiting all sites) and D0� l represents the deadline by which

an agent should leave the last site for its home machine.

For integer j where 1 � j � n, let e(j; s) = 1, if there is a subset of f1; 2; ::; jg for which the

total maximum time is exactly s and each site of which can be visited no later than its deadline. If

such a subset does not exist, e(j; s) = 0 so e is essentially Boolean. We also de�ne the array value

p(j; s) = 0 if e(j; s) = 0 and p(j; s) = 1 �
Q

k2Te(j;s)
(1 � pk) if e(j; s) = 1. Here Te(j;s) is the set of

nodes whose time add up to s (thus making the deadline constraint transparent). This subset of

sites has the maximum probability of success among all such subsets and each of its sites can be

visited no later than the site's deadline. That probability is precisely what is stored in p(j; s).

Step 4 - The values of e(j; s) and p(j; s) are obtained by dynamic programming. The dimensions

of the arrays e and p are both n by min(B;D0 � l). They are all initialized to be 0.

We start the algorithm with row j = 1 and proceed to calculate the following rows of e from

the previous rows. For j = 1, e(1; s) = 1 if and only if either s = 0, or s = l + t1 and s � D1.

If e(1; s) = 0, or e(1; s) = 1 and s = 0, p(1; s) is set to be 0. If e(j; s) = 1 and s = l + t1,
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p(j; s) = p1 = 1� (1� p1).

For j � 2, we set the value of e(j; s) = 1 if and only if e(j � 1; s) = 1 is true, l + tj � s and

e(j � 1; s� l � tj) = 1 where s � Dj , or l + tj = s. This means that we can construct a tour with

total cost s in the case of failure in one of three possible ways:

1. There was already a tour involving sites 1; 2; :::; j�1 with total time s (the case e(j�1; s) = 1),

each site of which can be visited no later than its deadline;

2. There is a nonempty tour with total time s � tj � l involving a subset of sites 1; 2; :::; j � 1

and we can add the site j to that tour if s � Dj (this is the case, e(j � 1; s� tj � l) = 1 and

l+ tj � s where s � Dj) ;

3. l+ tj = s and so we have a tour with only the site j on it if s � Dj .

In the second case, we check if we can add the site j to a tour by comparing s and Dj when

e(j � 1; s� l � tj) = 1 and l+ tj � s.

It is obvious that a tour which satis�es e(j � 1; s� l � t� j) = 1 has a maximum lateness of 0

since the tour does not violate the deadline constraints. Now if we append the site j at the end of

the tour, the total time becomes s. The maximum lateness of sites in the new tour is maxf0; s�Djg

because those sites are sorted in increasing order of their deadline. Since the maximum lateness is

minimum among those of all possible permutations of sites in the tour, it is impossible to decrease

the maximum lateness by changing the order of sites in the tour. Thus, site j cannot be added to

the tour that satis�es e(j; s) = 1 if s > Dj .

We also de�ne elements of the jth row of p as follows. If e(j; s) = 0, p(j; s) = 0. We handle the

cases for which e(j; s) = 1 in the following way:

1. There is a tour already involving a subset of 1; 2; :::; j � 1 with a total time of s, each node of

which can be visited no later than its deadline but j could not be added to any previous tour

to get a new tour (case for which e(j�1; s) = 1 but e(j�1; s�tj� l) = 0): p(j; s) = p(j�1; s);

2. There is no tour with total time s based on sites 1; 2; :::; j�1 but there is one when sj is added

to a tour (case when e(j � 1; s) = 0 and e(j � 1; s� tj � l) = 1): p(j; s) = pj if s � Dj ;

3. There is already a tour involving a subset of 1; 2; :::; j � 1 with a total time of s and another

tour with total time s� l� tj using sites 1; 2; :::; j� 1 which can be visited no later than their
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respective deadlines ( the case when e(j � 1; s) = 1, and e(j � 1; s� tj � l) = 1 and s � Dj ):

p(j; s) = maxfp(j � 1; s); 1� (1� pj)(1� p(j � 1; s� l� tj))g;

4. s = l + tj , e(j � 1; s) = 1 and s � Dj in which case p(j; s) = maxfp(j � 1; s); pjg.

This handles all cases and clearly requires only a single scan of each row, therefore about O(min(D0�

l; B)) operations per row for n rows yielding a complexity of O(min(D0 � l; B) � n) steps..

The subset which maximizes the probability of the agent's success and whose sites can be visited

no later than their respective deadlines is the one that maximizes p(n; s) for s � D0 � l (recall that

p(j; s) = 0 if e(j; s) = 0). D0 � l is the deadline by which time an agent has to leave the last site

for its home site 0. By visiting all the sites in that subset in increasing order of their deadline, no

exceeding of deadlines will occur. However, this order cannot guarantee the minimum expected time

in visiting all the sites prior to their respective deadlines.

It takes at most n logn to sort the subset in increasing order of deadlines. Therefore, the optimal

solution can be obtained in time that is polynomial at most in n and B, O(2 � n �minf
Pn

k=1 tk + n �

l; D0 � lg+ n logn).

The only remaining issue is that of maintaining the list of sites on a tour corresponding to

e(j; s) = 1 and the value of p(j; s) recorded in the array. This can clearly be handled within the

time bounds we have demonstrated. Q.E.D.

As mentioned above, this solution for TAP with deadlines optimizes the probability of success

but does not necessarily minimize the expected time to visit all sites on the tour while satisfying the

respective deadlines.

If there is only a global deadline, D, by which an agent must �nish and return home, we can set

the deadline of each site to be D � l and use the algorithms introduced in Theorems 13 in order to

obtain a solution with the highest probability of success.

4.4.1 Multiple Subnetwork Case

The above TAP with deadlines assumes that latencies are all the same. However, this assumption

may not be reasonable if an agent visits sites in di�erent subnetworks, such as the USA and Japan.

This case can be modeled by variable latencies which are constant within subnetworks and across

two subnetworks, as modeled in Assumption 2.
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Theorem 14 The relevant sites belong to two subnetworks, S1 and S2. Sites in Si are sij where

1 � j � ni. There are three latencies: L1; L2; L12 2 Z+. For s1j 2 S1; s2k 2 S2, l1j2k = l2k1j =

L12 while for s1j ; s1k 2 S1, we have l1j1k = l1k1j = L1. Similarly, for s2j ; s2k 2 S2, we have

l2j2k = l2k2j = L2. Probabilities, pmj > 0 are nonzero and independent as before. Computation

times tmj 2 Z+ are arbitrary and nonzero. Latencies between the home site, s0, and sites in Si

are L0i. The agent must �nish its task by visiting sites and returning to the home site before the

respective deadlines. The optimal tour for this Two Subnetwork Traveling Agent Problem (TSTAP)

with deadlines maximizes the probability of success without exceeding a deadline Di at each site i.

(The deadline time Di is measured from the time the agent leaves the home site.) Such an optimal

tour can be computed in pseudo-polynomial time using a dynamic programming algorithm.

Proof { Let the time required to visit all sites preceding and including in0 for a tour T 0(n0) =<

i1; i2; ::::; in0 > where n0 < n and to return to the home site be:

CT 0(n0) = l01 + ti1 +

n0X
k=2

(lik�1ik + tik ) (4.19)

where lij stands for the latency between nodes i and j.

The above CT 0(n0) can be no greater than the deadline Din0
at the site in0 and, in addition, the

total time for all tours T 0(k) for k < n0 should not exceed the deadline Dik . In fact, by contrast with

Theorem 13, the order of visiting sites a�ects the total time CT 0 because the value of lik�1ik depends

on the subnetworks that sites ik�1 and ik belong to. This means that the order of subnetworks that

sites belong to will a�ect the total time CT 0(n0), not the order of sites within a subnetwork. The

probability of success for the tour is constant for a set of sites.

The tour which maximizes the probability of successful completion while satisfying deadlines can

be computed in pseudo-polynomial time using dynamic programming as follows.

First, we will see that sites in a subnetwork has to be visited in increasing order of their deadlines

for the optimal answer. Now, all the sites in each subnetwork are sorted in increasing order of their

deadlines. Without loss of generality, let the sorted sequence be TSm =< m1;m2; ::::;mnm > for

subnetwork Sm. This sorted sequence will be merged with another sorted sequence from another

subnetwork (We call this sequence the original sequence) when we construct a tour later. Suppose
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that in the merged sequence, we can create other sequences by reordering sites from the same

subnetwork without altering the interleaving pattern. Among all possible such sequences, the original

sequence has the minimum maximum lateness, as explained in the proof of Theorem 13 [29].

Next, we construct four 3-dimensional arrays of size n1 by n2 by min(B;D0�L10; D0�L20) where

D0 is the deadline at the home machine, B =
Pn1

k=1 tk1+
Pn2

k=1+(n1+n2�1) �L12+2 �max(L01; L02)

(maximum time for visiting all sites in the worst case) and D0 � Lm0 represents the deadline that

an agent should leave the last site in the subnetwork Sm for its home machine.

For integer 1 � i � n1 and 1 � j � n2, let em(i; j; s) = 1 in each subnetwork Sm if there is

a subset of f1; 2; ::; ig and f1; 2; ::; jg (sorted in increasing order of the deadline for the minimum

maximum lateness) for which the total maximum time (visiting sites and moving to the subnetwork

Sm) is exactly s and each site of which can be visited no later than its deadline. If such a subset

does not exist, em(i; j; s) = 0 so em is Boolean. We also de�ne the array value pm(i; j; s) = 0 if

em(i; j; s) = 0 and pm(i; j; s) = 1 �
Q

k2Tem(i;j;s)
(1 � pk) if em(i; j; s) = 1. Here Tem(i;j;s) is the set

of sites which can be visited in time s without violating their deadline constraints. pm(i; j; s) is the

maximum probability of success among subsets that can be Tem(i;j;s).

