
Mission-flow Constructor
A Workflow Management System Using Mobile

Agents

A thesis

submitted to the Faculty
in partial fulfillment of the requirements for the

degree of

Master of Science
in

Computer Engineering
By

V. Shankaran Sundaram

Thayer School of Engineering
Dartmouth College

Hanover, New Hampshire
May 2000

Examining Committee:

Prof. George Cybenko: _____________________

Prof. Robert S Gray: _____________________

Prof. Clayton Okino: _____________________ _____________________

Dean of Graduate Studies

© 2000 Trustees of Dartmouth College

Thayer School of Engineering

Dartmouth College

Mission-flow Constructor

A Workflow Management System Using Mobile Agents

V. Shankaran Sundaram

Master of Science

Abstract

Developing code for the execution of a distributed, dynamic workflow requires significant effort and

hence it becomes necessary to build tools that enable the creation and execution of such workflows.

Compelling arguments have been made for the implementation of workflow management systems using

mobile agents [CGN96, MLL97]. Mobile agents are autonomous pieces of code that can migrate under

their own control from one machine to another within a heterogeneous network. Mission -flow

Constructor (MfC) is a workflow manageme nt system built on the D’Agents mobile agent system

[GCKR96]. Like its predecessor Mobile Agent Construction Environment (MACE) [Sha97], MfC uses

the concept of visual languages and further abstracts the process of building a workflow. Agents

generated by MfC are small and migrate only once. These agents hence make more optimal use of

network resources than those generated by MACE. MfC generated agents also use improved

communication means and incorporate some basic fault tolerance mechanisms. A set of primitive

constructs that encapsulate commonly used topologies has been defined to make easier the process of

workflow definition. A workflow specified using the GUI and associated annotation process is compiled

to a set of D’Agents agents by making use of the visual depiction and the code fragments that define the

individual modules. MfC then launches these agents to execute the various tasks associated with the

workflow specified by the user.

Acknowledgements

First and foremost, I would like to thank my adv isor, Prof. George Cybenko, for his infinite

patience and understanding, his kindness and generosity, his contagious enthusiasm, and his gentle way

of teaching me life’s harder lessons. I would also like to thank Prof. Robert S. Gray for his invaluable

help in teaching me about the D’Agents system and for spending so much his valuable time proofreading

this thesis. I am forever indebted to my friends (and incidentally, my colleagues) in The Laboratory for

Total Global Domination for whom my thanks cannot be said in any order but alphabetical. To Daniel

Bilar, for his prodigious talent for coming up with quotable phrases, for his unique, and more often than

not, hilarious perspectives, for teaching me the importance of being honest with myself, for the many,

many times he stood outside Thayer with me so that we could take a break, and for always being a

gentleman. To Brian Brewington, for being a prince among men and having a heart as big as a house, for

his counsel and support in trying times, for his zany humor that could not be repressed, for being one of

the reasons I have occasionally made a positive score in BZFlag, and for being the person I could always

turn to for help. To Daniel Burroughs, for his gentle and unassuming nature, for always being able to

make conversation, for his company over countless lunches, for his cheerful presence, for his

innumerable witticisms, for being my partner in crime each time the word “battle” was heard in Room

219, and his wonderful insight. To Bob Gray, for his amazing tolerance for all the noise and random

flying objects in Room 219 (much of which was my doing), for the enormous patience he showed when

answering my innumerable, and often trivial, questions, for the quiet hilarity he added to the ongoing

madness, for occasionally joining us when presented with the query, “Battle, Bob?”, for jumping into the

pool fully clothed, for being a huge source of support and inspiration, and for making a judgement call

that took away a decision I could not make. To Guofei Jiang, fo r his interest in all that I did, for

unwittingly being the source of hilarity and being good-natured about it, and for walking around The

Green 20 times with me so we could determine GPS errors. To Katsuhiro Moizumi, for his hilarious, and

occasionally intentional mangling of the English language, for the many cans of “whopis” he has opened

in the lab, for his disarming frankness, for his simple approaches to answering my difficult questions, and

for his honest opinions. Many thanks to the people who joined the madness later, Michael Corr, Anush

Kumar, and Jeanne Sucharitaves, for their encouragement, support, kindness, and friendship. Thanks

must also go to Professors Ted Cooley, George Cybenko, Charles Sullivan, and Linda Wilson for

teaching with a passion that made sure I learned something in every class I took. I am truly indebted to

Luther Birdzell, Chrissy DeLorenzo, Todd Kerner, Satish Prabhakaran, and Kate Sherman, who all sat

through ENGS 120 with me and made sure I finished my homework, studied for the tests, and learned a

lot more than I could have on my own. Poring over intimidating equations in the Great Hall at strange

hours in the night was made so much easier by their presence. A special thank you to Gustavo Mehas, for

being the best roommate a person could have, for being my first friend at Dartmouth (and one of the best

I’ve ever had), and for being one of the most interesting people I know. A heartfelt thank you to Gayathri

Radhakrishnan, for being one of the most sweet and kind people I know and for being so caring; to Ravi

Swaminathan, for providing me with the sanity checks I have always required, for sticking around for the

past eight years and being willing to duke it out for a lot longer; to Vandana Vaidyanathan, for using that

most fateful and for the record, inane signature, for being the irrepressible free spirit that she is, and for

being forgiving of my many stupidities. Thanks also to Anita “Nitu” Chandrasekharan, Guruprasad

“Guru” Giridharan, Sudarshan “Vicky” Chari, and Mahesh “unprintable” Shankar for hanging out with

me for so many wonderful years. Many thanks to Niranjan “Bora” Bose, “Berther” Anush Kumar, Satish

“Maams” Prabhakaran, Sriram “Koo” Srinivasan and Karthik “Koos” Vishwanath for the many happy

hours of conversation, the infinite spicy hot meals, and perpetually open doors. Finally, I would like to

thank my family. I cannot even hope of repaying my immeasurable debt to them. Appa, Amma, Mony,

Gopi and people too numerous to mention have all provided me with an unquestioning support that I

could not have done without. I haven’t seen far, but what I have seen is only because I’ve stood on the

shoulders of these giants.

There are, of course, the many, many people who should be in this section, but are not and to

them I offer my most humble apologies. The only excuse I can offer is that I was constrained by the fact

that I wanted to keep this section under two pages.

Contents

Acknowledgements

Abstract

List of Tables

List of Illustrations

1 Introduction
1.1 Problem Statement

1.2 Motivation

1.3 Problem Description

1.4 Overview

2 Background

2.1 Workflows

2.2 Workflow Management Systems

2.3 Mobile Agents and the D’Agents system

2.4 Mobile Agent Construction Environment

3 Design Considerations

3.1 Requirements

3.2 Mobile Agents in Workflows

3.3 Primitive constructs

3.4 Visual Languages

3.5 Migration Mechanisms

3.6 Communication Mechanisms

4 Implementation

4.1 Visual Construction Environment

4.2 Compilation and Execution

5 Conclusion

6 Future Work

7 References

List of Illustrations

1. Sample Workflow

2. Scheduler based WfMS

3. Data flow based WfMS

4. Workflow Ref erence Model

5. D’Agents Architecture

6. MACE Screen Sample

7. Similar parallel tasks – the “scatter” primitive

8. Decision points in the sample workflow

9. agent_submit

10. agent_jump

11. agent_fork

12. Drawing a workflow in MfC

13. Arranging tasks on the canvas

14. Deleting a task box

15. Annotation window in MfC

16. Generic Process Annotation Window

17. Scatter Annotation Window

18. Gather Annotation Window

19. Sentinel Annotation Window

20. Decision Point Annotation Window

21. User-centric task tracing

22. Agent Tracker

Chapter 1

Introduction

1.1 Problem Statement:

The aim of Mission-flow Constructor (MfC) is to provide a workflow management system that

facilitates the creation and instantiation of a dynamic, distributed workflow through a simple visual

language that minimizes the amount of code written by a programmer.

1.2 Motivation

Business practice has come to signify many things in the recent past. In most cases, the term is

defined as a set of procedures to follow in completing a transaction or making a strategic decision

[WF94]. Business practice, with the above definition, finds a place not just in business environments, but

in any form of large organization, particularly the military. Many strategic military missions can be

modeled as a set of interrelated tasks, akin to procedures followed in the business world. With business

process re-engineering becoming an important issue in the context of streamlining business practice it

becomes necessary to evaluate and create tools that automate these processes, with special consideration

being given to processes that are ad hoc and subject to run-time change. Mission-flow Constructor gets its

name from the fact that this thesis was developed with the idea that it and subsequent incarnations would

find use in military applications and hence, in this thesis, a distributed, dynamic workflow will simply be

referred to as a “mission”.

Most workflow management systems that are commercially available today are geared towards

transaction processes in the business world [Zim98]. These workflows are traditionally static and well

defined. In the real world, however, a mission rarely has a rigidly defined means of completion. In most

cases, a mission is subject to run-time changes and disruptions. Human interaction, for example, could

lead to exceptional conditions that lie outsid e those generated by usual computational processes.

Transactional models do not adequately address these issues and it becomes necessary to develop a new

model that provides the required functionality to execute a mission [Kou95]. A workflow management

system based on such a model should be able to provide a completely general framework that can be

adapted to very specific needs.

In this work, a mission is viewed as a completely generalized form of workflow that requires the

workflow management system to adapt flexibly and dynamically to different schemata. This system

models the mission as an interaction of distributed objects that contribute to the achievement of an end

goal.

1.3 Problem description

Significant effort is required to develop code that ex ecutes a workflow across a distributed

system, while conserving the hierarchical and temporal constraints implicit in it. This is compounded

when one takes into consideration the fact that an organization will require many workflows with

different schemata, guarantees functions. Principal issues of consideration are conservation of hierarchy,

concurrency and synchronization [Sha97]. Other issues include efficient use of network resources, fault

tolerance and ease of use. The execution of a mission therefore, has all of the above difficulties as well as

the additional problem of being dynamic.

For example, consider a simplified version of the process of reviewing an application for

admission to a graduate program at a university. First, there should exist a filtering procedure to

determine whether the candidate has passed the minimum requirements, for example, a minimum

undergraduate GPA and GRE score. If these minimum requirements are met, the application, along with

supporting recommendations and transcripts, should be reviewed by various faculty members who

independently evaluate the candidate. These independent opinions need to be collated and reviewed by

the admissions coordinator who makes the final decision. (See Figure 1)

Figure 1 - Sample Workflow

This example brings to light some important considerations. The first of which is that this

process can be mapped to two distinct workflows, whose topology is the same up to a certain point. First

there is the case of the candidate not meeting the requirements and admission is then refused. Then there

is the case where minimum requirements are met and other steps are to be undertaken. These cases can be

collated into one workflow where a decision variable that chooses the next task is included. This new

workflow is one whose topology or schema will change during execution. Notably, the first step

determines whether or not the application is handed to the faculty members for review. The next step

involves many people (the faculty re viewers) working on identical concurrent tasks. Once these

concurrent tasks are complete, there is a need for synchronization (making sure that all reviews have been

handed in) before the next task is initiated.

