
Scheduling Multi-Task Multi-Agent Systems

Rong Xie, Daniela Rus, Cliff Stein
Dartmouth College
Hanover, NH 03755

{rong,rus,cliff}@cs.dartmouth.edu

ABSTRACT
We present a centralized and a distributed algorithms for
scheduling multi-task agents in heterogeneous networks. Our
centralized algorithm has an upper bound on the overall
completion time and is used as a module in the distributed
algorithm. Extensive simulations show promising results.

1. INTRODUCTION
A mobile agent system is a single, unified framework in

which a complicated distributed application (such as a com-
plex query) can be easily implemented by writing a multi-
task agent (also called the root agent), where there are pos-
sible precedence constraints and data transfers among the
constituent tasks. At the choice of the programmers, each
task can be carried out either by the root agent or by a child
agent generated by the root agent.
A key component of any practical agent system is agent

scheduling, i.e. controlling how the agents access resources.
Such resources may include CPU time, memory, and disks,
and can be provided by possibly more than one machine
in the network. For scheduling a multi-task agent with the
objective of minimizing its overall completion time, there
is a tradeoff between the amount of utilized parallelism in
the application and the amount of data transfer overhead
incurred.
Compared with traditional computing environments, mo-

bile agent systems are characterized by large data trans-
fer delays, diversified network links and a wide spectrum of
machine speeds. Therefore many assumptions used in tradi-
tional scheduling algorithms become unrealistic. Scheduling
algorithms for a mobile agent system must work in a hetero-
geneous environment where (1) the number of machines is
limited; (2) task graph structures are general; (3) data trans-
fer delays are general; and (4) task duplication are generally
not allowed. This problem is NP-Complete.
In this paper, we present a centralized and a distributed

algorithm for scheduling multi-task agents in heterogeneous
networks with the objective of minimizing the overall ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01 May 28-June 1, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

plication completion time. The centralized algorithm has a
provable performance upper bound and is used as a mod-
ule in the distributed scheduler. Extensive simulations show
promising results for the algorithms. The implementation of
the algorithms in mobile agent systems is also discussed.

2. PROBLEM MODEL
We represent a distributed application as a DAG (Directed

Acyclic Graph) G = (T,E), where the set of nodes T =
{Ti}n

i=1 corresponds to the set of tasks to be executed , and
the set of weighted, directed edges E represents both the
precedence constraints and the data transfers among tasks
in T. An edge (Ti, Tj) ∈ E implies that Tj can not start
execution until Ti finishes and sends its result to Tj . In this
case, we use d(Ti, Tj) to denote the amount of data Ti sends
to Tj . Let Pred(Ti) denote the set of all the immediate
predecessors of task Ti. Let M = {Mk}m

k=1 be the set of
machines in a fully connected network. Let r(Ml, Mk) be
the data transfer rate between machine Ml and Mk, which
is∞ if l = k. The processing time of task Ti on machine Mk

is denoted by p(Ti, Mk), which is∞ if Ti cannot be executed
on Mk.
The objective of the scheduling problem is to find an as-

signment map M : T → M and a set of starting times
st(Ti), i = 1, · · · , n, where each task Ti is scheduled to be
processed on machine M(Ti) starting at time st(Ti), such
that the precedence constraints are satisfied and the sched-
ule length Cmax is minimized. Here Cmax is defined by

Cmax � max
1≤i≤n

ft(Ti) = max
1≤i≤n

(st(Ti) + p(Ti, M(Ti))),

where ft(Ti) is the finish time of Ti.

3. CENTRALIZED SCHEDULING

3.1 Basic scheduling
Inspired by [1], we propose a centralized algorithm (Algo-

rithm 1), in which an agent consisting of n tasks is scheduled
in n steps, one task at a time.
At each step l, task Ti is called ready if it is not scheduled

yet and all of its predecessors have been scheduled. The data
available time DA(Ti, Mk) of a ready task Ti on machineMk

is the earliest time Ti can start execution on Mk:

DA(Ti, Mk) � max
Tj∈Pred(Ti)

[
ft(Tj) +

d(Tj , Ti)

r(M(Tj), Mk)

]
.

Themachine available time MA(Mk) for eachMk is the time
that the all the tasks assigned toMk so far finish processing.

159

Algorithm 1 (Basic Algorithm)
Initialize the set of ready tasks R as the set of entry tasks
in T . At each scheduling step l, do:

• Find ready task Ti∗ and machine Mk∗ minimizing

max{DA(Ti, Mk), MA(Mk)}+ c ∗ p(Ti, Mk)

max1≤j≤m{p(Ti, Mj)}
(1)

among all pairs of ready tasks Ti ∈ R and machines
Mk ∈ M ; Schedule task Ti∗ on machine Mk∗ .

• l := l + 1. Update R. Terminate if R = ∅.
3.2 Forward Backward (FB) scheduling
Algorithm 1 may perform poorly if the DAG contains bad

in-trees (i.e. there are tasks expecting large data from at
least two of their predecessors). To overcome this problem,
we also work with the inverse of the DAG obtained by re-
versing the direction of all its edges. Then the inverse DAG
has the same minimal schedule length as the original DAG.