The values of em(i; j; s) and pm(i; j; s) are obtained by dynamic programming. The dimensions

of the arrays em and pm are both n1 by n2 by min(B;D0 � Lm0). They are all initialized to be 0.

We start the algorithm with row i = 1 and j = 0 for e1 and i = 1 and j = 0 for e2, and proceed

to calculate the following rows of em from the previous rows. For i = 1 and j = 0, e1(1; 0; s) = 1

if and only if either s = 0, or s = L01 + t11 and s � D11 . If e1(1; 0; s) = 0, or e1(1; 0; s) = 1 and

s = 0, p1(1; 0; s) is set to be 0. For i = 0 and j = 1, e2(0; 1; s) = 1 if and only if either s = 0, or

s = L02 + t21 and s � D21 . If e2(0; 1; s) = 0, or e2(0; 1; s) = 1 and s = 0, p2(0; 1; s) is set to be 0.

For i � 2, we set the value of e1(i; j; s) = 1 if and only if (a) e1(i� 1; j; s) = 1, (b) e1(i� 1; j; s�

L1 � t1i) = 1 where s � D1i and L1 + t1i < s, or (c) e2(i � 1; j; s � L21 � t1i) = 1 where s � D1i

and L21 + t1i < s. For j � 2, we set the value of e2(i; j; s) = 1 if and only if (a) e2(i; j � 1; s) = 1

(b) e2(i; j � 1; s � L2 � t2j ) = 1 where s � D2j and L2 + t2j < s, or (c) e1(i; j � 1; s � L12 � t2j )

where s � D2j and L12 + t2j < s.

In the above, we construct a tour with total cost s in the case of failure as follows:

In case a tour �nishes at the subnetwork 1:
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1. There is already a tour involving sites f1; 2; ::; i� 1g and f1; 2; :::; jg and then �nishing at the

subnetwork 1 with total time s (the case e1(i�1; j; s) = 1), each site of which has to be visited

no later than its deadline;

2. There is a nonempty tour with total time s� t1i�L1, involving a subset of sites f1; 2; :::; i�1g

and f1; 2; :::; jg and �nishing in the subnetwork 1. Then, we can add site i to that tour if

s � D1i (this is the case, e(i� 1; j; s� t1i � L1) = 1 and t1i + L1 � s where s � D1i) ;

3. There is a nonempty tour with total time s� t2j�L21 involving a subset of sites f1; 2; :::; i�1g

and f1; 2; :::; jg and �nishing in the subnetwork 1. Then, we can add site i to that tour if

s � D2i (this is the case, e(i; j � 1; s� t2j � L21) = 1 and t1j + L21 � s where s � D2j ) ;

4. L01 + t1i = s and so we have a tour with only site 1i on it if s � D1i .

In case a tour �nishes in the subnetwork 2:

1. There is already a tour involving sites f1; 2; ::; ig and f1; 2; :::; j � 1g and then �nishing at

subnetwork 2 with total time s (the case e2(i; j�1; s) = 1), each site of which has to be visited

no later than its deadline;

2. There is a nonempty tour with total time s� t1i�L21 involving a subset of sites f1; 2; :::; i�1g

and f1; 2; :::; jg and �nishing in the subnetwork 2. Then, we can add the site i to that tour if

s � D1i (this is the case, e(i� 1; j; s� t1i � L21) = 1 and t1i + L21 � s where s � D1i) ;

3. There is a nonempty tour with total time s � t2j � L2 involving a subset of sites f1; 2; :::; ig

and f1; 2; :::; j�1g and �nishing in the subnetwork 2. Then, we can add the site i to that tour

if s � D2j (this is the case, e(i; j � 1; s� t2j � L2) = 1 and t2j + L2 � s where s � D2j ) ;

4. L02 + t2j = s and so we have a tour with only the site 2j on it if s � D2j .

In the second and third cases for both subnetwork 1 and 2, we check if we can append site i

or j at the end of a tour by comparing s and D1i , or s and D2j , respectively. It is obvious that

a previous tour to which a new site i or j will be appended does not exceed any deadline of the

sites in the tour, that is, the maximum lateness of the tour is 0. Now if we append site 1i or 2j at

the end of the tour, the total time becomes s. The maximum lateness of sites in the new tour is

maxf0; s�D1ig or maxf0; s�D2jg for the cases where the site 1i is added or where the site 2j is
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added, respectively. Since the maximum lateness is the minimum among all possible permutations

of sites in same subnetworks, it is impossible to decrease the maximum lateness by changing the

order of sites in the same subnetworks. Thus, site 1i cannot be added to the tour that satis�es

e1(i; j; s) = 1 if s > D1i . In the same way, 2j cannot be added to the tour that satis�es e2(i; j; s) = 1

if s > D2j .

We also de�ne p(i; j; s) as follows. If e(i; j; s) = 0, p(i; j; s) = 0. We handle the cases for which

e(i; j; s) = 1 in the following way:

In case a tour �nishes in subnetwork 1:

1. There is a tour already involving a subset of f1; 2; :::; i� 1g and f1; 2; :::; jg and �nishing at

the subnetwork 1 with a total time of s, each node of which has to be visited no later than

its deadline but i cannot be added to any previous tour to get a new tour (case for which

e1(i� 1; j; s) = 1 but e1(i� 1; j; s� t1i � L1) = 0): p1(i; j; s) = p1(i� 1; j; s);

2. There is no tour with total time s based on sites f1; 2; :::; i� 1g and f1; 2; :::; jg but there is

one when si is added to a tour (case when e1(i� 1; j; s) = 0 and e1(i� 1; j; s� t1i �L1) = 1):

p(j; s) = pi if s � D1i ;

3. There is already a tour involving a subset of f1; 2; :::; i� 1g and f1; 2; :::; jg with a total time

of s and other tours with total time s � L1 � t1i or s � L21 � t1i using sites f1; 2; :::; i � 1g

and f1; 2; :::; jg which has to be visited no later than their respective deadlines ( the case when

e1(i�1; j; s) = 1, and e1(i�1; j; s�t1i�L1) = 1 and s � D1i or the case when e2(i�1; j; s) = 1,

and e2(i� 1; j; s� t2j �L12) = 1 and s � D2j ): p1(i; j; s) = maxfp1(j � 1; s); 1� (1� p1i)(1�

p1(j � 1; s� L1 � t1i)); 1� (1� p1i)(1� p2(i� 1; j; s� L21 � t1i))g;

4. s = L01+ t1i , e1(i� 1; j; s) = 1 and s � D1i in which case p1(i; j; s) = maxfp1(i� 1; j; s); p1ig.

In case a tour �nishes in subnetwork 2:

1. There is a tour already involving a subset of f1; 2; :::; ig and f1; 2; :::; j � 1g and �nishing at

the subnetwork 2 with a total time of s, each node of which has to be visited no later than

its deadline but j cannot be added to any previous tour to get a new tour (case for which

e2(i; j � 1; s) = 1 but e2(i; j � 1; s� t2i � L2) = 0): p2(i; j; s) = p2(i; j � 1; s);
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2. There is no tour with total time s based on sites f1; 2; :::; ig and f1; 2; :::; j � 1g but there is

one when sj is added to a tour (case when e2(i; j� 1; s) = 0 and e2(i; j � 1; s� t2j �L2) = 1):

p(i; s) = pj if s � D2j ;

3. There is already a tour involving a subset of f1; 2; :::; ig and f1; 2; :::; j � 1g with a total time

of s and another tour with total time s � L2 � t2j or s � L12 � t2j using sites f1; 2; :::; ig

and f1; 2; :::; j � 1g which has to be visited no later than their respective deadlines ( the

case when e2(i; j � 1; s) = 1, and e2(i; j � 1; s � t2j � L22) = 1 and s � D2j or the case

when e2(i; j � 1; s) = 1, and e1(i; j � 1; s � t2j � L12) = 1 and s � D2j ): p2(i; j; s) =

maxfp2(i; j; s); 1�(1�p2j)(1�p2(i; j�1; s�L2�t2j )); 1�(1�p2j)(1�p1(i; j�1; s�L21�t2j ))g;

4. s = L02+ t2j , e2(i; j�1; s) = 1 and s � D2j in which case p2(i; j; s) = maxfp2(i; j�1; s); p2jg.

This handles all cases and clearly requires only a single scan of each row, therefore about

O(min(D0 � Lm0; B) operations per row for n1 � n2 rows yielding a complexity of O(min(D0 �

Lm0; B) � n1 � n2) steps where m stands for the subnetwork Sm. D0 � Lm0 is the deadline by which

an agent has to leave the last site for its home site 0.

The subset which maximizes the probability of the agent's success and whose sites can be visited

no later than their respective deadlines is the one that maximizes pm(n1; n2; s) for s � D0�Lm0 (re-

call that p(j; s) = 0 if e(j; s) = 0). Let em(n1; n2; s) with the maximum probability be em(n1; n2; s
0).

By tracing backward from em(n1; n2; s
0) toward em(0; 0; 0), we can obtain the tour that maxi-

mizes the probability of success without violating deadline constraints. However, this tour cannot

guarantee the minimum expected time in visiting all the sites no later than their respective deadlines.

It takes at most nm lognm to sort the subset in the subnetwork Sm in increasing order of

deadlines. Therefore, the optimal solution can be obtained in time that is polynomial at most

in n1, n2 and B, O(4 �n1 �n2 �minf
Pn1

k=1 t1k +
Pn2

k=1 t2k +(n1+n2� 1) �L12+2 �Lm0; D0�Lm0g+

n1 logn1 + n2 log n2).