The above considerations - decisions, similar parallel tasks, synchronization points, etc - are

among the most commonly found sub-graphs within a workflow topology. Coding these sub-graphs

individually, even in the context of high-level languages is a repetitive task, and quite possibly a waste of

time for a large organization that has a need to simultaneously deploy many such workflows. MfC

eliminates a large portion of such repetitive coding by providing primitive constructs that encapsulate

these topologies.

The backbone of any distributed systems is its effective use of network resources and ability to

resist failure in the event that communication channels break down. Most distributed workflow

applications assume that communication channels will always be open and that network failure does not

occur. MfC incorporates some basic fault tolerance to network failure. Other sources of failure could be

human error, absence, or unavailability.

Mission-flow Constructor (MfC) attempts to make transparent the distributed nature of these

workflows by hiding the migration of and communication channels between the various tasks executing

at different physical locations. However, the location of these tasks (and hence participants) is not hidden.

MfC also takes away a significant amount of the coding required to generate agents that execute these

workflows by providing a visual construction environment wherein concurrency, synchronization and

hierarchical constraints are derived from the topology that the user provides by drawing the workflow on

the canvas. Given that most workflow topologies consist of a limited number of primitive topologies,

MfC makes simpler the task of drawing the workflow on the canvas by providing certain primitive

constructs that encapsulate these commonly used topologies.

1.4 Overview

The remainder of this thesis is structured as follows. Chapter 2 provides background information

on the topics that were of import to or resources for the development of MfC. Definitions of workflow

terminology and some basic workflow theory are provided. Mobile agents and their suitability for this

application are discussed and Mobile Agent Construction Environment (MACE), one of the earlier

workflow management systems using mobile agents is dealt with in some detail. Chapter 3 lists the

theoretical considerations of import to the building of a workflow management system while Chapter 4

details the implementation of Mission-flow Constructor (MfC), which is the body of work that this thesis

supports. Chapter 5 collates the work into a few concluding remarks. Finally, Chapter 6 provides a few

ideas and suggestions that could be put to use in creating future versions of this work.

Chapter 2

Background

2.1 Workflows

Workflows have gained acceptance as an excellent tool for process automation [Kob97]. The

Workflow Management Coalition (WfMC) is a non-profit organization founded in 1993 whose mission is

to “expand the use of workflow by raising awareness, reducing risks and increasing investment value for

workflows.” [WfMC95] The WfMC has published a reference model and has provided a set of standards

for the definition, interoperability and execution of a workflow. The WfMC has also published a glossary

of the standard set of workflow related terms. The WfMC model, like most commercial workflow

products, centers around the theme of business process reengineering and transaction models of workflow

enactment.

A workflow is defined by the Workflow Management Coalition as “the computerized

facilitation or automation of a business process, in whole or part” [WfMC95]. A more usable definition,

and one that will be used for the purposes of this thesis is, “a sequencing of tasks that must be performed

in order to accomplish a specific goal” [Zim98]. Furthermore, a task will be defined as an activity to be

performed by a single participant in the workflow [Zim98]. A participant in the workflow may also be

referred to as a workflow component. Workflow management is defined to be “the structured routing and

tracking of information throughout an organizational process. ” [Ko b97] A workflow management

system (WfMS) is a tool that automates the execution of a workflow. The complete description of a

workflow (one that encapsulates all the information required to execute it) is defined as the workflow

schema or simply schema. A workflow schema is rarely linear, i.e., it is not always a simple sequence of

a single task succeeded by another single task. There may exist whole sequences of tasks that are

executed concurrently [Zim98].

Workflow topology is best understood through graph theory, where a graph consists of nodes

connected by arcs. Traversal of a graph is effected by following the arcs from node to node. A traversal of

an arc between two adjacent nodes is known as a hop. A graph where the arcs show explicit direction for

traversal is a directional graph. Loops may occur within a graph where a particular path of traversal leads

one back to the point from which traversal was initiated. Such a graph is known as a cyclic graph and the

degree of the cycle is the number of hops taken to regain the initial position. For the purposes of this

thesis, we will be concerned mainly with directional a-cyclic graphs. It should be noted at this point that

this limits the kind of workflows that MfC can handle. However, it is anticipated that future versions of

MfC will be able to manage workflows of more generic topology.

A workflow can be represented as a set of nodes connected by arcs. Each node represents a task

and each arc provides scheduling information pertaining to the nodes that are connected by it. Each of

these arcs must be directional in order to provide information regarding the temporal hierarchy. A graph

is a visual map, and hence an excellent means of representing a workflow. Information about a workflow

that can be obtained fro m its visual representation as a graph consists primarily of the temporal

relationship between the tasks. It is important to realize that the functionality of the individual tasks is

irrelevant as far as the topology of the workflow is concerned. While in some cases, the former may

influence the latter, in general, the topology of the workflow can be completely described without any

knowledge of the functionality of either the individual tasks or the workflow as a whole. Functional

information about the workflow is rarely found in the visual representation and though it may exist, it is

not always readily apparent. Functional information about a task is available from the task description,

i.e. the code or instructions that specify what action is to be taken by that particular workflow component.

Obviously, a graph will not contain all the information that a workflow is comprised of, just the visual

topology. This topology, combined with the functional information of each task, provides the schema.

Functional information would include the specification of workflow participants, the task to be

performed, the format of the result, etc. This leads to an interesting conclusion, that a workflow needs to

be specified at different levels, i.e., in more than one dimension.

2.2 Workflow Management Systems

A workflow management system (WfMS) is expected to fulfil two functions – process

definition, which describes the workflow to be executed, and process execution, which is the enactment

of the workflow. [CHRW98, Zim98, MLL97] provide a more detailed study of workflow enactment

correctness and efficiency. Of particular interest in this work are the workflow enactment paradigms that

are detailed therein, each of which are paraphrased briefly below.

Scheduler based: The workflow management system processes a schema and sends tasks or groups of

tasks to various participants for execution. Many believe that these systems are ideally suited for well-

defined, static workflows. Later in this text, it is explained why this model is well suited for a WfMS that

deals with missions as collaborations between distributed objects. For the same reasons, MfC has been

designed to come under this category of workflow management systems.

Figure 2 - Scheduler Based WfMS

Data-flow oriented: The workflow management system directs the workflow from participant to

participant where the appropriate tasks are executed. In this case, partial specification of the workflow is

acceptable, as the routing may be determined during the course of execution. MfC’s predecessor MACE

used an instantiation model that is similar to this enactment paradigm. MACE however, required

complete workflow specification and did not provide dynamic routing capabilities.

Figure 3 - Data-flow based WfMS

Information pull: In this case, the workflow specification itself is determined only after the workflow is

instantiated and is usually created as a response to the need for information. This specification has been

touted as being ideally suited for implementation with autonomous agents [CHRW98].

Workflow management systems have been standardized by a set of well-defined and meaningful

terms and guidelines set forth by the Workflow Management Coalition (WfMC). The WfMC has also

published a workflow reference model. (See Fig. 1)

Figure 4 - Workflow Reference Model – from the Workflow Reference Model, Document Number
TC00-1003, Issue 1.1, published by the Workflow Management Coalition. Used with permission.

Each of the interfaces shown in the reference model is called a Workflow Application Interface

(WAPI). The WAPIs enable administration, monitoring, analysis, communication, integration with other

applications, and semantically explain task functionality [CHRW98]. The various WAPIs are defined by

the WfMC to provide true interoperability between all applications involved, if adhered to.

As pointed out in [Zim98], these standards are more geared toward business applications than

generalized applications that are built as a group of interacting objects. Similarly, most commercially

available workflow management systems and workflow solution software systems are geared primarily

towards business and transactional models. Some workflow management systems available today are

Mobile Agent Construction Environment (MACE), DartFlow from Dartmouth College, IBM’s Flowmark,

and Wang’s OPEN/Workflow. DartFlow is a transaction based WfMS designed to be used over the

Internet. DartFlow uses Java applets embedded in the user’s web browser to generate a GUI and

transportable agents to effect distributed workflow enactment [CGN96]. Flowmark provides a process

definition facility for the specification and maintenance of process models. Also included is an

interoperability standard (albeit different from the WfMC specification) to allow interfacing with other

applications. The interoperability standard provides the user with the expected structure of information

that passes from outside applications to Flowmark as well as that of information passed between member

tasks [IBM]. Both DartFlow and Flowmark are limited in functionality because of the fact that they are

transaction models of workflow execution. MACE, on the other hand, was a development environment

for workflows, which also provided facilities for execution of the same [Sha97].

2.3 Mobile agents and the D’Agents system

A mobile agent is defined as a program that autonomously migrates from machine to machine in

a heterogeneous network [Gra95]. By this, we mean that at any point, that the agent can suspend its

execution, migrate to a different machine in the network with both its state and code, and resume

execution from the point at which is suspended. Mobile agents offer a large number of advantages in the

implementation of distributed applications, a few of which are detailed here. Since mobile agents are

transportable, they allow local access to resources that are distributed through the network. Also, they are

immune to network failure except when communication and migration across the network are to be

undertaken. Mobile agents are most useful when one considers that development of distributed

applications is eased by the fact that the communication channels between agents can be made transparent

while the distributed nature, i.e. the location of the agents is not hidden. It is important that the distributed

nature of an application is not hidden, as it is an inherent characteristic of the application that the user is

aware of. Communication channels, however, are not an aspect that demands the users attention. Rather,

the user is aware of the need for communication among the different distributed participants. Another

important strength of mobile agents is their ability to react dynamically to a changing env ironment

[Gra96]. Mobile agents find use in many applications such as e-commerce, adaptive active template

management, workflow management, and network monitoring.

With regard to workflow management systems, mobile agents provide an efficient, robust and

flexible means of implementation [CGN96, MLL97]. Agents can be delegated to perform the various

tasks involved in the execution of the workflow. Since each agent can be made an independent program

that carries the task specification with it, intermediate communication during execution is rendered

unnecessary and concurrency of tasks can be exploited within the dictates of data dependencies.

Mobile agent technology has been under intensive research and quite a few mobile agent

systems have been developed over the past few years. One such mobile agent system is D’Agents

developed by Robert S. Gray at Dartmouth College [Gra97]. D’Agents is a flexible, secure mobile agent

system that allows a developer to write mobile agents in high-level languages such as Tcl/Tk and Java.

