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Abstract 
 

This thesis presents two new methods for detecting spoof attacks in an 802.11b 
wireless network. The two methods are Sequence Number Rate Analysis (SNRA) and 
Signal Strength Fourier Analysis (SSFA).  

The explosive growth of 802.11b networks has coincided with an increased 
presence of security threats to these networks. A large proportion of these threats are in 
the form of spoof attacks. Spoof attacks involve one device assuming the identity of 
another to perform malicious behavior. The available security tools to detect such 
behavior are quite limited. 

Current methods of sequence number analysis simply detect gaps in the 
monotonic incrementing series of sequence numbers in transmitted frames. However, 
these methods result in large amounts of false positives on wireless networks which 
experience even small amounts of frame loss. The proposed method considers the time 
difference between consecutive frames to allow for naturally occurring loss while still 
detecting invalid sequence numbers. 

We have proposed a method of spoof detection using signal strength analysis 
where currently no fielded method exists today. The unpredictable nature of 
environmental effects on signal propagation and a lack of signal strength stability due to 
calibration drift in low-quality wireless networking cards present significant challenges to 
using signal strength to detect wireless spoofs. By performing a Discrete Fourier 
Transform (DFT) on a sliding window of signal strength values (RSSIs), it can be 
demonstrated that the statistical variance of the high-frequencies which result from the 
interference between the attacker and the victim can very accurately yield evidence of a 
spoof attempt. •

• This work was supported under ARDA/DTO Award No. F30602-03-C-0248, DOJ Award No. 2000-DT-
CX-K001, and DHS Award No. 2005-DD-BX-1091.  Points of view in this document are those of the 
author and do not necessarily represent the official position of DHS. 
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Chapter 1: Introduction 
 

The explosive growth of the deployment of 802.11b wireless (WiFi) networks in 

the last few years has been accompanied by a similar growth in the various types of 

security threats to these networks. The most common threats include WiFi network 

attacks such as Denial of Service (DoS) attacks, Reduction of Service (RoS) attacks, 

“Greedy” behavior, and Man-in-the-middle (MITM) attacks [20] [26] [33]. DoS, RoS, 

and MITM attacks all involve the attacker attempting to impersonate a legitimate node on 

the network to send his malicious traffic. This general behavior is called a spoof. An 

attacker can spoof another device by changing his hardware address to be the same as the 

victim device when both attacker and victim are on the same channel (frequency). Two 

ways to tell that the two devices are different is through the use of sequence number 

analysis at the OSI layer two or signal strength analysis at OSI layer one. 

 Figure 1 illustrates a typical spoof attack. It is important to clarify a couple of 

terms that are used in this paper at this point. During a DoS attack, such as a DeAuth 

attack, in which a legitimate node is denied access to a wireless network as a result of 

frames sent from an attacker impersonating an access point, the “victim” of the overall 

attack is, of course, the node that is denied access to the wireless network. However, for 
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the purposes of this paper, the “victim” of the spoofing behavior is the access point, who 

is impersonated.  

 Figure 1 Typical DoS spoof attack.  
Attacker (colored red) sends DeAuth 
frames to the victim (colored green) 
that claim they are legitimate DeAuth 
frames from the AP that the victim is 
associated to. The green node is the 
victim of the overall attack, but the AP 
is the victim of the spoofing itself. 
 

This paper will present two general methods of detecting such malicious behavior 

and compare them to corresponding examples of the state of the art in each detection 

domain. The proposed sequence number analysis technique called Sequence Number 

Rate Analysis (SNRA) is compared to the Snort-wireless preprocessor, MacSpoof. The 

proposed signal strength analysis technique called Signal Strength Fourier Analysis 

(SSFA) is compared to a proposed signal strength analysis technique from the Rutgers 

WINLAB [17] [31]. All four techniques are used to detect spoofs in twelve experiments. 

Each pair of corresponding analysis techniques are evaluated by comparing the detection 

rates against the false positive rates. 

This paper demonstrates that the proposed methods of spoof detection out 

perform their respective counterparts at spoof detection in simulations as well as in 

practice. 

AP
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1.1 Sequence Numbers 
 

The 802.11 protocol stipulates that every participating device will monotonically 

increment the 12-bit sequence number field in the 802.11 header of every management 

and data frame (control frames do not get a sequence number) [15]. If a device is posing 

as another device, a naïve attack will produce two distinct but interleaved streams of 

sequence numbers which can be detected easily if there is little loss. One way a 

sophisticated attacker could cover his tracks would be to have the sequence number of his 

frame match that of a recent frame sent by the victim and flip the retransmit bit in the 

802.11 header making the repeated sequence number appear like a natural retransmission. 