The only remaining issue is that of maintaining the list of sites on a tour corresponding to

em(i; j; s) = 1 and the value of pm(i; j; s) recorded in the array. This can clearly be handled within

the time bounds we have demonstrated. Q.E.D.
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4.4.2 Multiple Agents

As in TAP without deadlines, we consider a planning problem where multiple agents cooperate to

complete a same task. Intuitively, the maximum probability of success will be larger than in the

single agent case because the chance that agents can visit sites before their deadlines increases. In

this subsection, we deal with the multiple agent planning problem with deadlines, i.e., the Traveling

Multiple Agent Problem (TMAP) with Deadlines. Formally, we de�ne the Traveling Multiple Agent

Problem (TMAP) with Deadlines as follows:

Theorem 15 Assume that TMAP with Deadlines has a the latency l = lij = lkm 2 Z+ for all

i; j; k;m. Computation times ti 2 Z+ are arbitrary but should be nonnegative integers. Probabilities

of success pi � 0 are arbitrary and independent. Each site i (including the home site s0) has a

deadline, Di, by which an agent must visit the site or else the site becomes unavailable. There are

two agents working on a same task. The optimal schedule for this TMAP maximizes the probability

of success without exceeding a deadline at each site. Such an optimal schedule can be computed in

pseudo-polynomial time using a dynamic programming algorithm.

Proof { First, we recall the second step of proof for Theorem 13, which shows that the sites should

be visited in increasing order of deadline. Since the proof assumes a single agent, more precisely, we

should restate here that the sites visited by the same agent should be sorted in increasing order of

deadline.

Next, we introduce two arrays e(i; s1; s2) and p(i; s1:s2) of size n (number of sites) by min(B;D0�

l) where B =
Pn

k=1 tk+n � l (total time for visiting all sites in the worst case) and D0� l represents

the deadline that an agent should leave the last site for its home machine.

For integer i, where 1 � i � n, let e(i; s1; s2) = 1 if there is a subset of f1; 2; :::; ig for which

the total maximum time by agent 1 and agent 2 are exactly s1 and s2, respectively, and each site

of which can be visited no later than its deadline. If such a subset does not exist, e(i; s1; s2) = 0.

Another array p(i; s1; s2) is de�ned as follows: p(i; s1; s2) = 0 if e(i; s1; s2) = 0 and p(i; s1; s2) =

1 �
Q

k2Te(i;s1 ;s2)
(1 � pk) if e(i; s1; s2) = 1 where Te(i;s1;s2) is the set of sites whose times spent

by agent 1 and agent 2 are s1 and s2 respectively. This subset of sites has to be the maximum

probability of success among all such subsets and each of its sites can be visited no later than the

site's deadline. That probability is precisely what is stored in p(i; s1; s2).
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The values of e(i; s1; s2) and p(i; s1; s2) are obtained by dynamic programming. They are all

initialized to be 0.

We start the algorithm with row i = 1 and proceed to calculate the following rows of e from the

previous rows. For i = 1, e(1; s1; s2) = 1 if and only if

1. s1 = 0 and s2 = 0;

2. s1 = l + t1, s1 � D1 and s2 = 0;

3. s2 = l + t1, s2 � D2 and s1 = 0.

p(i; s1; s2) = 0 in the �rst case. p(i; s1; s2) = p1 = 1� (1� p1) in the second and third cases.

For i � 2, we set the value of e(i; s1; s2) = 1 if and only if

1. e(i� 1; s1; s2) = 1;

2. l+ ti � s1 and e(i� 1; s1 � l � ti; s2) = 1 where s1 � Di;

3. l+ ti � s2 and e(i� 1; s1; s2 � l � ti) = 1 where s2 � Di.

We also de�ne elements of the ith row of p as follows. If e(i; s1; s2) = 0, p(i; s1; s2) = 0. We

handle the cases for which e(i; s1; s2) = 1 in the following way:

1. If e(i� 1; s1; s2) = 1, but e(i� 1; s1� ti� l; s2) = 0 or e(i� 1; s1; s2� ti� l) = 0: p(i; s1; s2) =

p(i� 1; s1; s2);

2. If e(i� 1; s1; s2) = 0, e(i� 1; s1 � ti � l; s2) = 1, and s1 � Di: p(i; s1; s2) = pi;

3. If e(i� 1; s1; s2) = 0, e(i� 1; s1; s2 � ti � l) = 1, and s2 � Di: p(i; s1; s2) = pi;

4. If e(i � 1; s1; s2) = 1, e(i � 1; s1 � ti � l; s2) = 1, and s1 � Di: p(i; s1; s2) = maxfp(i �

1; s1; s2); 1� (1� pi)(1� p(i� 1; s1 � l � tj ; s2))g;

5. If e(i � 1; s1; s2) = 1, e(i � 1; s1; s2 � ti � l) = 1, and s2 � Di: p(i; s1; s2) = maxfp(i �

1; s1; s2); 1� (1� pi)(1� p(i� 1; s1; s2 � ti � l))g;

6. If s1 = l + ti, e(i� 1; s1; s2) = 1 and s1 � Di: p(i; s1; s2) = maxfp(i� 1; s1; s2); pig;

7. If s2 = l + ti, e(i� 1; s1; s2) = 1 and s2 � Di: p(i; s1; s2) = maxfp(i� 1; s1; s2); pig.
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This handles all cases and clearly requires only a single scan of each row whose size is (min(D0�

l; B))2, therefore about O((min(D0� l; B))
2) operations per row for n rows yielding a complexity of

O((min(D0 � l; B))2 � n) steps.

The subset which maximizes the probability of the agent's success and whose sites can be visited

no later than their respective deadlines is the one that maximizes p(n; s1; s2) for s1; s2 � D0 � l

(recall that p(i; s1; s2) = 0 if e(i; s1; s2) = 0). D0 � l is the deadline by which time an agent has to

leave the last site for its home site 0.

By visiting all the sites in that subset in increasing order of deadline, no deadline is violated.

However, as discussed before, this order cannot guarantee the minimum expected time to visit all

sites no later than their respective deadlines.

It takes at most n logn to sort the subset in increasing order of deadline. Therefore, the optimal

solution can be obtained in time that is polynomial at most in n and B, O(2 � n � (minf
Pn

k=1 tk +

n � l; D0 � lg)2 + n logn). Q.E.D.

The above algorithm can be applied to the Traveling Multiple Agent Problem with Deadlines

even when the number of agents m is larger than 2. The size of the two arrays introduced in the

proof will become n � (minf
Pn

k=1 tk + n � l; D0 � lg)m, while the construction of the arrays is the

same as the two agent case. Thus, the complexity of the algorithm for TMAP with Deadlines where

m � 2 is:

O(2 � n � (minf

nX
k=1

tk + n � l; D0 � lg)m + n logn):

89



Chapter 5

Implementation

In the previous chapter, we developed algorithms and theories for a speci�c planning problem that

is often observed in mobile-agent applications such as information retrieval [47] and data-mining

[20, 21]. This chapter presents the architecture of our implemented mobile-agent planning system,

where these algorithms and theories are applied.

The mobile-agent system we employ is D'Agents, which was developed at Dartmouth College[26,

27]. The current version of D'Agents supports Tcl/Tk, Java, Scheme and Python. The main

attractive features of D'Agents are its ease of use (e.g., simple and high-level) and its e�ective

security mechanisms.

Our planning system is built as one of the utilities used in D'Agents. With the planning system,

the mobile agents in D'Agents can perform some tasks with minimum execution time. Thus, although

the planning system will be transparent to an end user, its contribution to the performance of mobile

agents will be signi�cant.

This section begins with an overview of the mobile-agent planning system, which has four main

components: the Planning module, the Network Sensing module, the Clustering module and the

Directory Service module. Detailed explanations of each component follow in the rest of the section.

5.1 Overview of Mobile Agent Planning System

Since the mobile-agent planning system is built on top of D'Agents, we start with a description of

D'Agents before explaining the mobile-agent planning system. D'Agents is a mobile-agent system

that supports agents written in Tcl/Tk, Java, Scheme and Python. The system provides migrations,
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low-level communication, and security mechanisms. The main component of D'Agents is a server

that runs on each machine and executes mobile-agent commands. Its most important function

is to support migration, speci�cally, the command agent jump that allows an agent to migrate

to a new machine during its execution. The sever on the agent's current machine captures the

complete state of the agent and sends the information to the server on the destination machine. The

destination server starts up an execution environment, loads the received state information into this

environment, and resumes the agent's execution from the point where its execution was suspended

on the previous machine. The server also handles low-level communication (message passing and

binary streams between agents) and security mechanism. All the migration and communication

commands interpreted by the server are simple and high-level, and the security mechanisms are

transparent to the user.

The D'Agents' architecture is depicted in Fig.5.1. The lowest level of the architecture is an in-

terface to each available transport mechanism. The second level is the server that performs several

tasks: (1) command interpreter, (2) state capture during migration, and (3) authentication of in-

coming agents for security. The third level of the architecture consists of the execution environments

for each supported agent language. The last level are the agents themselves.

The biggest advantages of mobile agents versus conventional distributed-computing paradigms

are their e�cient use of bandwidth and their robust performance in the presence of unreliable
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network connections. By sending a mobile agent to a remote database and getting only a small

result back after its execution there, a signi�cant amount of data transmission can be avoided. Since

the mobile agent does not require a constant connection with the remote host during its execution,

it can perform robustly even when periods of network disconnection occur frequently. Because of

such advantages, mobile agents are suitable for applications, such as information retrieval and data-

mining, that require access to a large amount of remote data in a possibly unreliably connected

network such as a wireless network.

In information retrieval and data-mining applications, a mobile agent needs a planning system.

In those applications, it often happens that a mobile agent cannot complete its task, e.g., locate the

desired information, in the �rst database that it happens to visit. So the mobile agent has to try

several databases in the network until it �nds its target information. Random migration to these

database will lead to ine�cient performance. Instead we need a planning system that can decide

where an agent should go next so that the agent can perform better.