The D’Agents system that used Tcl/Tk was previously known as Agent-Tcl. D’Agents was selected as the

agent system to be used for this project due to a number of reasons. Most important of all, MfC’s

predecessor, Mobile Agent Construction Environment (MACE), was built around the D’Agents system.

Tcl/Tk is a high level scripting language, which makes it both portable and easy to learn. D’Agents being

an in-house development of Dartmouth College, documentation and personal help were more easily

available than with other agent systems.

D’Agents meets four main goals [Gra97]:

• Reduce migration to one command that may occur at arbitrary points. Capture of state

information should be implicit.

• Provide transparent communication among agents

• Support multiple languages and transport mechanisms.

• Provide effective security in the uncertain world of the Internet.

 D’Agents provides an agent server that keeps track of all agents running on its machine, accepts

incoming agents, provides authentication, and routes agents to their appropriate interpreter. (See Fig. 2)

The agent server also provides communication mechanisms for agents while also allowing direct

connections between agents [Gra96]. D’Agents provides these services and mechanisms by adding a set

of commands to the scripting language Tcl/Tk [Ous94, Wel95]. These commands include those required

for an agent to migrate, communicate with other agents and register itself with local agent servers.

Migration is achieved by capturing state, encrypting the state image and sending the state image with a

digital signature to the agent server at the destination.

Figure 5 - D'Agents Architecture. This picture appears in [Gra97] and is used with permission

Agents generated by D’Agents are all uniquely identified (globally) by a four -field identifier.

This identifier contains the symbolic name of the controlling server, the IP address of the controlling

server, the symbolic name of the agent, and the numeric ID of the agent. The agent is assigned a numeric

ID by the controlling server. The agent server ensures that no two agents have the same numeric ID or

symbolic name. It is obvious that the agent identifier has information that has some redundancy. The

utility of this redundancy will be seen later.

2.4 Mobile Agent Construction Environment (MACE)

Mobile Agent Construction Environment (MACE) was developed by Rohit Sharma as part of his

Master’s thesis at Dartmouth College [Sha97]. MACE simplified the process of building mobile agents

that were used to execute workflow by providing the user with a visual language to depict the workflow.

The use of mobile agents was made transparent to the user without hiding the fact that the application was

in fact, distributed.

As a workflow management system, MACE falls into the data-flow paradigm of workflow

enactment. This is because MACE generates a single agent whose routing is determined by the

dependencies of the individual tasks and the locations of the various workflow participants. The data-flow

paradigm was described in [CHRW98] as the most suited to dynamic, goal oriented workflows. However,

it is our contention that the implementation has some inherent limitations, which will be discussed

shortly.

The implementation of MACE consists pr imarily of three components - the visual agent

construction and monitoring environment, the compilation and execution engine and the critical path

analysis module. For the purposes of this work, only the first two are of importance. MACE provides a

graphical user interface (GUI) where the user can draw the workflow as a set of boxes (representing the

various tasks) interconnected by arrows. (See Fig. 3) Each task is to be annotated by means of a set of

descriptors that encapsulate the functionality of that task. The compilation engine then conducts a depth-

first traversal of the graph representation to obtain the temporal hierarchy of the various tasks. The

descriptors and code fragments that define the functionality are combined with the information obtained

from the visual representation of the workflow to obtain the workflow schema. This schema is compiled

to a D’Agents agent. Once execution is initiated, the agent follows the route established by the graph

drawn by the user.

Figure 6 - MACE Screen Sample. Used with permission.

All MACE generated agents use only migration mechanism, namely agent_fork. MACE

generates a root task that spawns off the initial agents and serves as the monitoring agent for the

workflow. Each task is implicitly assumed to execute on a different machine, so each task is mapped to

an agent_fork command in the code generated by MACE [Sha97]. (See Section 3.5) Each of the tasks

generated by the root agent spawn their succeeding tasks. Again, this is done by invoking the agent_fork

command. Some important considerations arise from this method of effecting process migration:

• All the initial agents must carry the code required to execute their succeeding tasks. This is

necessary as the agent_fork command creates an exact copy of the agent that invokes the

command. This could lead to scalability problems when extremely large and complex

workflows are to be enacted.

• All agents carry the complete workflow schema. This is an example of strong migration,

where the entire workflow is available at every node of execution. While strong migration is

desirable in many cases, in this case, agents executing later in the timeline of the workflow

are carrying what might be a large volume of completely code that will not be executed.

Again, this could lead to scalability issues.

• An agent that has forked the new task to its required destination must terminate itself.

Otherwise, there will exist two agents that are executing the exact same task, one of which

(the parent agent) should not exist.

The last point listed above was adequately addressed in MACE, but the first two considerations were

deemed to be inescapable prices that were to be paid in return for being able to use only one migration

mechanism. With scalability being an issue of consideration in later versions, it became necessary to re-

evaluate the migration mechanisms that were earlier deemed acceptable.

Some elementary monitoring capability is also provided by MACE. During run-time, the user

can monitor the progress of the workflow by means of updates that are provided by the monitoring

system embedded in MACE. Messages are sent to the root agent upon completion of each task. The GUI

is then updated by darkening the boxes representing the tasks that have completed.

One of the important drawbacks of MACE is the fact that it does not respond adequately to a

task that fails. Once an agent has failed (for whatever reason), if any other agents are awaiting results

from the previous agent, neither the monitoring service nor the agent that died inform the remaining

agents. This results in “hanging agents.” A hanging agent is one that is caught in an event loop or

otherwise awaiting the occurrence of an event that neither can nor will occur. A hanging agent is usually

terminated by the agent server on the local machine. An agent server usually imposes a predefined limit

on how long an agent may execute on the local machine. Once exceeded, the agent server forces the

termination of the agent in question. MACE by itself does not prevent the occurrence of these hanging

agents and in the event that agents are left hanging, MACE does not force their termination. A hanging

agent represents an unacceptable state of execution/termination for the workflow.

To conclude, MACE was an easy to use tool that put mobile agents to work in enacting a

distributed workflow. MACE provided a very high level of abstraction in the process of creating mobile

agents to the extent that MACE was able to hide the fact that agents were being used. A visual language

was proved an excellent means of reducing the time and effort required to describe a distributed

workflow [Sha97]. As in the case of most prototypes, MACE suffered from a variety of deficiencies,

some serious. MfC attempts to amend some of these drawbacks, while also breaking ground in areas not

covered by MACE.

Chapter 3

Design Considerations

In this chapter, we briefly describe some the questions that arise when we consider the

implementation of a distributed, dynamic, workflow management system. Foremost we must consider the

requirements of such a system. These are enumerated and discussed below.

3.1 Requirements

Many texts have been written on the subject of requirements of a WfMS and the services it

should provide. This discussion is aimed primarily at distributed, dynamic workflows, and hence this

section collates those requirements deemed relevant. A broader approach to these topics can be found in

[CHRW98, Kob97, Kou95, MLL97, MN, Zim98].

3.1.1 Distributed participants: The system should support workflow components and participants that

are separated geographically. This means computers and other (electronic) resources distributed

throughout a network as well as people in different regions. Thus, the system must account for the

uncertainties that accompany such distribution. These uncertainties include network failure/downtime,

unavailability of people, and computer failure.

3.1.2 Dynamic schemata: The system must allow changes to the schema of the workflow being executed

without causing the workflow to go into an unacceptable state of execution or termination. Dynamic

changes to the schema could mean the inclusion of new participants, exclusion of some participants,

modifications to the participating objects, or replacement of participants. This is far different from

traditional workflows, which are characterized by their static schemata. Implementation of dynamic

systems requires a significantly different approach. Dynamic sequencing or a change in topology is

another aspect of changes to the schema. The WfMS should allow changes to the sequencing of the tasks

even after the workflow has been instantiated.

3.1.3 Complex Schemata: It is necessary that the WfMS be able to handle workflows whose schemata

are neither linear nor simple in their topologies. Even through the use of a GUI, specification of complex

workflow schemata is not easy. The WfMS must provide means of simplifying the specification of a

complex workflow. Supporting the execution of such complex schemata is equally critical. Execution of

complex workflows carries with it certain difficulties such as task concurrency, data consistency, and

efficiency and effectiveness of monitoring.

3.1.4 Scalability: With workflow technology being applied in almost all spheres of process automation, a

WfMS will find application within a small workgroup as well as a large enterprise. A WfMS should be

able to handle large workflows regardless of the complexity of the topology.

3.1.5 Concurrency of workflows: It is desirable for a WfMS to suppo rt the concurrent execution of

multiple workflows of a given schema, i.e., multiple instances of the same workflow should be supported.

While this could be accomplished by setting up an instance of the WfMS for each of the jobs being

processed, such an approach would lead to problems when different instances of the WfMS (all of the

same authority) requested the services of the same workflow component. It is necessary to develop

intelligent criteria that help a WfMS schedule the usage of the various workflow components by the

different instances of the workflow being executed.

3.1.6 Monitoring: A WfMS should be able to provide the user with status information on all the tasks

associated with the complete workflow. Monitoring should include the means to log an execution history

or audit trail. This generates an information base that would be useful for security purposes [CHRW98].

The tracking mechanism should be able efficiently monitor the execution state of every task, as well as

input and output data generated by a large workflow.

3.1.7 Reliability: A WfMS must guarantee the correct execution of a workflow in each instantiation. In

most cases, this would simply mean the guaranteed execution of all tasks and the achievement of the final

objective. However, in the case of a mission, (a distributed, dynamic workflow) neither of these can be

guaranteed due the nature of the environment in which it executes. A more applicable set of guarantees

for the reliability of a WfMS would include contingency plans in the event of task failure, communication

breakdown, or human absence. Alternatively, a WfMS should be able to guarantee that execution of a

workflow ends in one of many acceptable states of termination. Acceptable states of termination should

be predefined and should include the status of goal satisfaction. A WfMS should also be able reject a

workflow that cannot meet the guarantees or is simply infeasible [CHRW98].

3.1.8 Failure atomicity and recoverability: Failure atomicity is one of the most desirable properties of a

WfMS. An excellent example for failure atomicity is a bartering workflow. There are two tasks involved

here: giving the other party your item and receiving the item that you want. It is necessary that both of

these tasks be completed for the trade to be successful. In this workflow, it is imperative in that either all

or none of the tasks complete successfully. It would hardly be considered a trade if one was simply to

give away possessions. In other words, “a workflow should execute entirely, or not at all .” [CHRW98]

Since failure of workflow components is an inevitability, we can only achieve failure atomicity by

guaranteeing the ability to “undo” the tasks that have already completed. This brings us to the topic of

recoverability. Recoverability falls into two categories: rollback, or backward recoverability, and

resuming execution from a state image, or forward recoverability. Rollback assumes the ability to undo

any and all actions taken by each task. Rollback is not always possible in the computing world and even

less so in the administrative world. For this reason, backward recoverability is rarely implemented in a

WfMS. In the context of implementation using mobile agents, forward recoverability is the more viable

option and is made easier when there is strong migration of tasks [CHRW98].