Another technique the sophisticated attacker might employ would include hijacking the 

entire sequence by sending out a frame with the next successive sequence number while 

corrupting the legitimate frame from the victim so that it gets dropped by any receiving 

nodes. Clearly, there is a limit to what can effectively be done with sequence number 

analysis because it may always be possible for a sophisticated attacker to cover his tracks 

with respect to the sequence numbers. 

Existing analysis methods suffer from numerous false positives due to natural 

frame loss as well as missed detections when spoofed frames do not come fast enough to 

surpass an arbitrary threshold. The proposed Sequence Number Rate Analysis (SNRA) 

technique addresses these shortcomings of existing techniques. SNRA can detect spoofs 

consisting of very small numbers of frames in an environment with a large amount of 

frame loss.  
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1.2 Signal Strengths 
 

In the physical layer (OSI layer one), received signal strength can also be used to 

detect a spoof. Despite being quite erratic, received signal strength values generally 

follow a fairly tight and predictable distribution. It is almost certain that the distribution 

of signal strength values for a certain hardware address will be appear different when a 

spoof is occurring as compared to the distribution of values coming only from the victim. 

Effectively detecting this distribution perturbation is what the Signal Strength Fourier 

Analysis (SSFA) technique is designed to solve.  

In the case of a spoof, the unpredictability of the propagation of RF energy is a 

good thing. It forces each transmitting device to have a unique RF signature from the 

perspective of a sensor. Due to the effects of multipath interference among other factors, 

two devices sitting at two different three-dimensional locations will have two separate 

and distinct signal signatures (mean and variance of signal strength values) [12]. While it 

is possible for two devices to appear to have the same signal strength from the 

perspective of one sensor, if a second or third sensor is added, it will be virtually 

impossible to appear the same from every sensor. Even if the attacker and victim were 

located next to each other and transmitting the same power, the paths that those emissions 

would take through the air would be slightly different. The different paths would reflect 

on surfaces in different angles. The behavior of multipath would allow a sensor to tell 

that two devices were communicating instead of just one. 

In addition to the uniqueness of received signal strength indication (RSSI) at the 
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sensors, the attacker has no idea what it looks like from the sensor’s perspective. If the 

attacker could somehow become aware of how it was received from every sensor, then it 

would be possible, in theory, for an attacker to move itself into a position which allows it 

to blend into the RSSIs of the victim’s traffic. However, this requires knowledge that the 

attacker can never have and even if it did somehow have this knowledge, as soon as it 

communicated its first frame prior to relocating, its presence would be detectable. 

Therefore, the attacker would have to predict exactly what signal strength the sensor or 

sensors would receive based on any three-dimensional point. When the effects of 

multipath are taken into account, this becomes a near impossible task. 

Therefore, unlike sequence number analysis, signal strength analysis is essentially 

a physics problem. Sequence number analysis may become an arms race within the 

protocol domain, where each protocol fix is followed by a protocol exploit and so on. 

Signal strength analysis can end the arms race because there is little an attacker can do to 

change the laws of physics in order to hide his presence. What makes the use of RSSIs 

difficult in practice is that there is always environmental variation, calibration drift, and 

other factors that make the trace of one device’s RSSIs unstable and noisy. However, for 

the most part RSSIs from frames originating from the same device are normally 

distributed and statistical analysis can be brought to bear on handling this data. 

At the time of this writing, there are no fielded signal strength analysis techniques 

for detecting spoofs in any of the major wireless intrusion detection systems (WIDS) [2] 

[3] [31]. Although signal strength analysis has been employed for localization with 

varying levels of success in several research projects, prior to this work an implemented 

signal strength analysis system for spoof detection does not yet exist [6] [30]. 
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Chapter 2: Sequence Number Analysis 
 

In the 802.11b protocol, each device transmits management or data frames that 

include a sequence number to assist in reassembly [15]. There is an ancillary security 

function to the sequence number that although an attacker may guess the next sequence 

number, the victim will eventually send out that number as well. The occurrence of 

sequence numbers that are either out of sequence or include duplicate sequence numbers 

may indicate a spoof. 