The architecture of our planning system for mobile agents is depicted in Fig.5.2. The planning

system consists of four main components: planning module, network-sensing module, clustering

module and directory-service module. In our system, when a mobile agent is given a task, for

example, searching for information, it consults with the planning module �rst. The planning module

asks a directory-service module for possible locations where the mobile agent might complete its

task, e.g., where it can �nd the desired information. The directory-service module returns a list of

locations with relevance rankings, just like Internet search engines such as Infoseek and Altavista.
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The relevance ranking is treated as the probability of success, i.e., the probability that the mobile

agent will �nd the desired information, thus completing its task. Although we have not provided a

function to measure this probability in the implemented system, we assume that this probability is

measurable. For example, the probability can be the ratio of data cached at a proxy server over the

full amount of data available at the actual server.

After obtaining the list of machines and their relevance rankings, the planning module passes

the list to the network-sensing module, which captures the latencies between those machines and

their CPU load. The network-sensing module keeps track of these network statistics by probing the

network at �xed intervals.

As soon as the network statistics are returned to the planning module, the sequence in which

agents should visit machines (to minimize its total expected execution time) is calculated from the

network statistics and probabilities of success. The calculation is done using the algorithms and

theorems described in the previous chapter. The clustering module forms subnetworks based on the

latencies collected by the network-sensing module for the approximations used in the algorithms and

theorems.

Each module is described in detail in the following subsections.

5.2 Planning Module

The planning module is the main component of the planning system. It is directly consulted by the

mobile agents and after collecting the necessary information from the other modules, it decides the

sequence in which machines should be visited.

The planning module is implemented as an Agent Tcl script so that it can communicate easily

with its client agents. Pseudo-code for this planning agent is in Fig.5.3.

The planning agent is idle until it receives a query from a mobile agent for an optimal machine-

visit sequence. As soon as receives a query, it forwards the query to the directory-service agent and

waits for the reply containing the list of machines where the mobile agent might be able to �nd the

desired information. The directory service also returns the probability of success for each machine.

The list of machines is forwarded to the network-sensing agent to get the relevant network statistics

(such as latencies between the machines and their CPU usage.)
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# create a planning agent

agent _begin

agent _name Planning _agent

while (1) {

# receive a query from a mobile agent

set Mobile_Agent [agent_receive query -blocking]

# send the query to the Directory-service Agent

agent_send Directory_Service query

# receive the locations and probability of success

# from the Directory Service Agent

agent_receive locations probability -blocking

# send the locations to the Network Sensing Agent

# to get the current network statistics

agent_send Network_Sensing locations

# receive the network statistics

agent_receive statistics -blocking

# decide which planning algorithm to use

# (based on the probabilities and network statistics)

set type [Decide_type probability statistics]

# execute the chosen planning algorithm to obtain

# the best sequence in which to visit the machines

switch type {

1 : set sequence [Constant_latency locations probability statistics]

2 : set sequence [Subnetwork locations probability statistics]

.

.

}

# send the sequence of machines to the requesting mobile agent

agent_send Mobile_Agent sequence

}

Figure 5.3: Pseudo-code for the planning agent
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Once the network statistics are returned, the planning agent selects the most suitable planning

algorithm depending on the deviation in and the average of the latencies, the probabilities of success,

and the estimated computation time of the task at each machine. Note that the estimated compu-

tation time is calculated based on the measured CPU load, the benchmarked machine performance,

and the size of a task. Algorithm selection is determined by whether the probabilities, latencies,

and estimated computation time can be considered relatively constant, since the algorithms devel-

oped in the previous chapter assume constant latency, constant probabilities or constant estimated

computation time.

Once a suitable algorithm is chosen, the algorithm executes on the latencies, probabilities and

estimated computation time to produce the sequence of machine visits that minimizes the agent's

expected total execution time. In this calculation, the benchmarked performance of the machines

and the size of the mobile agent's task are assumed to be known in advance so that the computation

time at each machine can be calculated from its given CPU load.

The sequence of machines is returned to the mobile agent that requested it.

5.3 Directory Service Module

The job of the directory-service module is to maintain an index information resources in the network

and tell the planning agent where the agent's desired information can be found. This requires

indexing the information, keeping track of the location of information, updating its tables if the

location changes and so on, similar to what Internet search engines do for example. The second

task is to return the list of machines where the desired information might be located, along with a

probability of success for each machine. Since the request from the planning agent can be abstract,

e.g., keywords related to the desired information, the directory service cannot specify the exact

location of the information with certainty. Thus, it provides the probability of success to rank the

possible locations, just as some Internet search engines show the relevance rankings of web pages.

Each probability can be regarded as the directory's degree of con�dence that the desired information

can be found there.

The directory service that we have implemented is simple and handles only the second task

above (returning the list of locations with probabilities). Moreover, mechanisms to measure the
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while (1) {

# wait until receiving a query from a planning agent

set Planning_Agent [agent_receive keywords -blocking]

# open the file that contains the location table

# for the query (the keywords)

set fd [open location_file]

# search for the entry for the keywords in the file

set locations_with_prob [find keywords $fd]

close $fd

# send a list of locations with probabilities of success

agent_send Planning_Agent locations_with_prob

}

Figure 5.4: Pseudo-code for the directory service agent

probabilities of success are assumed to be available but are not implemented yet. One simple

approach is to take the ratio of the amount of information at the site (e.g. number of bytes) over

the the total amount of information in the network. Anyway, our directory service needs signi�cant

extensions before it can be used in a production-environment, but it is su�cient for testing the

planning services.

Our directory service is implemented in Agent Tcl as a stationary agent. Pseudo-code for the

directory service agent is shown in Fig.5.4.

The directory service agent waits until it receives a query, e.g., keywords, from the planning

agent, which needs the list of locations where a mobile agent can �nd the desired information. As

soon as the directory service agent receives the query, it opens the �le that contains the location

table, which associates locations with keywords. The location table also contains the probabilities

of success, i.e., the probabilities that the agent can �nd the desired information at the associated

locations. The list of locations for the keywords given by the planning agent are retrieved from the

�le and returned to the planning agent after closing the �le.

Note that, as mentioned above, our directory service lacks the ability to create and manage the

location table. Thus, the �le that contains the table is created by hand in advance.
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5.4 Network-Sensing Module

The network-sensing module periodically collects network statistics such as latency, available band-

width, current CPU load, and packet loss rate, accepts queries about these statistics from the

planning agent, and answers those queries.

Collecting network statistics or, in other words, network sensing, is a very important topic for

distributed applications and mobile-agent applications. Whether the network statistics are accurate

or not signi�cantly a�ects the performance of those applications. For example, if a mobile agent tries

to migrate to a machine that has been shutdown, it will waste a large amount of time. However,

accurate network sensing is very di�cult to achieve without introducing a signi�cant amount of tra�c

into the network. Several di�erent network-sensing schemes have been proposed in the literature to

overcome the di�culty.

This section overviews the state-of-the-art in network sensing, and then presents the architecture

of our accurate and e�cient network sensing system along with a description of its implementation.

5.4.1 Literature of Network Monitoring

Availability of accurate network statics will be necessary for the robust and e�cient performance

of distributed and mobile-agent applications. However, achieving accurate network monitoring is

di�cult without transmitting a huge amount of additional network tra�c. The more updated and

accurate information a network-sensing system collects, the more tra�c it has to generate.

Many researchers have responded to this problem by proposing various network-sensing systems

[2, 39, 52]. The goal of all these existing network-sensing systems is to minimize the extra network

tra�c generated due to the network-sensing. These systems can be classi�ed based on three criteria

[7].

One criteria is the amount of tra�c generated during the sensing process. In a passive sensing

process, the network sensors piggy-back status information onto existing messages, while in an

active-sensing process, network measurements are done by sending additional control messages [45].

Although the �rst process generates less tra�c, it may not be able to collect comprehensive network

status information if messages are not being sent between some hosts.

The second criteria is the frequency of the network-sensing process. In an on-demand sensing
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process, sensing occurs only when an application requests status information about a speci�c re-

source, while in the continuous-sensing process, sensing occurs continuously and applications are

informed of changes in the network status information as soon as those changes occur [39]. The

�rst scheme can not provide the network status information on demand when it is requested like the

second scheme, though the �rst scheme is more e�cient because it collects information only when

necessary.

The third criteria is how the sensing process is controlled. In the centralized sensing process,

all of the network status information is collected and stored by one host, and this information is

requested by other hosts. In the decentralized sensing process, distributed monitors collect only local

network information and request non-local information on demand from other monitors on other

hosts [2]. The �rst scheme has robustness and scalability problems. When the machine where the

network sensing process is running is down, the network statistics become unavailable. Moreover,

the information managed by the centralized monitor grows quadratically as the number of hosts in

network increases, simply because the number of latency and bandwidth values is n2 where n is the

number of hosts. The replication of the stored information to other machines may be the solution to

the �rst problem, but it causes a larger scalability problem because of having duplicated information

in the network. The second scheme does not su�er from these problems, but complex control for

collaboration between distributed monitors is required if an application needs to access non-local

network status information or status information for the entire network.

5.4.2 Architecture of the Network Sensing System

The network-sensing module (network monitoring system) that we implemented is classi�ed as an

active, continuous and centralized system according to the above three criteria. Our system collects

network status information on a periodic basis by sending control messages to measure (1) the

latencies between hosts and (2) the current CPU load of hosts in the network. All the network

status information is managed by the central network sensing server, which is assisted by a network

sensing slave on each host. Each slave collects local information and reports it to the central server

when it is requested.

This active, continuous and centralized network-sensing system should be suitable to our planning

system. In the planning system, access to the network status information by the planning agent

98



could be comprehensive in some case or, at least, non-local in most of the cases, and furthermore,

the information should be sent to the agent on demand.