3.1.9 Interoperability: Workflow interoperability is of two types: specification interoperability and

execution interoperability. Specification interoperability guarantees that workflows specified in other

systems can be processed. Execution interoperability guarantees the co-operation between different

systems. Both require a set of standards governing the interface between a workflow schema and a

WfMS. While the WfMC has provided some interface specifications, for a variety of reasons, almost

none of the commercially available WfMS packages adhere to this standard [WfMC00]. Interoperability

is one of the most difficult guarantees to implement.

3.1.10 Flexibility: A WfMS should not limit the user by the type of functionality available, specification

method used, or execution environment. [CHRW98] treats the WfMS as nothing but an execution

environment, in which case it is possible to make both specification method and language open to the

choice of the user without compromising the functional capabilities of the WfMS. Since most workflow

management systems offer a development or workflow specification standard in addition to execution

capabilities, a large portion of the potential flexibility of these systems remain unrealized.

3.1.11 Security: Security requirements encompass a wide area with respect to a WfMS. There is first the

question of authority. Within an organization, it is necessary to ensure that creating an instance of a

workflow is done only by a user of such authority to do so. Modification of a workflow during execution

should also require verification of authority. The question of authentication also arises. A workflow

component should be able to verify the identity of the components that send it data/messages. Also, data

in transit should be protected by means of encryption.

3.2 Mobile Agents in Workflows

Traditional approaches to implementing workflows using mobile agents involve the creation of

an agent that carries with it the complete workflow schema [MLL, Sha97, Zim98]. This agent migrates

(in sequence) to the necessary machines to execute the various tasks. Once all tasks have been completed,

the agent migrates to the “home” machine and provides the user with the results. A WfMS that uses the

single agent approach hence makes use of the data flow enactment paradigm described in Section 2.2.

This approach uses the most obvious capability of a mobile agent – migration. The understanding that a

mobile agent may act as a personal “agent” (in the human sense of the word) for a person or an

application also contributes to that fact that this approach is the one most widely used. This

implementation has distinct advantages such as strong migration, ability to schedule dynamically,

reduction of human interaction, etc. However, we contend that the single-agent approach is not ideally

suited to the implementation of distributed dynamic workflows, and that the advantages of the single-

agent approach can be achieved through other means. If a single agent is to execute the entire workflow,

concurrency of tasks cannot be exploited – tasks must be scheduled in a linear sequence. MACE uses a

modified version of the single agent approach and solves this problem by allowing the workflow agent to

create sub-agents that execute concurrent tasks.

One of the major issues that arises with the use of the single agent approach is scalability. The

agent that executes the workflow must carry with it the entire workflow schema. With a large and

complex workflow, this agent is bound to be of prodigious code size. This defeats one of the primary

advantages of using mobile agents – reduction in network traffic. Each time the workflow agent migrates,

it carries the information required to execute subsequent tasks as well as that required for preceding tasks.

Once a task has completed, its code becomes unnecessary. With the completion of each task, the

percentage of useless and unnecessary code that the agent carries increases. Consider the case of a linear

workflow consisting of ten tasks of equal code size. By the time the workflow agent executes the

migration to the location where the final task must execute, 90% of the code the agent carries has been

rendered useless. In linear workflows, this percentage increases linearly (as the ratio of tasks completed to

the total number of tasks) with migration, provided all tasks are of equal code size. With workflows of

complex topologies, the percentage of useless code carried by the agent increases much faster as it

completes the schedule. Rigorous mathematical models of these situations are beyond the scope of this

work.

An implicit and often unstated characteristic of workflows is the functional independence of

tasks. While functionality can depend on the result of other tasks, there is no dependence on the

functionality of other tasks (there exist only data dependencies). Traditional execution models that use the

single-agent approach ignore this fact by encapsulating the functionality of the entire workflow within

one agent. While this does not create functional dependencies, it does not allow distribution of the

independent objects.

We propose to abandon the single-agent approach and use many agents, each with limited

functionality, to execute the workflow. This leads to the question of how many agents are necessary. One

solution is to use as many agents as there are tasks. We assume here (both MACE and MfC are built

using this model) that tasks are coded by the user and that the WfMS provides a wrapper that enables

execution, communication, and migration. In the case that many tasks are to execute at the same location,

each requires an individual wrapper. We contend that the code used for wrappers can be reduced by

collating the functionality of tasks based on their location, i.e., using as many agents as there are

locations. It should be understood that within this argument, “location” and “workflow component” are

synonymous. With this synonymy in mind, one begins to see the importance of the association of a task

(functionality) with its workflow component (user or location). We contend that this is in fact the most

important association for a WfMS that uses mobile agents. This association not only enables reduction of

the size of agents, but also provides an excellent resource for monitoring the efficiency of execution of a

workflow. Knowledge of the location of a task (and hence the agent executing it) also provides the

backbone for communication and enables transparent communication with the various agents.

 Another important question that arises when using mobile agents is that of deciding when an

agent should migrate. As stated before, traditional implementations make utmost use of the ability of an

agent to migrate. Many texts discuss the utility of migrating process when implementing a mission.

Frequent migration, however, makes a mission more susceptible to failure due to network uncertainties.

Also previously discussed was the waste of bandwidth that accompanies frequent migration. The

functional independence of tasks leads one to the conclusion that passing results between tasks is the only

communication that is necessary for successful completion of the workflow. This statement would be true

in the context of static workflows and completely reliable network situations. When we come to the

concept of a mission, information regarding the dynamic changes of the workflow schema is also

required. It should be noted that results from previous tasks are still the only information required by a

task for its (not the entire missi on’s) successful completion. Hence, we believe that message passing

(short messages) can be more efficient in terms of network resources than process migration. Process

migration, however, is necessary to enable distributed, platform independent workflow e xecution.

Migration mechanisms available in D’Agents are discussed in Section 3.5.

Thus, we are led to the conclusion that the best means of implementing a mission using mobile

agents is to use the scheduler-based model discussed in Section 2.2. Here, a w orkflow schema is

submitted to the execution engine, which then sends tasks to the appropriate workflow components. In the

model we have implemented, processes migrate only once and that too only to provide an instance of a

workflow component that is required at a location. These components are activated by the various events

(usually task completion) that occur during the execution of the mission. Once the workflow component

completes its task, the component terminates itself. This model is very similar to the many distributed

objects models that have been discussed and implemented (as prototypes) [CHRW98, Kou95, Zim98]. A

comparison of the two models yields a few differences in the semantics involved, but the concepts driving

them are virtually identical.

3.3 Primitive Constructs in Workflow Specification

 Previously discussed was the fact that almost all workflow topologies consist of a limited

number of sub-graphs. In this section, we discuss the sub-graphs that are most commonly found in

workflow topology and describe possible implementation considerations. Considering that a workflow

topology is rarely linear, we immediately note that there can exist multiple concurrent tasks. This would

imply that there might exist in a topology a “split point”, where a single task provides the input for or

initiates more than one subsequent task. Conversely, there could also exist a “join point”, where a number

of concurrent jobs must together provide input or initialization data for a single task. These sub-graphs

can be generalized as n-destination split points and n-source join points. These generalizations serve only

the purpose of encapsulating a commonly used topology, not functionality.

At this juncture, it is important to note that primitive constructs for workflow specification can

be of two types – topological primitives and functional primitives. The advantage of using topological

primitives in describing workflows is that the time taken to draw a workflow is reduced. However, tasks

must still be individually annotated with functional information. With functional primitives, commonly

used functionality is encapsulated and may be reused as and when necessary within a given topology.

Here, functional specification of a workflow is made easier but not the topolog ical representation.

Independently used, these two types of primitives cannot alleviate much of the workload associated with

complex workflow specification. Here, one can draw the conclusion that, more than using primitives that

are either strictly topological or functional, some form of hybrid primitives that take the form of one

while enforcing some constraints on the other would be useful.

In many workflows, the topology of a workflow imposes some constraints on the functionality

of tasks. Notably, some topological sub-graphs can indicate similar, repetitive, or decision-making

functionality of the tasks contained in them. For example, most often, the concurrent tasks that succeed a

split point are of the same functionality. In the case of the admissions review example we presented in

Section 1.3, the application for admission is handed simultaneously to three faculty members who

independently review it. (See Figure 8) Many such examples can be thought of, wherein independent

opinions are to be obtained or more generally, the same data is to be processed in the same way by

different participants (usually resulting in different results).

Figure 7 - Similar concurrent tasks - the " scatter" primitive

Considering that such sub-schemata within a workflow are quite common, we propose a

primitive construct to be called “scatter” that encapsulates the following characteristics.

• The scatter construct renders the preceding task an n-destination split point.

• All concurrent tasks that are successors of the split point are of the same functionality.

While the join point seems to be the exact converse of the scatter primitive, there exist many

significant differences. The scatter primitive gets its name from the fact that it literally scatters processes.

The join point is more a synchronization point than a process node. (It should be noted that the join point

is a synchronization point only in the finish-to-start execution model that has been implemented.) Under

that consideration, it is dif ficult to imagine tasks “joining”. Rather, the information that these tasks

generate, i.e., their result data can be collated or joined. Here we propose a “gather” primitive that serves

as a synchronization and data collation point in the workflow. It should be noted here, as will be seen in

Chapter 4, that the gather primitive does not provide functionality that does not already exist in MACE or

MfC. Rather, the gather primitive is provided for the sake of completeness and more importantly, to

showcase an important primitive commonly found in workflow schemata. The join point in our

admissions review example would be the point at which the various faculty reviewers handed in their

opinions. It should be noted here that the functionality of the task that represents the join point is not of

any consequence to what the primitive provides. The gather primitive should not be considered a direct

converse of the scatter primitive for the simple reason that the scatter primitive scatters processes, while

the gather primitive gathers data. While it is possible to scatter or disseminate information to many tasks,

doing so does not ease the process of workflow specification. In a workflow, scattering information

would simply be the sending of result data to succeeding tasks. This is quite easily implemented and is, in

fact, the way low-level workflow specification is done. Gathering tasks is clearly not possible.