 The matching of sequence numbers is a non-trivial task because the generation of 

sequence numbers is a low-level device driver operation. When combined with the fact 

that sequence number analysis for spoof detection is far from an exact science, the result 

is that most publicly available attack tools which involve a spoof do not bother attempt to 

match the sequence numbers of the target. The Matlab simulations presented later in this 

chapter will demonstrate that spoof detection schemes such as the industry open-source 

benchmark, Snort-wireless, can suffer from either false positives during periods of high 

frame loss, or missed detections when spoofs involve very few frames [31]. 
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2.1 Snort-wireless MacSpoof 
 

Snort-wireless accomplishes its spoof detection using a configurable preprocessor 

called MacSpoof. The single piece of evidence that MacSpoof relies on is the sequence 

number. If MacSpoof sees two consecutive frames with sequence numbers greater than a 

specified gap limit (called “tolerate_gap” in the configuration), then a gap has occurred. 

To trigger an alert, a certain number of gaps (called “threshold” in the configuration) as 

defined by tolerate_gap must occur within a specified time window (called 

“expire_timeout” in the configuration). The default values for tolerate_gap, threshold, 

and expire_timeout are 5, 10 and 120 respectively. 

An excerpt from Snort-wireless’s MacSpoof configuration is below: 
 

# MacSpoof 
#--------------------------------------------- 
# MacSpoof detects wireless MAC addresses involved in some MAC spoofed traffic. 
#
# Arguments: 
#
# MACSPOOF_MASKED_ADDR => list of MAC addresses excluded from wireless MAC spoofing 
# [var             detection process 
# tolerate_gap [num]   => tolerate missing frames between two consecutives frames issued 
# from same MAC address 
# threshold [num]      => number of abnormal sequence number gaps during time delta to 
# trigger an alert 
# expire_timeout [num} => time period used to keep count of abnormal seq number gap 
# spoofed_target_limit => maximum number of MAC addresses inserted inside MAC spoofed 
# [num]            addresses mempool 
# prune_period [num]   => number of seconds to wait for looking after some decayed 
# MAC addresses inside mempool 
 
preprocessor macspoof: $MACSPOOF_MASKED_ADDR, tolerate_gap 5, threshold 10, 
expire_timeout 120, spoofed_addr_limit 100, prune_period 30 
 

The problem with a system such as this one is that in a live wireless networking 

environment, natural loss and therefore natural gaps occur with great regularity. Due to 

phenomena such as a “Hidden Node”, a sensor may miss hundreds of frames causing 

false alarms simply due to the fact that one device’s transmissions are overpowered by a 
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closer device’s transmissions [12]. The more sensitive the receiver, the greater the 

problem with frame loss due to hidden nodes. Snort-wireless’s MacSpoof preprocessor 

reflects the general thinking when it comes to using sequence number analysis to detect 

spoofs [31] [33]. This general thinking tries to detect gaps of a certain size without 

relation to time elapsed as evidence of spoofing. 
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2.2 Sequence Number Rate Analysis (SNRA) 
 

The Sequence Number Rate Analysis (SNRA) technique calculates a 

“transmission rate” by taking the difference modulo 4095 of the sequence numbers from 

consecutive frames and dividing by the difference of their corresponding arrival times. If 

the set of sequence numbers and arrival times suggests a transmission rate that is greater 

than the theoretical transmission limit, then SNRA concludes a spoof has occurred. By 

using this method, gaps from natural frame loss do not cause false alarms because they 

will not yield an abnormally large transmission rate. 

 

Attacker:    5 

Victim: 1 2 3  4 

 

In the above example, assume each number is a sequence number in a series of 

frames supposedly from a single hardware address. If each frame is sent one millisecond 

apart, then the transmission rate between the first two frames would be (2-1) 

frames/0.001 second or 1000 frames/second. The rate between the third and four frames 

would be (5-3)/0.001 or 2000 frames/second. The rate between the four and fifth frames 

would be (4-5)/0.001 or 4,094,000 frames/second because the difference in sequence 

numbers is modulo 4095. This abnormally large transmission rate is evidence of a spoof. 

Depending on the numbers and arrival times involved, the transmission rate from victim 

frame to spoofed frame or the reverse can produce evidence of a spoof. 
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In addition, if the sensor system of a distributed wireless intrusion detection 

system (WIDS) uses a sampling or channel-hopping technique in which has individual 

sensors covering multiple channels, false alarms will typically not result from intermittent 

coverage resulting from the hopping [9]. 