Our network-sensing system has a special feature, which other existing systems do not, to solve

the scalability problem when collecting latencies between hosts in a network. Usually, latency is

measured using mechanism similar to that of the standard latency measurement tool ping. How-

ever, with ping measurement of all latencies between n hosts in the network requires n2 packet

transmissions, leading to a huge amount of tra�c if n is large. Our system successfully reduces this

tra�c using multicast packets. In the best case, the order of the amount of the tra�c in our system

is O(n), rather than the O(n2) of the conventional systems. The following subsection explains this

in detail.

Latency Measurement with Multicast Packet

Our network sensing system uses multicast packets to reduce the network tra�c when measuring

latencies. This subsection explains the mechanism in detail. It starts with an explanation of the con-

ventional method to measure latencies, and then explains our method and analyzes the performance

gain.

The conventional method for measuring the latency between two machines is ping. Ping sends

an Internet Control Messaging Protocol (ICMP) message to the destination machine. This message

includes a timestamp, i.e., the time at which the message was sent. When the packet is returned

from the destination, ping calculates the round trip time by taking the di�erence between the receive

time and the time of the timestamp. Half of this round trip time is the latency.

If latencies are measured among n machines in the network, in a conventional system, each

machine must send the ping packet to the rest of the machines (n� 1 machines). Thus, the amount

of messages sent for measuring latencies in the entire network will be n�(n�1), which quadratically

grows as n becomes larger.

Although we can send a multicast packet with ping to measure latencies between a given source

and multiple destinations, its usage in the network sensing system will not signi�cantly reduce the

amount of tra�c. The multicast packet is sent only in one way direction, from the source to the

destination. So the number of returning packets will be still n � 1, which is the same as with a

normal ping.
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Our method takes more step to reduce the network tra�c. Our method measures only one way

trip time instead of the round trip time measured by ping or multicast ping.

Each machine sends a multicast packet to the rest of the machines in the network, timestamped

with the time at which it left the source. When the destination machine receives the packet, it

calculates the one-way trip time, taking the di�erence between the packet's arrival time and the

time on the timestamp. Note that the calculated one way time is not accurate unless the clocks

on the destination and source machines are synchronized. The adjustment of the time warp due to

unsynchronized clocks is explained later.

Since each machine sends a multicast packet at the same time, it also receives n� 1 packet from

the rest of the machines, and thus, it gets n � 1 one-way trip times. All these one-way trip times

with their source machine addresses are sent in one packet to the central network-sensing server that

manages the network-status information.

Then the central network sensing server looks for the pair of one-way-trip times between two

machines. Obviously, this pair consists of two one-way-trip times, the direction of which are opposite

each other. Adding these two one-way-trip times to create the round-trip time removes time warp

due to unsynchronized clocks on the two terminal machines of the trip, which is explained as follows:

Assume that a one-way-trip time of one direction is the actual one-way-trip time lij plus

the time di�erence between two clocks �, that is, lij+�. Then another one-way-trip time

of the opposite direction will be lji � �. The addition of these one-way-trip time makes

lij + lji where � disappears.

The latency between the two machines is half of the obtained round-trip time. In the same way, the

central network-sensing server can obtain all the latencies between the machines in the network.

All the packets sent to measure latencies in the above scheme are one-way-multicast packets, the

number of which is only n. By considering the number of packets sent from each machine to the

central network sensing server, i.e., 1, the order of the number of total packets sent in the network

is only O(1 � n+ n) = O(n) in the best case, which outperforms the conventional network-sensing

systems.
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while (1) {

# receive a request of network statistics about "machines"

set Planning_Agent [agent_receive machines -blocking]

# open "dbm" file that contains network statistics

set fd1 [open_dbm $Latency_File]

set fd2 [open_dbm $CPU_File]

set fd3 [open_dbm $performance_File

# search for the statistics of $machines

set latency [find_dbm $fd1 $machines]

set CPU [find_dbm $fd2 $machines]

set perform [find_dbm $fd3 $machines]

# return the statistics to the planning agent

agent_send $Planning_Agent $latency $CPU $perform

}

Figure 5.5: Pseudo-code of the stationary network sensing agent

5.4.3 Implementation of the Network Sensing System

Our network sensing system consists of a stationary agent written in Agent Tcl and a central network

sensing server daemon with network sensing slave daemons running on each machine in the network.

Those daemons are written in C. The stationary agent handles all queries from planning agents for

network-status information. The central network-sensing server and slave daemons collaborate to

periodically collect network-status information.

Pseudo-code of the stationary network sensing agent is described in Fig.5.5.

The task of the stationary network-sensing agent is fairly simple. When the agent receives a

request from a planning agent for network-status information about certain machines, it searches for

the information in the �les that contain latencies, current CPU loads, and benchmarked performance.

Then the retrieved network-status information is returned to the planning agent.

The latency, CPU loads, and benchmarked performance information are stored in UNIX dbm

�les by the central network-sensing server. The database of latencies is indexed by a combination

of the addresses of two computers, while the databases of current CPU load and performance are

indexed by the address of a single machine.

Pseudo code of network sensing server is described in Fig.5.6.
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#define Freq 30 /* the monitoring frequency */

#define latency_file ``latency.dbm''

#define CPU_file ``CPU.dbm''

#define cluster_file ``cluster.dbm''

#define Machines_List "xxx.xxx.xxx.xxx" /* Multicast group address */

while (1) {

/* wait until the next collecting time */

sleep(Freq);

/* send a trigger to the network sensing slaves running

on all the machines */

sendto(sockfd, trigger_packet, Machine_List);

while (until timeout) {

/* receive packets from the network sensing slaves */

recvfrom(sockfd, mesg);

/* extract the one-way-trip time and CPU load from the packet */

one_way_time=getOneWayTime(mesg);

CPU=getCPU(mesg);

/* store the one-way-trip time in OneWayTime_list */

addList(OneWayTime_list, one_way_time);

/* store the CPU load in a database */

store_db(CPU_file, CPU);

}

for (i=0; i < the_number_of_machines; ++i)

for (j=0; j < the_number_of_machines; ++j) {

/* calculate the latency using latency pointer list */

latency=GetRoundTrip(OneWayTime_list, GetAddress(Machines_list,i), \

GetAddress(Machines_list,j));

/* store the result in the dbm file */

index=MakeIndex(GetAddress(Machines_list,i), GetAddress(Machines_list,j));

store_db(tmpLatency_file, index, latency);

}

}

/* Cluster machines based on latencies */

MakeCluster(tmpLatency_file, Latency_file);

}

Figure 5.6: Pseudo-code of the network sensing server
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The central network sensing server sends a trigger to the slaves using a multicast packet. The

triggers are sent at a frequency de�ned by the administrator and cause the slaves to collect the

status information. When the slaves report back the one-way-trip times and current CPU loads, the

one-way-trip times are stored in a pointer list so that it can be scanned to �nd a matched pair of

one-way-trip times later. The current CPU loads are stored right away in the UNIX dbm database

�le indexed by a machine address. If all expected packets arrive, or a certain time has passed, the

central network sensing server proceeds to �nd pairs of one-way-trip times in the pointer list in

order to calculate the latencies between machines. Those results are stored in the dbm database

�le. Then the cluster module is called to create the clusters based on the newly collected latencies.

Those clusters are used as subnetworks by the planning algorithms developed in the previous section.

Modi�ed latencies based on the cluster information are stored in a latency �le referred to by the

network-sensing agent.

Pseudo-code of the network sensing slave is given in Fig.5.7.

First, the network sensing slave joins itself to the multicast group using the Internet Group

Management Protocol (IGMP) [14], which basically lets a multicast host talk to a multicast router

about multicast group membership. Refer to RFC1112 for detail. By sending a packet to the address

of the multicast group, a machine can send the packet to all the members in the group.

As soon as the network sensing slave receives a trigger for collecting network status information

from the server, it puts a current timestamp in a packet and sends it to the rest of the machines

as a UDP packet using the multicast address. Meanwhile, it starts receiving UDP packets from

the rest of the machines. Those packets contain their departure time from their sources in their

timestamp. By collecting the arriving time of the packets on the local machine, the slave obtains

the one-way-trip time of the packets and appends it at the end of the packet that will be reported

to the network-sensing server. When all the expected packets arrive from the rest of machines or

a certain time (de�ned by a user) is up, the slave proceeds to measure the CPU load of the local

machine and append it to the end of the packet and returns it to the server. Note that if some of

the expected packets does not arrived at the slave within the certain time, the one-way-trip time of

the packets are recorded as in�nity.
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#define MultGroup "xxx.xxx.xxx.xxx" /* Multicast group address */

main() {

/* join the multicast group */

JoinMultGroup(MultGroup, local_address);

while (1) {

/* wait until receiving a trigger from NSsever */

recvfrom(sockfd, packet, &NSserver);

/* get a current time */

gettimeofday(&current_time);

/* send a multicast packet to the rest of machines */

sendto(sockfd, current_time, MultGroup);

while (until timeout) {

/* receive a packet from other machines */

recvfrom(sockfd, send_time, &sender);

/* get the receiving time */

gettimeofday(&recv_time);

/* calculate the one-way-trip time */

one_way_time=recv_time-send_time;

/* append it to the end of the report that will be sent to NSserver */

AppendPacket(report, one_way_time, sender);

}

/* measure the CPU load of the local machine */

GetCPUload(CPU);

/* append it to the end of the report */

AppendPacket(report, CPU, local_machine);

/* send it to NSserver */

sendto(sockfd, report, NSserver);

}

}

Figure 5.7: Pseudo-code of the network sensing slave
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5.5 Clustering Module

The clustering module is activated by the network-sensing server to create clusters based on newly

collected latencies. The created clusters are subnetworks that are used in the planning algorithms as

shown in subsection 4.2.2 and 4.3.1. Thus, a cluster is a group of machines where all latencies between

the machines are approximately constant. Latencies between machines belonging to di�erent clusters

are variable. This subsection shows the formulation of the clustering method that we employed, and

then the implementation of the clustering module.