 Another form of a primitive construct that is commonly found in workflow schemata is the

decision point. The decision point is a task node that has multiple succeeding tasks, a subset of which are

to be instantiated. The decision of which tasks are to be initiated is made using previously defined criteria

that are evaluated at run-time. Looking back again at our example, we see two decision points. The first is

the point at which the candidate’s eligibility for admission is reviewed. The second is when the

admissions coordinator makes a decision as to whether or not the candidate should be admitted. (See

Figure 8) There exist differences between the two decision points, which will be used to arrive at how the

primitive construct is to be defined. The first decision point has functionality that can be automated while

the second requires human intervention. Also, the first decision point has four succeeding tasks, but only

two decision states while the second has an equal number of decision states and succeeding tasks (a one

to one mapping). These differences lead to two important conclusions, first of which is that a decision

point must have open functionality. In the specific case of MfC, we do not impose any restrictions on the

code (written by the user) that represents the functionality of the decision point. The second conclusion is

that there need not be a number agreement between the number of succeeding task to a decision point and

the number of decision states that it can take. For instance, a task may have larger number of tasks than

decision states as seen in our admission review example. The converse is also true, i.e., many different

decision states can be mapped to a smaller number of tasks. In addition, multiple decision states can be

mapped to the same task and vice versa. This can lead to a large number of parameters that need to be

specified in order to adequately describe a decision point.

Figure 8 - Decision points in the sample workflow

For the purposes of this thesis, the decision point primitive will be defined as an n-destination split point

with conditional execution of the successors. Considering the number of parameters that need to be

specified in order to define the decision point, we have implemented a simplified decision point that

imposes the following restrictions. The user must ensure that the decision variable is set to the appropriate

state. This is done by programming either for human interaction or for a computational result. The user

must also specify the mapping of decision states to task instantiation.

 The final primitive that we propose has been termed the sentinel node. In many, many cases, we

find the need for tasks that must execute repeatedly until the workflow has completed execution. An

example of such a case is a weather monitor. For as long as say, a weather forecast workflow is

executing, there may be a need to monitor current weather conditions. In that case, the weather

monitoring task node would have to constantly execute until the weather forecast workflow has

completed. There are many such examples of monitoring or information-push tasks. These tasks by

themselves are single-degree cyclic graphs. Implementation of cyclic graph structures is outside the

scope of this work. However, as a starting point, we have considered and implemented a sentinel with the

following characteristics. The sentinel executes in response to a request. Each time a sentinel is given an

information request, it executes the code that defines its functionality and returns the result data. The

sentinel remains in a “wait mode” between informat ion requests and until the workflow completes

execution. One important consideration for a sentinel is to ensure that requests are handled in sequence

and not concurrently in order to avoid data hazards. A better and more involved implementation would

require that the sentinel execute repeatedly and without interruption, posting results in real time. These

results can be time stamped and made available to workflow participants that request them.

Of course a specifying workflow using only these primitives would require far more effort than using a

low-level, first-pass specification method. So the generic task node has also been made available. The

generic task node can have any number of preceding tasks, any number of succeeding tasks and is of open

functionality. To recapitulate, below is a list of the primitive constructs that have been proposed and

implemented in MfC.

• Scatter: Allows the user to define any number of similar concurrent tasks as one object. All

tasks are of the same functionality and take the same input(s).

• Gather: Collates data from previous tasks.

• Decision point: A task node that imposes conditional execution of succeeding tasks.

• Sentinel: Executes each time an information request is received.

3.4 Visual languages

In order to facilitate the communication of complex mission schemata between the user and the

WfMS, there needs to be a specification standard that is easy to understand. The first specification

mechanism that comes to mind is a one-dimensional method, which involves a complete, almost textual,

description of the schema. This would involve detailed listings of task functionality, locations,

participants, etc. While one-dimensional or single pass methods of workflow specification do exist, they

are far from optimal [Zim98]. A singl e-pass workflow specification is tedious, inefficient and is

impractical for large workflows. With distribution and dynamism as added factors, even small workflows

become unwieldy in terms of their specification. Since most one-dimensional specifications are text

based, quickly parsing and understanding such descriptions is difficult.

Graphical user interfaces (GUIs) make such communication easy, understandable and more

productive. While a GUI provides an easy communication medium between the user and the WfMS, it

does not necessarily provide the user with easy method of specifying the workflow. Better specification

methods would involve a more high level specification that allows the use of complex constructs modeled

as primitive constructs. “Goto” -style control flow should be avoided in such high -level specification

methods [Zim98]. It must be noted that specification of a workflow involves not only the topology of the

workflow, but also the specification of the individual tasks in terms of their inputs, outputs and

functionality. It becomes imperative to use a method that allows specification of a workflow at more than

one level. Such methods are best implemented as visual languages.

A visual language is a means of constructing a complex image from a set of simpler images

where the result has a meaning distinct from the parts that comprise it [GBCK94]. More simply, a visual

language is a programming system that uses a pictorial notation and extracts semantic information from

it. Most visual languages require more than a one-dimensional approach to specification. In those cases,

the pictorial notation is the first dimension of specification after which some textual annotation will be

required. One of the most compelling arguments for the use of visual lang uages in any form of

application programming is the fact that humans process pictures faster and easier than text [Naj94]. In

the case of workflow specification, visual aids are of paramount importance when one considers that the

most common representation of workflows is visual.

Most visual languages can be classified as either control-flow or data -flow based systems.

Control-flow systems are a pictorial depiction of control flow (usually in the form of flowcharts) and do

not entirely eliminate “ goto” -style statements. Data-flow based visual languages rely more on a

workflow-style of programming wherein image constructs represent procedures or objects and their inter-

connection denotes data flow. It seems obvious that a data-flow based visual language would be ideal to

specify a workflow. MACE provides an excellent example of a visual language for workflow

specification. It should be noted that MACE provides the user with both a visual programming

environment as well as a program visualization system [Sha97]. In view of this, many aspects of the

MACE GUI have been ported to MfC.

3.5 Migration Mechanisms

D’Agents provides three mechanisms for agent migration. All three use a single command to

effect migration and can be invoked at arbitrary points in execution. A detailed explanation is available in

[Gra95], however, a brief outline of these mechanisms is given below.

• agent_submit: This migration mechanism takes as one of its arguments a Tcl/Tk script. This

script is submitted to the agent server at the destination as a new agent. The script is

executed when the new agent registers itself with the agent server at the destination. This

command can be thought of as the command used to spawn or create a new agent (a child of

the agent that submitted it). (See Figure 9)

Figure 9 - agent_submit

• agent_jump: When invoked, this command captures the internal state of the agent, and

transmits the state image to the destination server. This server then recreates the state of the

agent and allows the agent to resume execution. (See Figure 10)

Figure 10 - agent_jump

• agent_fork: This command is analogous to the Unix fork command. It submits an exact

copy of the agent that invoked the agent_fork command to the destination specified. Both

parent and child agents then resume execution from the point at which the fork was

initiated. (See Figure 11)

Figure 11 - agent_fork

The agent_fork command was the sole migration mechanism used in MACE [Sha97]. Section

2.4 enumerated the various drawbacks associated with the use of the agent_fork command. The

agent_jump command suffers from similar setbacks. If the various agents we submit are to jump from

location to location, different implementations can be used. The first, of course, is the single -agent

paradigm, which we have decided to abandon for reasons discussed previously. For the sake of

completeness, this implementation in D’Agents will also be considered. If a single agent is to be used,

then concurrent tasks cannot be executed concurrently. To enable concurrent processes, “child” agents

must be created and other migration mechanisms such as submit or fork must be used. Another possible

implementation is to use a migrate-once mechanism, create all agents at a controlling location (where the

WfMS is running), and have the various agents jump to the desired locations. This implementation

requires that the agents be created at the location of the WfMS. This could be done either by generating

D’Agents scripts (containing appropriate agent_jump commands) that are executed by the WfMS or by

submitting agents to the location of the WfMS and having the agents jump from there to the necessary

locations. The first of these methods requires the generation of a stand-alone D’Agents script that must be

written to disk, made executable, and called by the WfMS. The second implementation uses the

agent_submit command. The agent_submit command, however, is ideally suited for this application.

When multiple agents are to be used, each agent may be directly submitted to the location at which it

must execute. This provides us with the single migration mechanism that is efficient and simplifies

implementation. It should be noted that there is no compulsion that a WfMS (that uses mobile agents)

should use only one migration mechanism. Rather, this is done to simplify implementation. Ideally, on a

case-by-case basis, the WfMS should be able to decide which migration mechanism to use to create an

instance of an object. This would require the development of intelligent criteria that force such decisions

as well as an in-depth look at the workflow schema before execution.

3.6 Communication Mechanisms

With any distributed computing application, communication between the distributed objects is

necessary. Dependent on the application is the content of such communication. In this section we deal

with those requirements necessary for a dynamic, distributed WfMS. Issues such as type of

communication, choice of mechanisms, and content are addressed. Since missions are assumed to be

running on different hardware platforms, it is critical that both low-level and high-level considerations are

addressed. Low-level concerns include choice of communication protocol and hardware dependencies.

Low-level concerns in MfC are addressed by the D’Agents system and only a brief description is

provided below. High-level considerations center around the transfer of the semantic content of the

messages. In the context of high-level considerations, we discuss the type of messages expected and

appropriate responses. High-level considerations obviously affect the interoperability of various systems,

but we will restrict our discussion to the use of one WfMS and in particular to MfC.

D’Agents provides communication mechanisms that allow inter-agent messaging as well as the

capability for agents to open direct communication channels amongst themselves. Messages are passed

between agents using the agent_send and agent_event commands, for which corresponding commands to

receiving those messages are also provided. A direct connection between agents can be established using

the agent_meet command. D’Agents allows agents to communicate amongst themselves using any of

these mechanisms, each of which are detailed below. A more in-depth discussion is available in [Gra97].

Message passing: The message-passing model of agent communication involves two primitives – send,

which sends a message to the intended recipient and receive, which enables the receipt of a message.

Message passing leaves the developer with the responsibility of deciding appropriate responses to the

various messages, obtaining addresses of recipients and handling exceptions that could arise [Gra97].

D’Agents provides two mechanisms for message passing – agent_send/agent_receive and

agent_event/agent_getevent.

• agent_send/agent_receive: The agent_send mechanism sends a message consisting of a

numeric code and a string, both to be provided by the programmer. The message is received

using the agent_receive command, where the programmer specifies two variable names one

of which is set to the numeric code received and the other to the message string.

• agent_event/agent_getevent: The agent_event command is almost exactly like the

agent_send command and differs only in that the message sent consists of a tag and string.

The difference here lies in the fact that a tag is not limited to being numeric. With respect to

these similarities, later versions of the D’Agents system will have only the agent_event

command.

Meetings: The D’Agents system allows a more direct and bandwidth-efficient means of communication

among agents, namely meetings. Meetings between agents are established using the agent_meet

command. The agent_meet command is a request for a meeting. Meetings can be accepted using the

agent_accept command or rejected using the agent_reject command. Once a meeting is accepted, the

controlling servers establish a direct TCP/IP connection between the two agent processes. Once such a

connection is established, agents may read from or write to the socket opened, using commands that are

provided in D’Agents. It should be noted here that at least two messages (agent_meet and agent_accept)

must be passed before a meeting can be instantiated. Hence, a meeting can be more efficient than

message passing only if the bulk of data is substantially higher than the overhead generated by the two

“handshake” messages.