The basis for the SNRA is simple. There is a theoretic limit to how many frames 

can be sent by an 802.11b device in 1 second. This limit, detailed below, is 

approximately 5314 frames. When the calculated frame transmission rate surpasses this 

theoretical transmission limit, the SNRA concludes that a spoof has occurred.  
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Theoretical Transmission Rate Limit 
 

The following calculations are used to calculate the theoretical transmission rate 

limit of 802.11b wireless networks:1

Max data rate of 802.11b:    11Mbps  

(or 1,375,000 8-bit bytes/sec) 

Size of smallest 802.11b frame (e.g. ACK, CTS): 14 bytes 

Worst-case frame rate:    98,214 frames/sec 

Furthermore, frames aren’t sent one right after another. There are wait periods 

between the transmission of frames as specified by the Carrier Sense Multiple Access 

with Collision Avoidance (CSMA/CA) access mechanism of 802.11b as well as physical 

layer overhead from the Physical Layer Convergence Procedure (PLCP) and preamble 

transmission [12]. The Short Inter-Frame Space (SIFS) of 10 µs is used to estimate the 

minimum wait period due of CSMA/CA. 

The physical layer overhead includes a preamble header which is 144 bits 

transmitted at 1 MHz, and the PLCP header which is 48 bits transmitted at 2 MHz [12]. 

The transmission durations of the preamble and PLCP are therefore 144 µs and 24 µs, 

respectively.  

The minimum transmission overhead for each frame is: 

10 µs (IFS) + 144 µs (preamble) + 24 µs (PLCP) = 178 µs 

A minimum transmission duration for each frame is calculated by taking the 

reciprocal of the maximum frame rate (98,214 frames/sec), to arrive at 10.18 µs per 
 
1 Based on calculations by Dartmouth PhD student, Rajendra Magar. 
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frame. Adding this term to the minimum frame overhead yields and overall frame 

duration of 188.18 µs per frame. Taking the reciprocal of this term yields our theoretical 

frame transmission limit of 5314 frames/sec. 
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2.3 SNRA vs MacSpoof 
 

To directly compare SNRA against Snort-wireless’s MacSpoof, several Matlab 

simulations were used which are described in this section.  

To give MacSpoof a fighting chance, the expire_timeout parameter was lowered 

from from two minutes to one second. In the simulation and in later experiments, gaps 

occur at a fairly high frequency (due to both attacks as well as natural loss) and an 

enormous analysis window would have kept the detector perpetually yielding false 

positives. 

The following Matlab code generated an approximation of what a spoof attack 

would look like from the perspective of sequence numbers from a sensor. In this 

example, every fifth frame has an anomalous sequence number.  
for i=1:len 
 data(i,1)=i/100;   %time val 
 data(i,3)=mod(i,4095); %sequence number 
 if (i>500 && i<600 && (mod(i,5)==1)) 
 data(i,3)=mod(i+250,4095); 
 end 
end 
 

When both techniques are run side by side to analyze this simulated spoof, the result is 

Figure 2. MacSpoof detects the spoof at 5.11 seconds, while SNRA detects the spoof at 5 

seconds even (the time of the first frame). Although MacSpoof was a little slower to 

make the detection, this experiment is characterized as a success for both techniques.  
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Figure 2. Comparison of Sequence Number Analysis Techniques Against Simple Spoof 
Attack 

 

The weakness of an approach like MacSpoof is that there is always an arbitrary 

threshold that an administrator must set for the number of gaps in a certain window. If the 

threshold is too low, there will be many false positives from natural loss, however, if it is 

too high this will result in missed detections.  

In the next simulation, illustrated in Figure 3, the incidence of spoof frames is 

lowered from 1:5 to 1:25. Spoofed frames arrive at a rate too slow to be detected by 

MacSpoof but they are caught with SNRA.  
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Figure 3. Comparison of Sequence Number Analysis Techniques Against Spoof 
Consisting of Few Frames 

 

The general weakness of MacSpoof is its inability to discern whether gaps are 

natural or malicious. In the simulation below, blocks of frames have been removed from 

a trace of sequence numbers to represent frame loss. There are no spoof attacks, just a 

period of high loss. SNRA technique isn’t fooled because despite the existence of gaps 

the frame transmission rate hasn’t changed. 

 Here is the Matlab code used: 
len=500; 
for i=1:len 
 data(i,1)=i/100; %time val 
 data(i,2)=30; %signal strength 
 data(i,3)=mod(i,4095); % sequence number 
end 
 
for q=1:2:30 
 data([200+q:206+q],:)=[]; %delete frames to simulate frame loss 
end 
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Figure 4. Comparison of Sequence Number Analysis Techniques Against Lossy 
Behavior Without a Spoof 

 

Retransmitted Frames 
 

A challenge for the Sequence Number Rate Analysis technique is the handling of 

re-transmitted frames. In 802.11b, every data frame transmitted is assumed lost if an 

acknowledgement frame is not sent in response. When this loss is detected a frame is 

retransmitted with the same sequence number as was previously sent. In addition, the 

retransmit flag is set in the 802.11b header of a retransmitted frame to identify it as such. 