The clustering problem in our case is de�ned as follows:

Assume that there is a square matrix M indexed by machines, each entry of which is a

latency lij between machine i and machine j. There is another square matrix M 0 with

the same size. Latencies l0ij between machines in the same cluster, say k, are replaced by

the average of all the latencies between machines in the cluster k, i.e.,

l0ij =
X

a;b2Ck; a6=b

lab=NCk

where NCk is the number of latencies between machines in the cluster k.

Latencies l0ij between machines located in two di�erent clusters, say cluster k and h, are

replaced by the average of all the latencies between those machines as follows:

l0ij =
X

a2Ck; b2Ch

lab=NCkh

where NCkh is the number of latencies between machines that belong to di�erent clusters

k and h.

The clustering problem is to minimize the sum of squared di�erences between entries in

those two matrices, i.e.,

S =
X
i;j2N

(lij � l0ij)
2

where N is a set of machines in the network.

Note that the replacement of a latency by the average value of a latency between machines in

the same cluster or across di�erent clusters is derived from the least square error method. The
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replacement minimizes the least square di�erences between entries whose machines belong to a same

subnetwork.

The above clustering problem is di�erent from those that have often been seen in the literature.

Most of the conventional clustering algorithms minimize the least square di�erence between only

entries whose machines belong to a same cluster, while our clustering approach minimizes the least

square di�erence between all entries in two matrices.

Due to the di�erent character of our clustering problem from the typical clustering problem

in the literature, conventional clustering methods [34] cannot be applied to our clustering problem.

Instead of treating our problem as a clustering problem, we treat it as an optimization problem where

the function S should be minimized by employing genetic algorithms[8, 35] or simulated annealing

[33, 32]. In these two optimization methods, the cost function is expressed as the square di�erence

S between two matrices. The state is expressed as the cluster con�guration, and the action is to

move a machine from one cluster to another cluster.

Experiments with these algorithms were done in matlab [46] for randomly created latency ma-

trixes. The results showed that the genetic algorithm converged faster than the simulated annealing

method and obtained solutions of similar quality, which leads us to employ the genetic algorithm in

the clustering module.

The clustering module that has the genetic algorithm at its heart is implemented as a daemon

in the C language. This module is called by the network sensing server with a parameter, i.e.,

the name of the �le that contains the latencies, after the server collects the new network status

information. The clustering method (genetic algorithm) is executed on these latencies in the �le,

and the clustering result is stored in another �le that will be accessed by the network sensing agent

when it receives a query from the planning agent.
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Chapter 6

Experimental Results

Experimental results demonstrate that the planning algorithms developed in Chapter 3 can be

actually implemented as a part of the D'Agents package and are useful in agent planning.

Three series of experiments are described. In these experiments, information retrieval mobile

agents must search for information in the network with the assistance of the planning (module)

agent. In the �rst experiment, a single information retrieval agent consults the planning agent (that

uses a directory service agent and a network sensing agent) for its itinerary so that it can �nd the

information in the minimum expected time. In the second experiment, multiple information retrieval

agents cooperate to locate information in the network with assistance from the planning agent. The

last experiment imposes deadlines on the access time of machines in the network. The planning

agent assists the information retrieval agent in order to maximize the probability of successfully

�nding the desired information without violating deadline constraints.

For a sake of comparison with planning algorithms derived in this thesis, two greedy algorithms

are employed, one of which is based on the probability of success and the other on the estimated

computation time at each machine. Note that the estimated computation time at each machine is

obtained based on its current CPU load, its benchmarked CPU performance, and the estimated size

of a task.
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6.1 Experimental Setup

6.1.1 Overview of the Experiments

In three sets of experiments, information retrieval agents are executed and their execution times

are measured. The task of these agents is to open a certain text �le (the size is 234KB) in a text

database on a machine and parse the �le entirely to satisfy a given query by a user. The success of

�nding the information on a machine is determined by a random generator so that the probability of

success is the same as that given by the directory service agent. Note that the result of parsing the

text while looking for a given query does not a�ect the success of the task, which is in fact decided

by the random generator. If the search at a machine is successful, the information retrieval agent

returns to the home machine where it was launched. Otherwise, it migrates to the next unvisited

machine.

Experiments were run among seven laptop computers distributed in three subnetworks, as shown

in Fig.6.1. Subnetwork 1 has three identical Toshiba laptop computers and one Gateway laptop

computer, which serves as the home subnetwork to run the planning agent, the network sensing

agent, and the directory service agent. Subnetwork 2 contains a same Toshiba laptop computer,

while subnetwork 3 contains 2 identical Toshiba laptop computers. These three subnetworks are

connected by a switch.

6.1.2 Physical Con�guration

The con�guration of these seven laptops are as follows:

� 6 Toshiba Tecra 500CS

{ Processor: Pentium 133MHz

{ RAM size: 16MB

{ Linux partition size: 600MB

{ Swap partition size: 65MB

{ Linux Kernel version: 2.0.30

{ Card Manager version: 2.9.11
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Figure 6.1: Network setup for the experiments
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{ Ethernet Card: 3Com EtherLink 3 (10Base-T)

� 1 Gateway Solo 2300

{ Processor: Pentium � 200MHz

{ RAM size: 32MB

{ Linux partition size: 1.7GB

{ Swap partition size: 133MB

{ Linux Kernel version: 2.0.30

{ Card Manager version: 2.9.11

{ Ethernet Card: 3Com EtherLink 3 (10Base-T)

6.1.3 Software Con�guration

One of the Toshiba laptops in subnetwork 1 serves as the home machine where an information

retrieval information agent is launched and returns after completing its task. Both the planning

agent and the directory service agent run on the home machine. The remaining Toshiba laptops in

subnetwork 1 serve to hold the text database where the agents look for information. The Gateway

laptop in subnetwork 1 is dedicated to the network sensing processes; the network sensing agent,

the central network sensing daemon, and the clustering module are permanently located there. All

the Toshiba laptop computers in subnetwork 2 and 3 serve to hold the text database.

Two network sensing related processes are constantly running on all seven machines. One process

measures one-way latency from the other machines and the other process collects the CPU load of

the local machine every 30 seconds and then reports it back to the central network sensing daemon.

In order to vary CPU loads on the 5 Toshiba laptops, di�erent numbers of computing processes

are run on each of them during the experiments. The number of running processes on each machine

is decided randomly between a given range before each experiment.

The inter-subnetwork and intra-subnetwork latencies are di�erentiated by adding a virtual la-

tency to an actually measured latency between nodes belonging to the di�erent subnetworks.

As mentioned above, machines where agents search for information are 5 identical Toshiba lap-

tops. This setting can eliminate the e�orts requiring for adjusting the di�erence of CPU performance
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among those machines to estimate their computation time based on the measured CPU load.

Con�guration of the planning related software is as follows:

� The home machine: The Toshiba Tecra 500CS laptop

� The Planning agent: On the home machine

� The Directory service agent: On the home machine

� The Network Sensing agent: The Gateway Solo laptop

{ The Central Network Sensing Daemon: On the Gateway laptop

{ The Client Network Sensing Daemon: On the 6 Toshiba laptops

� The network sensing frequency: 30 seconds

� The range of added CPU load on each machine (%): [0 10]

� The latencies matrix between three subnetworks (in ms)

� Single-Agent Case 0
@ 0 526 236

526 0 470
236 470 0

1
A

� Multiple-Agent Case 0
@ 0 0 0

0 0 0
0 0 0

1
A

{ The Cluster Module: On the Gateway laptop

� The number of clusters: 3

� The size of pools in genetic algorithm: 20

� The probability of mutation: 0.01

� Information Retrieval Agent (parses the text �le): on each Toshiba laptop

{ The size of text �le: 234MB

{ The computation time on Toshiba machine(5% CPU load): 21ms
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6.2 Experiments and results

This section overviews three di�erent series of experiments and provides the experimental results

along with their short analysis.

6.2.1 A Single Agent without Deadlines

The scenario of the �rst experiment is that of a single information retrieval agent which looks for

information with the assistance from the planning agent.

The experiments are executed on 50 di�erently-con�gured environments where the probability of

success (for an agent to �nd the information) and the added CPU load on each machine are decided

randomly. The range of the randomly generated probability of success is [0, 1], while the range of

the added CPU load is [0% 10%].

In each test environment, an agent consults three di�erent planning agents for the itinerary

and follows each of the itineraries to �nd the information. The execution times for each itinerary

are measured and compared. The �rst planning agent uses the planning algorithm developed for

the subnetwork planning problem of a single agent in section 4.2, while the second and the third

planning agents use the greedy methods based on the probability of success and on the estimated

computation time at each machine (calculated based on its current CPU load, benchmarked CPU

performance, and the estimated size of a task) respectively.

The results of the �rst experiment are shown in Fig.6.2 through Fig.6.7 and Table 6.1. Fig.6.2

and Fig.6.3 describe the performance comparisons of this thesis's algorithm (the optimal algorithm)

versus the greedy planning method on the probability of success in terms of elapsed time (the

execution time + the time spent for planning) and in terms of the execution time only. Fig.6.4 and

Fig.6.5 are the performance comparisons between the optimal algorithm and the greedy planning

method based on the computation time. Note that experimental runs are sorted in the increasing

order of times of the optimal algorithm. Fig.6.6 and Fig.6.7 are the histograms of the normalized

performance of the greedy methods on the probability of success and on the computation time,

respectively, versus the optimal algorithm.