Algorithm 2 (FB algorithm)
1. Run the basic algorithm (Algorithm 1) on the original
DAG G = (T,E), get schedule S;

2. Run Algorithm 1 on the inverse DAG Ĝ = (T, Ê),
reverse the generated schedule to get a schedule S′.

3. If Cmax(S) < Cmax(S
′) output S, otherwise output S′.

3.3 PFB scheduling
In case the DAG contains both bad in-trees and bad out-

trees (i.e. there are tasks sending large data to at least two
of their successors), we propose the partial forward backward
(PFB) algorithm.

Algorithm 3 (PFB algorithm)
Run Algorithm 1 on the original problem G = (T,E) to get
schedule S; Let S′ = S. For each task Tj ∈ T , do:

• Reverse the part of schedule S′ consisting of those
tasks starting after time maxTi∈Pred(Tj)(ft(Ti)) in S′

to get a partial schedule S1, which is a schedule for
those tasks in the inverse DAG; Starting from S1, run
Algorithm 1 on the inverse DAG for the remaining
tasks to generate a complete schedule S2 for the in-
verse DAG; Reverse S2 to get a schedule S′′.

• If Cmax(S
′′) < Cmax(S

′), let S′ = S′′.

Output S′.

3.4 Performance analysis
Figure 1 shows the simulation results of FB and PFB al-

gorithms versus the DLS algorithm presented in [1].

Theorem 1 For scheduling problems with identical machines
and heterogeneous communication links, the schedule length
Cmax generated by Algorithm 1, 2, or 3 satisfies

Cmax ≤ (2− 1

m
) ∗ C̄∗

max +D,

where D =
∑K−1

i=1

[
1
m

∑m
j=1 DA(Bi, Mj) − ft(Bi+1)

]
, and

L = BK → · · · → B2 → B1 is a special chain in G, and
C̄∗

max is the optimal schedule length ignoring data transfers.

1.25 1.5 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Beta: range of machine speeds

Av
er

ag
e

Sp
ee

du
p

FB Speedup (DLS length / FB length)
PFB Speedup (DLS length / PFB length)

0.1 0.2 0.5 1 2 4 6 8 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Average Communication−to−Computation Ratio (ACCR)

Av
er

ag
e

Sp
ee

du
p

FB Speedup (DLS length / FB length)
PFB Speedup (DLS length / PFB length)

Figure 1: Average speedup in Cmax (over 100 simula-

tion runs) with respect to machine heterogeneity and Average

Communication-to-Computation Ratio (ACCR) respectively.

0 2 4 6 8 10 12 14
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

ACCR (Average Communication−to−Computation Ratio)

Av
er

ag
e

Sp
ee

du
p

Average Mulit−Task Agent Arrival Interval :10
Average Multi−Task Agent Arrival Interval : 20
Average Multi−Task Agent Arrival Interval : 50
Average Multi−Task Agent Arrival Interval : 100

Figure 2: Speedup in the sum of application turnaround time.

4. DISTRIBUTED SCHEDULING
In a mobile agent system, multi-task agents arrive over

time. We propose a distributed scheduling framework by as-
signing to each such agent its own scheduler (resource man-
ager), which uses Algorithm 4 for scheduling. Here a task is
called ready if all its predecessors have started executions.

Algorithm 4 (Distributed Algorithm)
Run Algorithm 3 on the multi-task agent to get its PFB
schedule S0; Initialize R as the set of entry tasks in T.

While not all tasks of the agent have been scheduled, do:

• Update R; While R �= ∅, do:
1. Find the pair of ready task Ti∗ and machine Mk∗

that minimizes expression (1) among all pairs of
ready tasks Ti ∈ R and machines Mk ∈ M ;

2. If the Average Communication-to-Computation
Ratio of the DAG is larger than λ, do: for each
already scheduled task A that (1) has common
successors with Ti∗ ; (2) is assigned on the same
machine as Ti∗ in S0; (3) the minimum of the data
transfer delays from A and Ti∗ to their common
successor is α times larger than the maximum of
the standard execution times of A and Ti∗ , set
Mk∗ as the machine that A is assigned to.

3. Schedule task Ti∗ on machine Mk∗ .

Figure 2 shows the simulation results to compare the per-
formances of Algorithm 4 using PFB hints (i.e. step 2 with
λ = 4 and α = 2) versus not using PFB hints.

Acknowledgment: This work bas been supported in part

by Department of Defense contract MURI F49620-97-1-0382 and

DARPA contract F30602-98-2-0107, ONR grant N00014-95-1-1204,

NSF CAREER award IRI-9624286, Honda corporation, and the

Sloan foundation; we are grateful for this support.

5. REFERENCES
[1] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic

for interconnection- constrained heterogeneous processor
architectures. IEEE Trans. on Paral. and Dist. Systems,
4:175–186, 1993.

160