D’Agents allows the programmer to automate the receipt and response to messages, but not

meetings. Meeting requests can be handled automatically, but not the content of the meeting. D’Agents

uses an event-driven programming paradigm to enable such automation. The D’Agents system is

designed with the intent of making message passing the preferred means of communication among agents

(for transfer of semantic content). Meetings are to be used for bulk data transfer. A mask can be added to

an agent’s code to allow it to automatically handle various messages. A mask is an event handler for the

various messages that may be received. Masks can be added to either or both of the message-passing

mechanisms and thus specify which event handlers respond to the different message types. An important

point to note here is that whenever a D’Agents agent encounters an error, the controlling server sends a

standard exception to the agent’s parent using the agent_send mechanism. In view of this, we have

reserved the agent_send command to transmit error messages and the agent_event command for routine

communication. Also, the agent_send command is limited by the fact that apart from the message string,

additional information can only be furnished in the form of a numeric code. Future plans for MfC include

use of the agent_meet construct for the transfer of code to allow changes in functionality during the

course of execution of a workflow.

Chapter 4

Implementation

 Mission-flow Constructor (MfC) is implemented as a single executable D’Agents script. When

the MfC script is executed, it registers itself with the agent server on the machine on which it is running.

The MfC script itself is thus an agent that spawns off child processes to execute the various workflow

components. This agent is referred to hereafter as the root agent.

There are two distinct components that comprise MfC: the visual construction environment, and

the compilation and execution engines. The visual construction environment consists primarily of a GUI

that provides the user with the tools required to generate a workflow. The compilation and execution

engines turn the information provided in the visual construction environment into an executable workflow

and manage the actual execution of the workflow. The execution engine also implements an agent tracker

that provides the user with run-time updates through the GUI. Each of these components is dealt with in

detail in this section.

4.1 The Visual Construction Environment

 The visual construction environment serves a two-fold purpose, the first of which is to provide

the user with a means of constructing a meaningful (to the user) visual representation of the workflow.

Second, to appropriate (for the compilation engine) as much information as possible from the topology

drawn by the user. To this end, this part of MfC is driven (as it should be) by a graphical user interface

(GUI). The graphical toolkit extensions to Tcl, i.e. Tk, make the building of a GUI a relatively simple

task. The canvas found in the visual construction environment holds the set of graphical objects that

provide the user with the pictorial representation of the workflow and MfC with information about the

topology of the workflow. With reference to graph theoretical representation of workflows, the workflow

is to be drawn as a directed a-cyclic graph. Each node in the graph drawn represents a task and each arc

represents information flow. MfC allows the user to draw tasks and their temporal relationships on the

canvas and also provides means of annotating the tasks with functional information. Once MfC is

furnished with a topology and functional information of all tasks, the workflow has a fully specified

schema and it may be compiled and then executed. When a workflow is instantiated, the GUI shows a

“Tracker” window that provides real-time updates regarding the status of the various agents collaborating

to execute the workflow.

4.1.1 Topological Specification: With the understanding that a workflow schema consists of both

topological and functional information, MfC provides adequate means of obtaining both from the user.

The visual representation is of the “box-and-arrow” form that has long been used to denote workflows. A

box is drawn by clicking on the “Add Task” button found in the “Task Options” frame and then clicking

on the canvas at the position the box is to be placed. The “Add Task” button binds mouse clicks within

the canvas to the “construct_box” procedure. Once this binding is established, whenever the user clicks

on the canvas, a box is drawn at that point. The construct_box procedure does the actual drawing of the

box on the canvas. The mouse pointer’s co-ordinates within the canvas are passed to construct_box,

which draws the box at that point. This procedure also creates an entry for the task within the global

variable (tasks) that holds information about all the tasks within a workflow.

 Once task boxes are drawn, their temporal relationships (and data dependencies) are to be

depicted by drawing arrows between them. This is done using the tools found in the “Connect Tasks”

frame. This frame consists of two list-boxes and a button labeled “Connect”. Both list-boxes contain an

exhaustive list of tasks in the workflow. The user selects the source tasks from one list-box and the

destination tasks from the other. Once this is done, clicking on the “Connect” button draws the

appropriate arrows. The “Connect” button triggers the procedure “Connect”, which draws the arrows and

adds entries to the variable tasks as well as the variable that holds task interconnection data (connects).

(See Figure 6)

Figure 12 - Drawing a workf low in MfC

During the course of drawing a workflow, it may be required to move a task box around the

canvas or delete a task box (or arrow) from the canvas. These functions are available from the “Task

Options” frame as the “Arrange Tasks” button and “Delete” button respectively. The “Arrange Tasks”

button binds the mouse click and drag to the “Mark” and “ Move” procedures, which identify the canvas

object closest to the mouse pointer and allow it to be dragged around within the canvas so that it may be

repositioned. The “Delete” buttons binds mouse clicks to the “ Delete” procedure, which removes a

canvas object from the screen, as well as all of the object’s associations in the various state variables. As

an example, the workflow from Figure 6 is modified using these functions and shown in Figures 7 and 8.

In Figure 7, the task boxes have been moved around the canvas (for a purely cosmetic effect) and in

Figure 8, the task box that does “nothing” has been deleted. All of the above functions have been adapted,

with some modification, from MACE [Sha97].

Figure 13 - Arranging tasks in MfC

Figure 14 - Deleting Objects in MfC

4.1.2 Functional Specification: In addition to the topological specification described in Section 4.1.1, a

complete workflow schema also contains functional information. The functionality of tasks is defined by

task annotation. Each box on the canvas must be described using a set of predefined fields that can

completely encapsulate the functionality of the task. When the user clicks the “Annotate” button, MfC

binds mouse clicks to the procedure “ GetClick”. This procedure identifies the canvas object to be

annotated and pops up an annotation window (see Figure 15) that contains initial entries for the various

descriptors that encapsulate the task functionality. These descriptors can be modified by the user to

customize the task functionality to his/her needs. All descriptors are used to index a global array called

tasks. These descriptors are detailed below.

Figure 15 - Task Annotation in MfC

• Name and description: These fields provide task information to the user rather than to the

workflow engine. These fields are simply used to describe the task. Both are strings and the

name field cannot contain any spaces. Both of these fields are given initial values like task1

when a task is first annotated. This is a required field.

• Time: This is the time limit for which the agent server on the local machine will wait for a

response from the destination server before raising an exception. This is not a required field,

and D’Agents provides a default value of 15 seconds if this variable is not set by the user.

• Agent Type : The type of the task is the primitive construct that is to be used. The

annotation window varies with the type selected. The primitive constructs that are provided

are scatter, gather, sentinel, and decision point. If none of these primitives are to be used,

the generic process type can be selected. The selection of the different primitives changes

some of the fields in the annotation window. The implementation of these constructs is

detailed later in this chapter. This is a required field.

• Agent Function : A task can be purely c omputational or user interactive. In the case of

purely computational functions, no user interface is required and the MfC will not generate

a GUI for the workflow participant. This is not a required field and MfC defaults to user

interactive tasks. When t he user-interactive option is selected, MfC auto -generates a

workflow map for the workflow participant that indicates his/her task in the workflow

topology.

• Machine Name: This field asks for the location of the workflow participant. In the context

of wor kflow implementation in MfC, each participant is assumed to be on a different

machine in the network. The machine name field tells MfC where agent representing the

task should be sent. The machine name can be either a symbolic (for example,

actcomm.dartmouth.edu) or numeric (for example, 129.170.64.91) IP address. This is a

required field and appears when a primitive construct (agent type) is selected.

• Username: The user names are symbolic names assigned (by the user) to the various

workflow participants who execute the different tasks. Multiple tasks can be assigned the

same user and in the compilation section, we discuss how tasks associated with the same

user may be traced. This is a required field.

• Result: In this field, the user is to enter the name of the variable that holds the result of the

task’s computation. MfC monitors this variable and at the end of the task’s execution, sends

the result data to succeeding tasks. This is not a required field. In the event that a result

variable is not specified, when the task completes its function, MfC simply sends a “clear-

to-start” message to succeeding tasks.

• Code: This field is a text box and provides the user with the means to develop a complete

functionality for the task. The user is to enter Tcl/Tk code in this text box. This code is then

evaluated at the location of the workflow participant. D’Agents scripts may also be entered

here and they will execute correctly, however, the purpose is to allow a user who has no

knowledge of mobile agent technology to define and execute a distributed workflow using

mobile agents.

Using the drawing and annotation tools provided, a workflow can be completely specified and be made

ready for compilation and execution. However, before discussing these functions, we provide a run-down

on the way the above descriptors are stored and manipulated. Also discussed are the annotations required

for the various primitive constructs.

4.1.3 State Variables and Schema Capture: Tasks is the global variable that holds the entire workflow

schema, both topological and functional. Since all variables in Tcl/Tk are treated as strings, tasks is

implemented as an array indexed by strings. Tasks is an associative array, by which we mean that the

indices of the array are relevant to the data s tored in it. Each element of the array is indexed as

tasks(name,field), where name is the name assigned to the task and field is one of the descriptors listed in

the previous section. Obviously, the array is associated to its contents through the name of the task and

hence names must be held unique. The tasks array can also be thought of as a user defined data structure

or “ struct” in C. In that case, all tasks would be of the same data type (let us say tasks). The tasks data

structure would then have each of the above descriptors as parameters of the variable assigned to it. Each

task box would have to be defined as a separate variable of type tasks. The major difference is that in

MfC, the fields associated with each task can be changed at will unlike a data structure in C. Since Tcl

arrays do not have to be of pre-defined sizes, the tasks array can be written to, extended or modified

during the course of execution of the MfC script. This is especially useful considering that additions to

the array indices will be made whenever a task is annotated for the first time. The tasks array holds not

only the workflow schema, but also the run-time status of the workflow. During execution, each task is

also assigned a “status” field that indicates whether the task is active, dormant, done or dead.

 As soon as a task box is created on the canvas, an entry for it in the tasks array is also created.

This entry consists of an auto-generated name and description (both fields are given the same entry). The

auto-generated entry is simply the word task followed by the numeric sequence in which it was created on

the canvas. For example, the third task box on the canvas would be assigned the name and description of

task3. When arcs are added to connect the various task boxes, additional entries are added to the array.

The two fields added when connections are made are input and output. When the head of an arc connects

to task, the source of that arc is added to the tasks input field. Similarly, when the tail of an arc connects

to the task, the destination of that arc is added to the output field. The contents of these two array

elements are lists. Before run-time, these are the only auto-generated fields in the tasks array.