The summary performance statistics reported in the Table 6.1 are de�ned as follows:

� First place �nishes : a count of runs where a method has the best performance among all
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tested algorithms.

� Average rank order : the average ranking of each method

This is obtained as:

1

n

nX
i=1

RM (i)

where RM (i) is the rank of the method M on the ith run. The range of ranking

that each method may take is from 1 to the number of methods.

� Arithmetic mean : the normalized average value of times of each method

This value is obtained as; �Pn
i=1 T imeM(i)Pn
i=1 T imeOp(i)

�
:

This value won't be valid if the deviation of times is large because a large time

dominates the e�ect on the value.

� Arithmetic mean (normalized) : the average value for normalized times of each method

This value is calculated as:

 
nX
i=1

T imeM(i)

T imeOp(i)

!
=n:

where T imeM(i) stands for the elapsed time (or execution time) for each method

M on its ith run, T imeOp(i) stands for that of the optimal algorithm on its ith

run, and n is the number of runs. Note that this statistic is not considered a good

performance measure [24, 53].

� Geometric mean : the geometric mean of times of each method

It is calculated as:

 
nY
i=1

T imeM(i)

T imeOp(i)

! 1
n

:

� Weighted arithmetic mean : the weighted arithmetic mean of times of each method
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This value is obtained as:

 
nX
i=1

T imeM(i)Pm
j=1 T imeMj

(i)

!
=n

where T imeMj
(i) is the time of the jth method Mj that is used on the ith run of

the experiment and m is the number of methods.

This value represents the average percentage of a time for each method where 100%

is the sum of times of methods that used on a same run of the experiment.

� Average planning time : the average planning overhead time that includes time for accessing

network statistics and planning

The unit of this value is seconds.

� Planning time / Elapsed time : average of the ratio of planning overhead time versus the

elapsed time (execution time + planning overhead time)

This is calculated as:

1

n

nX
i=0

Tp(i)

Tp(i) + Tex(i)

where Tp(i) and Tex(i) are the planning overhead time and the execution time of a

method on the ith experimental run, respectively, and n is the number of runs.

As we can see in the �gure of performance comparisons, the optimal planning algorithm does

not always outperform the other two methods. This is explained by the stochastic nature of the

planning problem. For example, an agent may �nd the information at the �rst machine even if it

has a very small probability of success. The optimal algorithm guarantees the minimum expected

time until the desired information is found, not the minimum time in all cases. Thus, due to the

stochastic character of the planning problem, it is appropriate to compare algorithms based on the

average values shown in Table.6.1.

If you look at the count of best cases of each method and the average ranking based on the

elapsed time in Table 6.1, you can notice that the optimal algorithm does not necessarily perform

best, though it has been proved to be optimal. However, comparing the execution times only,
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Optimal algorithm Greedy algorithm Greedy algorithm
Algorithm (probability) (computation time)

First place �nishes 19 (27) 20 (15) 11 (8)
Average rank order 1.86 (1.60) 1.84 (1.98) 2.30 (2.42)
Arithmetic mean 1 (1) 1.08 (1.11) 1.76 (1.83)
Arithmetic mean (normalized) 1 (1) 1.74 (1.94) 2.59 (2.91)
Geometric mean 1 (1) 1.22 (1.31) 1.66 (1.79)
Weighted arithmetic mean 1 (1) 1.19 (1.26) 1.58 (1.67)
Average Planning time (s) 0.842 0.377 0.36
Planning time/Elapsed time 0.0934 0.0304 0.0257

Table 6.1: Performance Comparison : TAP without deadlines (In the �rst 5 rows, numbers without

parentheses are based on the elapsed time, while numbers in parentheses are based on the execution

time)

the optimal planning algorithm outperforms the other methods. This situation explains that the

itinerary created by the optimal algorithm is better, but it takes longer to create it. The larger ratio

of \Planning time / Elapsed time" supports this argument. Moreover, in Fig.6.2 and Fig.6.4, there

are many cases where the elapsed time of the optimal algorithm and that of the other methods are

close to each other, e.g., 20 out of 50 cases in Fig.6.2 and 16 out of 50 cases in Fig.6.4. In these cases,

the greedy methods slightly outperform the optimal algorithm on elapsed time due to their shorter

planning time. As a result, if the planning problem is large, i.e., the expected elapsed time is large,

the optimal algorithm would outperform the other greedy method because the ratio of planning time

(which tends to be constant) to its elapsed time will decrease.

The histograms in Fig.6.5 and Fig.6.6 explain that both greedy methods perform well enough in

many cases (there are large counts near zero) but in some cases their performance is signi�cantly

worse compared to the optimal algorithm. The bad performance in those cases contributes largely

in the increase of all the kinds of mean values in the table 6.1 .

6.2.2 Multiple Agents without Deadlines

The multiple agent planning problem without deadlines uses several di�erent algorithms for solution

depending on the distribution of probabilities of success and CPU load (or the computation time).

Therefore, experiments for this planning problem consist of sub-experiments where each of the

planning algorithms described in Section 4.3. is tested. Each sub-experiment is executed on 20
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Sub-experiment Algorithm Probability range CPU range (%)

Probability ' 0.9 Theorem 11 [0.85 0.95] [5 15]
Probability ' 0.7 Theorem 11 [0.65 0.75] [5 15]
Probability ' 0 Theorem 8 [0 0.5] [5 15]
Constant exec time Theorem 12 [0 1] [5 5]

Table 6.2: The setting of sub-experiments

Optimal planning Greedy algorithm
Algorithm (probability)

First place �nishes 16 (17) 4 (3)
Average rank order 1.2 (1.15) 1.8 (1.85)
Arithmetic mean 1 (1) 1.48 (1.51)
Arithmetic mean (normalized) 1 (1) 1.74 (1.82)
Geometric mean 1 (1) 1.44(1.46)
Weighted arithmetic mean 1 (1) 1.38 (1.40)
Average planning time (s) 0.56 0.49
Planning time/Elapsed time 0.057 0.041

Table 6.3: Performance Comparison : Prob ' 0.9 (In the �rst 5 rows, numbers without parentheses

are based on the elapsed time, while numbers in parentheses are based on the execution time)

di�erently-con�gured environments where the probability of success and the CPU load are randomly

decided between each respective range as shown in Table 6.2.

Note that the above ranges of probabilities and CPU load are chosen based on the experimental

experience.

There are two agents in these experiments. The agents communicate with each other so that as

soon as one of them successfully completes the other can terminate.

The two greedy algorithms employed in the previous experiment are used again in this experiment

for performance comparison. The greedy algorithms sort sites to be visited according to either the

probability of success or the computation time and then assign the next unvisited site to the next

available agent.

The results of the experiment are shown in Fig.6.8 through Fig.6.12 and in Table 6.3 through

Table 6.6. Each �gure compares the performance between the optimal algorithm and the greedy

methods. The x-axis indexes the experimental run and the y-axis the execution time of each run.

The format of those tables (Table 6.3 through Table 6.6) are same as that of Table 6.1.

The optimal algorithm is same as the greedy probability method in the �rst two sub-experiments
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Optimal planning Greedy algorithm
Algorithm (probability)

First place �nishes 17 (18) 3 (2)
Average rank order 1.15 (1.1) 1.85 (1.9)
Arithmetic mean 1 (1) 1.10 (1.16)
Arithmetic mean (normalized) 1 (1) 2.10 (2.16)
Geometric mean 1 (1) 1.57 (1.59)
Weighted arithmetic mean 1 (1) 1.53 (1.54)
Average planning time (s) 0.35 0.40
Planning time/Elapsed time 0.043 0.036

Table 6.4: Performance Comparison : Prob ' 0.7 (In the �rst 5 rows, numbers without parentheses

are based on the elapsed time, while numbers in parentheses are based on the execution time)
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Figure 6.9: Performance comparison (Greedy on Prob): Prob ' 0.7

Optimal planning Greedy algorithm Greedy algorithm
Algorithm (probability) (computation time)

First place �nishes 12 (11) 4 (5) 4 (4)
Average rank order 1.50 (1.50) 2.05 (2) 2.45 (2.5)
Arithmetic mean 1 (1) 1.05 (1.06) 1.11 (1.12)
Arithmetic mean (normalized) 1 (1) 1.04 (1.04) 1.13 (1.14)
Geometric mean 1 (1) 0.994 (0.999) 1.073 (1.079))
Weighted arithmetic mean 1 (1) 1.002 (1.006) 1.085 (1.091)
Average planning time (s) 0.75 0.46 0.48
Planning time/Elapsed time 0.015 0.010 0.094

Table 6.5: Performance Comparison : Prob ' 0 (In the �rst 5 rows, numbers without parentheses

are based on the elapsed time, while numbers in parentheses are based on the execution time)
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Figure 6.10: Performance comparison (Greedy on Prob): Prob ' 0

Optimal planning Greedy algorithm
Algorithm (computation time)

First place �nishes 15 (14) 5 (6)
Average rank order 1.25 (1.3) 1.75 (1.7)
Arithmetic mean 1 (1) 1.27 (1.29)
Arithmetic mean (normalized) 1 (1) 0.35 (0.41)
Geometric mean 1 (1) 1.22 (1.24)
Weighted arithmetic mean 1 (1) 1.20 (1.21)
Average planning time (s) 0.38 0.40
Planning time/Elapsed time 0.12 0.11

Table 6.6: Performance Comparison : Constant computation time (In the �rst 5 rows, numbers

without parentheses are based on the elapsed time, while numbers in parentheses are based on the

execution time)
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Figure 6.11: Performance comparison (Greedy on Comp): Prob ' 0
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Figure 6.12: Performance comparison (Greedy on Comp): Constant computation time
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and is same as the greedy computation time method in the last sub-experiments. As we can see in

Table 6.3, 6.4 and 6.6, the optimal algorithms outperform the other greedy method on the all the

performance measures in these sub-experiments.