The sequence number of such a frame will inevitably arrive out of order and then cause a 

false positive in the Sequence Number Rate Analysis. 

The solution to this is to ignore the sequence number of the retransmitted frame 

but use a hash function such as MD5 to maintain a hash value for each frame with a 
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unique sequence number for each hardware address [28]. If a frame claims to be 

retransmitted, then its hash value is compared with the corresponding the value of a 

frame with the same sequence number and hardware address. If the hash values are 

different then the retransmitted frame is malicious and presumed to be attempting to 

evade the SNRA. 

 

2.4 Sequence Number Summary 
 

In summary, the SNRA will not generate false positives due to periods of heavy 

frame loss. MacSpoof’s dependence on arbitrary thresholds leaves it vulnerable to an 

attacker who times his frames to arrive beneath the thresholds set by a network 

administrator. 

 Additionally, since the detection of a spoof with SNRA only involves an 

operation on two consecutive frames, the computational load is much less than MacSpoof 

which requires the maintenance of an analysis window which may include hundreds of 

frames for as many devices. 
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Chapter 3: Signal Strength Analysis 
 

Signal strength analysis for spoof detection operates under the assumption that 

frames from two distinct devices be will received at two distinct power levels. If this 

assumption holds true, then it should be possible to use signal strengths of incoming 

frames to be able to detect when two or more devices are sending frames as a single 

source. 

Despite technical papers suggesting that this technique may prove useful, no 

fielded system currently detects spoofing through signal strength analysis [3] [11]. This is 

due to the fact that making conclusions based upon RSSI values is difficult for many 

reasons. The RSSI, a measure of the strength of the RF signal at the sensor, is affected by 

the power of the signal upon transmission from the source and the attenuation of the 

signal as it propagates. At the source, the device transmits with as much power as it is 

configured for or is capable of. This power level sometimes fluctuates due to subtleties 

within the electronics of the radio transmitter. This phenomenon is referred to as 

calibration drift.2 802.11b devices were not engineered to be precision emission 

 
2 Observed by Prof Wade Trappe of Rutgers University on the ORBIT Wireless Networking Testbed 
www.orbit-lab.org.
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instruments and are therefore susceptible to this signal variation. Sometimes RSSIs may 

fluctuate deliberately due to mechanisms like Automatic Radio Management (ARM) in 

access points (APs) from wireless networking equipment manufacturer, Aruba. 

According to Aruba's website, “ARM technology is used to optimize channel 

assignments, avoid interference and ensure pervasive Wi-Fi coverage” [5]. The end effect 

from a sensor’s point of view is that the average power level coming from one source can 

change abruptly when an automatic power adjustment has been made.  

Signal attenuation can be caused by several conditions such as temperature of and 

moisture in the air, obstacles such as walls and RF reflecting surfaces such as metal 

cabinets. Additionally, as objects move through the environment, the cumulative 

environmental effects can change over time. Therefore, even if both the source and the 

sensor are stationary, the sensor can witness significant RSSI variation over time. RSSI 

values can even vary from one frame to the next in a matter of hundredths of a second. 

This variability presents a difficult challenge in making strong conclusions based on 

RSSI values. 

The use of signal strength analysis for spoof detection reduces the task down to a 

physics problem. There will always be a problem of detecting and reacting to a spoof 

regardless of what form the current and future wireless networking protocols take. 

Additionally, since all current and future wireless networking protocols will adhere to the 

laws of physics and signal propagation, a physics-based detection scheme will be 

protocol-independent. 
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3.1 Signal Strength Fourier Analysis (SSFA) 
 

The proposed Signal Strength Fourier Analysis (SSFA) technique uses a Short-

term Fourier Transform (STFT) to detect spoofing behavior. An STFT is essentially a 

Discrete Fourier Transform that is repeatedly performed on a sliding window of data 

points. While the Fourier Transform is a function of observed frequencies only, the STFT 

allows for temporal isolation of discrete frequency events adding a chronology of events 

into the analysis [27]. A simple rectangular windowing function is used because 

frequency leakage in this application is not a concern [23]. In this application, the discrete 

frequency event that is being detected is the perturbation of the distribution of RSSIs. 