 During annotation, of course, the entry boxes provided in the annotation dialog provide the

content of the various array elements corresponding to the task being annotated. All entries made in the

annotation dialog are saved in an array called “entries” which is an exact mirror of the tasks array. The

entries array is used so that the user can discard changes to the annotation if needed. When changes are

accepted, the contents of the entries array are mirrored into the tasks array. Entries to the tasks array are

also added during workflow execution. These include unique agent identifiers that are obtained when a

task is instantiated as a remote process. The agent ids are assigned to the field agent_id. Also, the status

of an agent that has been deployed is also held in the tasks array. It should be noted here that the entire

workflow schema can be derived from the tasks array. Most of the procedures in MfC make use of and

modify the tasks array. To aid debugging MfC and workflows developed in it, there exists a “Variable

Dump to Screen” option in the main menu t hat lists the indices of the tasks array as well as other

important variable constructs in MfC.

 Another, though less critical, associative array that is used in MfC is the connects array. The

connects array is used to store GUI information regarding the connecting arcs on the canvas. This array

simply holds the screen id (ID) and canvas tag (TAG) of the arc and has an input field and an output field.

The input and output fields are used to associate relevant task boxes with the connecting arc. Most of the

other variables used in MfC are derived from the tasks array.

4.1.3 Annotation of Primitive Constructs : Each of the primitive constructs provided in MfC must be

annotated differently because of the functional and topological constraints that they impose. It will be

seen here that no constraints are imposed on the kind of functionality that tasks can offer, regardless of

what primitive construct they represent. In fact, all task annotation windows have a text entry box labeled

“Code” where the user may enter any Tcl/Tk code he/she chooses. Following are screen samples of the

various task annotation windows and some description. Most of the figures are self explanatory, though

occasional references to Section 3.3 may be required.

Figure 16 - Generic Process Annotation Window

The generic process/task has no constraints whatsoever imposed upon its functionality nor does

it have a topological import outside of the box and arrow drawing on the canvas. With this mind, the

annotation is sparse with the only topological requirement being a machine name indicating the location

of the workflow participant. The text entry box for the functional code requires (for successful execution)

that it be Tcl/Tk code. However, a D’Agents script will also be accepted. The radio buttons that select

whether the task is “Computational” or “User Interactive” are present on all annotation windows and

dictate whether the agent auto-generates a GUI for the workflow participants.

Figure 17 - Scatter Annotation Window

 The significant difference between the scatter and the generic process annotation window is that

the scatter primitive requires that the user provide MfC with the list of machines to which tasks must be

scattered. The “Machine Names” entry box takes a list of machine addresses (either symbolic or numeric)

as its argument. The code provided will then be executed at all of the remote locations specified by the

user.

Figure 18 - Gather Annotation Window

 The gather annotation window requires that the user specify both sources and the destination of

the task box. In this case, “Sources” should be the list of inputs to the gather operation or a subset thereof.

MfC will then collate the results from the tasks listed into one variable that may be used by the code

specified. The “Destination” field indicates the location at which the gather operation is to execute.

Figure 19 - Sentinel Annotation Window

 The sentinel node is to be annotated exactly like a generic process. MfC ensures that the agent

executing the sentinel operation does not die until the workflow is complete. Also, the repeated execution

of the task is not to be coded by the user, but instead left for the execution engine to handle.

Figure 20 - Decision Point Annotation Window

The decision point has more fields to be annotated than the other primitives available in order to

maintain the flexibility that it has to offer. The “Machine Name” field specifies the location where the

decision point object is to execute. The “Decision States” field takes a list (possibly comprised of lists) of

the succeeding tasks or a subset of them. For example, if there were three tasks (task2, task3 and task4)

that succeeded the decision point, one possible list for the decision states field would be

{task1 task3 {task2 task1} task2}

The above list shows four decision states, one of which is a list of machines. The choice of which

decision state is chosen is dependent on the next field, “Decision Variable”. The decision variable must

hold an integer that is not greater than the number of decision states available. The list element whose list

index (list indices start from 0) is equal to the value of the decision variable will be the chosen decision

state. In the above example, if the decision variable were set to a value of 2, the tasks that would be

initiated would be task2 and task1. The workflow engine would then kill the agent that was to execute

task3. It should be noted here that this arrangement provides the flexibility to map multiple decision states

to a smaller number of tasks. It also ensures that the same decision state can initiate multiple tasks.

4.2 Compilation and Execution

4.2.1 Compilation: Once a workflow has been specified in the visual construction environment using

both the drawing and annotation tools, it has a complete schema. To execute this workflow, it is

necessary to compile the schema to a set of D’Agents scripts that can be initiated at remote locations.

Compilation in MfC consists of checking the workflow specification for errors, generating an error log if

necessary, and identifying appropriate D’Agents wrapper for the various user specified tasks.

During the compilation process, MfC checks to see that all required fields in the annotation

dialog have been given entries. When a specification error is detected, an error level is set and the error

checking process continues. At the end of the error checking process, a dialog box containing the errors

found is posted. If no errors are detected, MfC generates an array called temporal_map. This array holds

the following lists: tasks that have no predecessor, tasks that have no successors, and tasks that do not fall

under either of the previous categories. This array is useful for workflow initiation and for identification

of workflow completion.

The most important function of the compilation engine is the enabling of user-defined tasks with

D’Agents wrapper scripts. The selection of the wrapper is first decided by how the annotation dictates the

task function: user interactive or computational. User interactive tasks are first assigned the

all_agents_wrapper that automatically generates a GUI for the workflow participant at the re mote

location. This auto-generated GUI consists only of the recreation of the MfC canvas that holds the

workflow topology. Additional wrappers are assigned based on the primitive construct that the task has

been described as. Each of the primitive construc ts provided in MfC require a different form of

implementation, and hence the user-defined functionality must be encased in different wrappers. These

wrappers are discussed in detail later in this section. When compilation is completed successfully, the

compilation sets the “compiled” variable to indicate that the workflow is ready to be executed.

Figure 21 - User-centric task tracing

The compilation procedure also generates a “task tracer” when compilation has completed

successfully. (See Figure 21) The task tracer is a simple dialog that highlights all the tasks associated with

a particular user. Currently, the username field (though it is a required field) does not influence the

execution of the workflow. In future versions, we expect to have an implicit association between a user

(workflow participant) and a machine (location). This will allow the WfMS to provide location

transparency. Tasks can then be forced to work in the environment of the specified user at the location.

For example if user Bob was to be a workflow participant at the location actcomm.dartmouth.edu, the

task assigned to Bob could be set to wait until Bob logs on to the machine and then execute with the

permissions assigned to him. With this in mind, the task tracer has been implemented to showcase the

idea that future versions will be more user-centric than location-centric. Figure 21 shows a sequence of

tasks that have been assigned to the user Bob. Such sequences (successive tasks assigned to the same

user) will be termed threads. Keeping track of such threads will be useful when developing applications

such as Adaptive Active Templates (AAT) [DD99]. AATs are further discussed in the Future Work

section.

4.2.2 Execution: A workflow may be executed only after it has been compiled. Once compiled, the user

may initiate the workflow by choosing the “Execute Workflow” option from the “Action” menu in the

main window. The “Execute Workflow” menu item is bound to the procedure “Launch.” When called,

Launch sends one agent for every task that has been defined to the appropriate locations. These agents are

dispatched using the agent_submit command. All agents carry a start-up script, associated variables, and

event handlers for the various messages that may be encountered. Once an agent is registered with the

local agent server on the destination machine, it enters an event loop to wait for a clear-to-start message

from MfC. Once all agents have registered with their local controlling servers, the root agent “broadcasts”

the unique identifier of each agent to all other agents. This is done by sending the list of agent ids to all

the agents that have registered. Tasks that have no predecessors are then instantiated. When a task

completes execution, it sends a “done” message to the root agent. The root agent then sends clear-to-start

messages to succeeding tasks with relevant result data. It should be noted here that each primitive

construct has a different execution model, each of which is detailed below.

• Scatter: Keeping in mind that the scatter primitive is actually many concurrent tasks, we see

that for each task that is defined as a scatter object, the root agent must launch as many

agents as there are concurrent tasks. When a scatter object is called, MfC sends an agent of

user-defined functionality to each of the locations provided. MfC does not keep track of the

agent identifier of agents that have been created as a result of a scatter operation. However,

MfC does keep track of the number of concurrent tasks that have completed and from the

list of machine names can determine which tasks await completion. When all the child

processes of a scatter operation have completed, the root agent sends the clear-to-start

message to the successors. Tasks defined as scatter ope rations are assigned the

SCTR_wrapper as a wrapper for the user-defined functionality. This wrapper ensures that

when each child process sends a message to other agents, it is clearly identified as such.

• Gather: Tasks assigned the gather primitive use the GTHR_wrapper procedure to ensure

such functionality. The gather primitive collates the result data from the tasks specified in

the “Sources” list into an array indexed by those task names. The agent executes the Tcl

code provided to it only when the clear-to-start message is received. It should be noted here

that gather operation itself does not any temporal constraints enforced upon it, only the

execution of the functional code. This is because the data can be gathered or collated only

when it is made available by the preceding tasks.

• Sentinel: The sentinel agents enter an event loop as soon as they register with their local

agent server. The SNTL_wrapper ensures that the agent remains in the event loop until an

information request is received, the workflow completes, or a “terminate agent” message is

received. Each time an information request is received, the wrapper evaluates the Tcl code,

replies to the request with the result of the computation, and once again enters an event

loop.

• Decision Point: Wh en a task defined as a decision point is initiated, the wrapper

(DP_wrapper) first executes the Tcl code and when the task has otherwise completed,

extracts the list of tasks that correspond to the list index provided by the decision variable.

These tasks are then sent a clear-to-start message while the decision states that were not

chosen are sent a “terminate agent” message.

• Generic Process: The generic process/task option also has a wrapper on its own

(GP_wrapper). This wrapper simply makes the agent wait until a clear-to-start message is

received. Once received, the wrapper evaluates the Tcl code and returns the result variable

to the root agent.

4.2.3 Communication: MfC agents are designed to communicate using short messages. Since the

agent_send mechanism in the D’Agents system is used when raising exceptions, we use the agent_event

and agent_getevent commands for inter -agent communication. However, event handlers have been

established for both message-passing mechanisms. Messages are of two types, those sent through the

tracker and those passed directly between agents. In the case of the former, more information from the

remote tasks is required, as the tracker is the monitoring utility for the user who executes the workflow.

(See Figure 22) A set of messages that provide details regarding the state of execution of each task has

been implemented. These not include not only standard “starting” and “terminating” messages, but also

whether the agent is waiting or has failed. In addition, each primitive c onstruct has a unique list of

informative messages that enable effective monitoring.