The optimal algorithm used in the third sub-experiment produces an itinerary di�erent from the

itinerary produced by the two greedy methods. The algorithm shows the best overall performance

according to Table 6.5, especially by looking at the count of the �rst place �nishes. However, the

advantage of the optimal algorithm versus the greedy probability algorithm is small as measured

by the mean values. In fact, it is worse than the greedy algorithm using the geometric mean. This

can be explained by the approximation of the probabilities. The optimal algorithm should be the

best in the case where the all the probabilities are zero. The algorithm assumes that mobile agents

visit all the machines in failure. However, in this sub-experiment, because of the approximation,

probabilities can take values between 0 and 0.05. Mobile agents may be able to terminate a tour

early, though the chance is very small. In this situation, the sooner the agent �nds information,

the shorter the total time will be. Thus, the greedy probability method that may let agents avoid

visiting all sites at the earlier stage can outperform the other methods in some runs.

The optimal planning algorithm requires more time for calculation than the other methods, as

seen in Table 6.5. This is due to its larger complexity. The algorithm is of a pseudo-polynomial

time form, while the two greedy methods are simple polynomial time algorithms. Recall that the

complexity of the optimal planning algorithm is polynomial in the sum of the computation times at

each site, while the complexity of the greedy methods is proportional to the number of sites.

Unfortunately, the solution for the multiple agent planning problem without deadline is not

complete. The optimal solution to the case where the probability of success is constant but smaller

than 0.5, or, in general, the probabilities are variables, is not known yet, though a heuristic algorithm

for this case has been already built (but was not described in this thesis.) The development of the

optimal algorithm for this case will be explored in the future.

6.2.3 A Single Agent with Deadlines

The third experiment looks at the planning problem that maximizes the probability of success

without violating the deadline constraints. The planning methods used for the experiment are the

optimal algorithms described in Section 4.3 as well as the greedy algorithms employed in the previous

128



Our algorithm              

Greedy method (probability)

Greedy method (comp time)) 

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

 r
at

e

Success rate of each planning method

Deadline (s)

Figure 6.13: Success rate of planning methods (200 runs)

experiment for performance comparisons.

Though di�erent deadlines can be set for each machine in the network, this experiment sets the

deadline only on the home machine for simplicity. This is a realistic problem. The experiment counts

the number of successful cases. Note that the time is measured only after the itinerary is obtained

from the planning agent.

A single agent is executed in 200 di�erent randomly-con�gured environments. The range of the

randomly generated probability of success is [0, 1], and the range of the CPU load is [5 15](%). The

number of successful completion are counted for each of the three di�erent planning algorithms in 50

di�erent environments. The deadline at the home machine is also decided randomly between [2500

50000](ms).

The results of this third experiment are shown in Fig.6.13 and in Table 6.7. Fig.6.13 shows the

ratio of successful runs for each range of deadlines. Table 6.7 contains counts of successful runs for

each planning method.

According to Table 6.7, the optimal planning algorithm has the highest successful count, thus it
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Optimal planning Greedy algorithm Greedy algorithm
Algorithm (probability) (computation time)

Success count 33 31 28

Table 6.7: Performance comparison : TAP with deadlines

performs the best. The larger a deadline becomes, the better the success rate is for all algorithms.

This result is reasonable because larger deadlines make the planning problem easier and allows even

weaker algorithms to schedule an agent successfully. This reasoning can explain why the advantage

of our algorithm versus other methods is prominent in the small deadline case that is more di�cult

to solve.
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Chapter 7

Further Work

This thesis has developed analytic theories and e�cient algorithms for various mobile mobile agent

planning problems. An implementation of a planning system for D'Agents using these algorithms

has been completed and tested. However, there are several important avenues for the future work.

� Extension of the theories and algorithms

The developed theories and algorithms do not cover certain cases of the traveling agent prob-

lems (TAPs). As mentioned at the end of Section 4.3, in the traveling multiple agents prob-

lem(TMAP), the optimal algorithm for the case where the probabilities are variable is not

developed yet. Only a heuristic solution has been considered.

Another possible extension of the theory development is on TAP with Deadlines. The optimal

solution maximizes the probability of success, but it does not guarantee the minimum expected

total time without violating the deadline constraints. The theory that satis�es the latter

criteria would be useful.

Moreover, TMAP and TMAP with Deadlines employed the strong assumption that latencies

are all the same. However, this assumption will not always hold in real applications. Various

latency conditions in TMAP and TMAP with Deadline should be studied in the future.

� More general planning problems

The planning problem we dealt with in this thesis is a very speci�c case where the agent has

only a single task to complete. In many applications, a mobile agent can have multiple tasks,

whose order of completion is important. A complete planning system should handle such cases.

However, this problem would be very hard to solve because even the single task problem is
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NP -complete in general. The compromise of using a heuristic or approximation method may

be necessary.

� Advanced directory service

A primitive directory service has been implemented as a part of the planning system in this

thesis. Full functionality will be achieved when information management services are added to

the current implementation. Additional services include indexing keeping track of the location

of information, updating the table if the location changes, and calculating the reference ranking

of the location (probabilities of success used in Chapter 4). The mechanism for calculating a

reference ranking also needs to be better understood. One proposed idea is to calculate the

ratio of the amount of information at the site over the total amount of related information in

the network.

� Network sensing frequency

The network sensing frequency a�ects the performance of the network sensing module. A

smaller interval makes the collected network statistics to be more accurate, but it increases

network tra�c. The current network sensing module uses a �xed interval de�ned by the user.

However, it will be better if the interval is adaptively changed by the network sensing module

itself based on historical network conditions and some other factors.

� Number of multiple agents

In the current planning system, the number of multiple agents to be used is de�ned by the

user. It is preferable that the planning system decides the optimal number of agents so that the

total expected time can be minimized. The total expected time must include the start-up time

of a new Tcl interpreter for creating another agent during execution. Thus, a large number of

agents does not necessarily lead to a smaller expected time.

An easy method for obtaining a good number of agents is to keep calculating the total expected

time for several multiple agent cases and choosing the number that minimizes the total expected

time. However, the overhead for such calculation should be smaller than the execution time

saved by increasing the number of mobile agents.
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Chapter 8

Conclusion

This thesis has successfully shown (1) some planning problems for a mobile agent can be solved

e�ciently if realistic assumptions are made and (2) it is possible to incorporate e�cient planning

into an actual mobile agent system.

A sequence of planning problems that arises in common mobile agent's applications such as

information retrieval and data-mining has been proposed in this thesis. In these application a

mobile agent keeps migrating to di�erent machines to execute its task until the task is successfully

completed. We have proposed a model where a mobile agent spends time in traveling between

machines (the travel time) and in executing its task at a machine (the computation time). Each site is

associated with a \probability of success", i.e., the probability that the mobile agent can successfully

complete its task at this site. If it fails, it migrates to some other machine to continue its task. The

mobile agent planning problem is to �nd the best sequence of machines for a mobile agent to visit

so that it can successfully complete its task in minimum expected time. The problem are called

Traveling Agent Problems due to the analogy with Traveling Salesman Problems. Unfortunately,

the general formulation of the Traveling Agent Problems is NP -complete.

This thesis successfully has developed analytical theories and polynomial algorithms for the

Traveling Agent Problems under the following assumptions: (1) the travel time (latency) between

all the machines in the network is constant; or (2) the travel time between machines in a same

subnetwork is constant, but it is various between machines located in di�erent subnetworks.

Under the �rst assumption, the solution to the planning problem is to sort the machines in the
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decreasing order of:

probability of success

computation time
:

This result leads us to the solution to the more complex problem under the second assumption.

The solution is obtained using sorting and dynamic programming. The complexity of the problem

becomes

mY
i=1

(1 + nm)

where m is the number of subnetwork and nm is the number of machines in subnetwork m.

Di�erent versions of the Traveling Agent Problem also have been considered: (1) multiple agent

problems (multiple agents cooperate to complete the same task) and (2) deadline problems (a single

or multiple agents need to complete a task without violating a deadline constraint at each location

in the network).

The solution to the �rst problem (the multiple agent planning problem) has been proved to be

a simple polynomial-time sorting problem, if the travel time is constant and the probabilities of

success are constant and larger than 0.5, or if all the computation time are the same. If the travel

time is constant and the probabilities are all 0, the problem becomes 2 partition problem that can

be solved in pseudo-polynomial time. In the rest of the cases, the problem needs a heuristic solution.

A concept of deadlines has been introduced in the second problem. A deadline is the time at

which a machine becomes unreachable. Thus, a mobile agent needs to �nish its task at a machine

before its deadline. The planning problem is to decide the sequence of machines that maximizes the

probability of success. The optimal solution has been proved to be obtained in pseudo-polynomial

time using dynamic programming in a single agent case with subnetworks and in a multiple agent

case where the traveling time is constant.

The developed planning algorithms have been implemented as the core of the planning system

for a mobile agent package D'Agents[26, 27]. The subcomponents of the planning system such

as a directory service, a network sensing module, a clustering module have been implemented.

The directory service provides the location information where a mobile agent can execute its task

along with the probability of success. The network sensing module periodically collects the network

statistics (latencies and CPU loads) and reports them to a mobile agent when requested. The
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clustering module forms virtual subnetworks (where the latencies are considered constant) based on

the collected network statistics.

The experiments of the planning system on the all the developed optimal planning algorithms

has showed that in average the planning algorithms outperform available heuristic algorithms (i.e.,

the greedy methods based on the probability of success and on the computation time) despite their

slightly larger calculation overhead.

Thus, this thesis has shown a sequence of planning problems for mobile agents have e�cient

solutions under realistic assumptions and e�cient planning can be incorporated into a mobile agent

system such as D'Agents.
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