 Under normal circumstances, all communication passes through the tracker so that the user who

executes the workflow is able to monitor (during run-time) the status of the workflow. However, this also

makes the location of the tracker a focal point of failure. In the event that the tracker goes off -line,

communication between agents is abruptly cut off. In order to function effectively even without the

tracker and root agent, the agents must be able to seamlessly change communication channels. That is,

agents must start communicating directly amongst themselves. When the agents were first deployed, the

root agent (or tracker) provided each agent with the global ids of all the other agents. In the event of

tracker failure, agents can route messages directly to each other using these identifiers. The deployed

agents recognize tracker failure when they cannot establish communication with the tracker. The first

agent that recognizes tracker failure sends a message to that effect to all the agents that succeed it. Agents

that receive the tracker failure message pass the same message to their successors. Thus, all agents that

need to communicate with the tracker are kept advised of the tracker’s status. Once an agent receives a

message that the tracker has failed, it sets up new (though predefined) message handlers to handle

incoming messages and routes result data directly to the succeeding agents rather than to the tracker.

Figure 22 - Agent Tracker

Chapter 5

Conclusion

In this thesis, we have presented the concept of a mission – a distributed dynamic workflow – as

well as the need for a completely flexible workflow management system. Requirements for the design

and implementation for such systems were discussed in some detail. We have implemented Mission-flow

Constructor (MfC), a workflow management system that provides a user with the ability to define,

execute and monitor a distributed dynamic workfl ow. MfC abandons the traditional single -agent

approach to implementing workflows and instead, uses a larger number of small agents. In the

implementation of MfC, we provide primitive constructs in workflow specification that are neither

strictly topological nor functional. These constructs drastically reduce the amount of time taken to code

repetitive functions. We have also developed some basic fault tolerance mechanisms towards network

failure. MfC demonstrates significant improvement over its predecessor MACE [Sha97] in terms of ease

and depth of workflow specification, efficient use of network bandwidth, inter-agent communication and

fault tolerance.

Chapter 6

Future Work

As with most theses, there is a large body of work related to the current work that could not be

completed for reasons such as the scope of the thesis and time constraints. Some of the work that the

author hoped to do as well as a few suggestions regarding the future direction of this project are

enumerated below. Of course, this cannot be a comprehensive list of all possible and necessary

improvements, nor is it intended to be.

Adaptive Active Templates (AAT): When multiple tasks (usually in a linear sequence) are linked to the

same workflow participant, they form what can be thought of as a “thread”. Many transactional

operations involve a set of small tasks (filling a form, evaluating credit history, etc.) that are usually

assigned to the same workflow participant. Each such sequence would be a “thread” for that particular

participant. In many cases, the functionality of some of these tasks depends on the result of preceding

tasks within the thread, and occasionally on tasks that lie outside the thread. With the form-based nature

of transactional and strategic operations, each thread could be modeled as an active template that adapts

its interactive components based on the current state of its thread as well as that of related threads

[DD99]. When one moves from the paradigm of workflow management systems to adaptive active

templates, the implementation strategy changes only slightly. One important consideration here is that all

tasks that are assigned to the same workflow participant could be collated into one agent whose

functionality depends on the results of interaction with the user.

Agent Construction Environment: With the ideas of reusable code and ease of specification in mind, it

would be useful to provide an environment wherein task specification is the focus. Here, a user can build

a task that may be many times and add it to the “library” of tasks available within MfC. Annotation of

tasks within MfC then becomes simpler because of the availability of a number of predefined tasks. The

Agent Construction Environment would include debugger so that the task functionality can be verified

before it is committed to the repository. A debugger for D’Agents called AGDB has already been

developed at Dartmouth College [HK97]. The idea of a library of agents lends itself to the obvious

extension that there should also exist a library of c ommonly used topologies, akin to the primitive

constructs provided in MfC albeit more complex.

Critical and Non -Critical Inputs: The current implementation of MfC uses a “finish-to-start” model of

task instantiation. This means that for a given task to c ommence execution, all tasks immediately

preceding it must have completed execution. This leads one to conclude that the successful completion of

all previous tasks is critical to the execution of the task under consideration. This is not always true in

many real world applications where inputs to a given task are to be treated on an “if-available” of “if -

possible” basis. The successful execution of such tasks is not critical to the success of the mission. It is

desirable to be able to annotate certain tasks, and hence the output arcs of these tasks as either “critical

inputs” or “non-critical inputs” to their successors. Once a mission is instantiated, a task would then wait

only until all critical inputs had been filled before commencing execution. This ho wever, raises the

question of how to handle non-critical inputs that arrive after task execution has begun.

Cyclic graph structures: Currently, MfC does not handle cyclic graphs. It is left to the user to spot

cycles within the mission topology and remove them. To reject cyclic graphs outright would not

necessarily be a good idea considering that fact that many applications involve the repetition of a set of

tasks until a certain condition is met. It would be advantageous to provide MfC with the capability to

identify cyclic sub-graphs and prompt the user to identify the “starting node” of the cycle. At that point, it

would be necessary to identify a certain set of inputs to the starting node as the critical inputs for that

node. The remaining non-critical inputs are to be treated as such for the first iteration of the cycle only,

after which the critical and non-critical inputs are either reversed or redefined completely.

GUI Improvements: In this work, function has been placed above form when designing the GUI. While

this means that all available functionality is present in the GUI, it has come at the cost of ease of use. In

spite of the fact that GUI improvement is usually cosmetic, its need becomes apparent with repeated use

of the application. In addition, semantic and functional content are not currently available from the visual

representation of the workflow. Means of providing such content would be extremely helpful. Regardless

of functionality, all task boxes look alike. Task boxes could be depicted differently based on the

functionality they offer. The first step would obviously be to visually differentiate the various primitive

constructs. Some additional menu options, such as those found in commercial applications would be

useful.

Chapter 7

References

[Bil99] Bilar, Daniel J., ‘ Process Automation and Agents’. Presentation, D’Agents Research

Group Meeting, Dartmouth College. February 1999

 [CGN96] T. Cai, P. A. Gloor, S. Nog, ‘DartFlow: A Workflow Management System on the Web

Using Transportable Agents’. Technical Report PCS-TR96-283, Dartmouth College.

May 1996. ftp://ftp.cs.dartmouth.edu/TR/TR96-283.ps.z

[CHK94] D. Chess, C. Harrison, A. Kershenbaum, ‘Mobile Agents: Are They a Good Idea?’ IBM

Research Report RC 19887 (88465), T. J. Watson Research Center. December 1994

[CHRW98] A. Cichocki, A. Helal, M. Rusinkiewicz, D. Woelk, ‘ Workflow and Process

Automation: Concepts and Technology’. Kluwer Academic Publishers © Kluwer

Academic Publishers 1998

[DD99] Dyer, Maj. Doug. “Active Templates: Winter PAD Review – Dynamic Spreadsheets for

Planning and Execution” Information Exploitation Office, Information Systems Office,

DARPA. http://www.darpa.mil/iso/act/act_brief.ppt

 [GBCK94] E. P. Glinert, M. M. Blattner, S. Chang, O. J. Kurlander. Panel: ‘Visual Languages and

Programming in the Year 2004’. In Proceedings of the 1994 IEEE Workshop on Visual

Languages. IEEE, September 1994

[Gra95] Gray, Robert S., ‘Agent Tcl: Alpha Release 1.1 Documentation’. Dept. of Computer

Science, Dartmouth College. December 1995

[Gra96] Gray, Robert S., ‘Agent Tcl: A Flexible and Secure Mobile Agent System’. Appeared in

Proceedings of Fourth Annual Usenix Tcl/Tk Workshop, pp.9 -23. 1996

http://www.cs.dartmouth.edu/~agent/papers/tcl96.psp.z

[Gra97] Gray, Robert S., ‘ Agent Tcl: A Flexible and Secure Mobile Agent System ’. Ph.D.

Thesis. Dept. of Computer Science, Dartmouth College. 1997

ftp://ftp.cs.dartmouth.edu/TR/TR98-327.pdf

[GCKR96] R. S. Gray, G. Cybenko, D. Kotz, D. Rus, ‘ Agent Tcl’. Dept. of Computer Science,

Dartmouth College. May 1996

[HK97] M. Hirshl, D. Kotz, ‘ AGDB: A Debugger for Agent Tcl’. Technical Report PCS-TR97-

306, Dept. of Computer Science, Dartmouth College. February 1994

[IBM] IBM, “ Flowmark” Software product. http://www.software.ibm.com

[Joo95] Joosten, Stef, ‘Process-Definition-Organization Framework for Analyzing Workflow

Management Systems’. Computer Information Systems Dept., Georgia State University.

December 1995

[Kob97] Kobielus, John G., ‘Workflow Strategies’. IDG Books Wo rldwide, Inc. © IDG Books

Worldwide, Inc. 1997

 [Kou95] Koulopoulos, Thomas M., ‘The Workflow Imperative: Building Real World Solutions’.

International Thomson Publishing Inc. © T. M. Koulopoulos 1995

[MLL97] M. Merz, B. Liberman, W. Lamersdorf, ‘ Using Mobile Agents to Support Inter -

Organizational Workflow Management’. Distributed Systems Group, Computer

Science Dept., Hamburg University, Hamburg, Germany. November 1997

[MN] M. Marazakis, C. Nikalaou, ‘Towards Adaptive Scheduling of Tasks in Transactional

Workflows’. Dept. of Computer Science, University of Crete and Institute of Computer

Science, FORTH.

[Naj94] Najork, Marc A., ‘Programming in Three Dimensions’. Ph.D. Thesis, University of

Illinois at Urbana-Champaign, 1994.

http://www.research.digital.com/SRC/personal/najork/thesis/thesis.pdf

[Ous94] Ousterhout, John, ‘Tcl and the Tk Toolkit ’. Addison-Presley Professional Computing

Series, © Addison-Presley 1994

 [Sha97] Sharma, Rohit, ‘Mobile Agent Construction Environment’. MS Thesis, Dartmouth

College, 1997

[Wel95] Welch, Brent, ‘Practical Programming in Tcl and Tk’. © Prentice Hall 1995

[WF94] T. E. White, L. Fisher (editors), ‘New Tools for New Times: The Workflow Paradigm’.

Future Strategies, Inc. © Future Strategies, Inc. 1994

[WfMC95] The Workflow Management Coalition, ‘The Workflow Reference Model’. Document

Number TC00-1003, © The Workflow Management Coalition1995

[WfMC00] The Workflow Management Coalition, ‘Workflow Standard – Interoperability Wf-XML

Binding’. Document Number WFMC -TC-1023, © The Workflow Management

Coalition 2000

[Zim98] Zimmerman, Daniel M., ‘ A Preliminary Investigation into Distributed Dynamic

Workflow’. MS Thesis, California Institute of Technology, 1998