 Figure 5 depicts a model plot of RSSI values with a spoof occurring between the 

times 500 and 600 time units. Figure 6 depicts the resulting color-graph from a STFT 

with a window 100 units wide sliding in steps of 10. It is important to note that the 

spoofed frames are being interleaved into the legitimate frames in a random and changing 

interval. This detail will be revisited in the explanation section. The plot in Figure 5 is 

based on data generated by the following Matlab code: 
for i=1:1000 
 data(i,1)=30+rand*3; 
 if (i>500 && i<600 && (floor(rand*4)~=1)) 
 data(i,1)=40+rand*3; 
 end 
end 
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Figure 5. Plot of Simulated RSSI Signal Without Variation With Spoof  
 

In Figure 6 below, the x-axis is window count and the y-axis is relative frequency 

bins. In this case there are 100 bins because the window is 100 units wide. The colors of 

each square in Figure 6 represent the magnitude of the frequency in that window.  

Figure 6. Color-graph of Short-Term Fourier Transform of Plot Described in Fig 5. 
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Figure 7. Slice of STFT at Window Count #20 Figure 8. Slice of STFT at Window Count #55 
 

Figure 9. Exploded View of Inset Box from Fig. 7. Figure 10. Exploded View of Inset Box from Fig 9. 
Note the greater variance of the frequencies than in 
Fig 8. 

A closer look at two individual vertical slices of this STFT in Figures 7 and 8 

reveals some of the common attributes and differences of these slices. Each slice is a 

Discrete Fourier Transform performed on the given window of data and since the data 

represents a real signal, they are symmetrical around the midpoint on the x-axis. Without 

noise, these signals would be entirely DC signals and therefore there is a very large DC 

component (the center spike) in the resulting transform. The low-level noise that occurs 
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on the signal is represented by the presence low frequencies - the values close to the 

center spike. In Figure 8, higher frequencies appear on the extremities of the plot 

revealing the presence of a spoof attack. 

 The following procedure explains how to turn the STFT analysis into a binary 

flag (0 for no spoof, 1 for spoof). For each STFT window step, calculate the statistical 

variance of the high frequency values (first quarter for the frequency magnitudes for each 

Fourier transform) after removing the uppermost and lowermost two values to negate the 

effect of outliers. If this variance is greater than a threshold and is much greater than the 

average of the preceding five variances, then a spoof has occurred. Therefore, two 

conditions must be met for a spoof to be detected; the variance must be above the 

aforementioned threshold, but also this must be a significant departure from recent 

variance values. The motivation for this two-condition approach is to eliminate false 

positives resulting from high levels of natural background noise. See pseudocode below: 
for each window step 
do 
 take the first quarter of the frequency magnitude values 
 sort and remove the top and bottom two values 
 calculate the variance of the remaining values 
 

if variance > threshold and variance >> avg of previous 5 values 
 then 
 spoof has occurred 
 else 
 spoof has not occurred 
 end 
end 
 

A threshold of 50 and a variance difference of 25 over the previous values were 

used during the simulations and the experiments. 

 In the next two scenarios, variation has been added to the legitimate signal to 
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approximate the behavior of natural and ARM-style variation. Natural environmental 

variation and calibration drift generally take the form of gradual changes over time. 

Power adjustments made by a transmitting device during ARM appear very abrupt and 

the average power level of the signal instantaneously jumps from one level to another. To 

demonstrate natural variation a sine value was added to the legitimate signal in the 

Matlab code from the previous example: 
for i=1:1000 
 data(i,1)=30+rand*3+5*sin(i/30); 
 if (i>500 && i<600 && (floor(rand*4)~=1)) 
 data(i,1)=40+rand*2+2*sin((i)/30); 
 end 
end 

 

The resulting model plot and corresponding STFT analysis are illustrated in Figures 11 

and 12 below. In case be seen in Figure 12 that the natural variation appears at low 

frequencies while the high frequencies resulting from the spoof are still distinctive.  

 

Figure 11. Plot of Simulated RSSI Signal With Gradual Variation With Spoof 
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Figure 12. Short-Term Fourier Transform of Plot from Fig 11. 
 

To demonstrate abrupt ARM-like variation an intermittent offset value was added 

to the legitimate signal in the Matlab code from the previous example: 
ARM=0; 
for i=1:1000 
 if (mod(floor(i/50),2)==1) %offset every other 50 
 ARM=3; 
 end 
 data(i,1)=30+rand*3+ARM; 
 if (i>500 && i<600 && (floor(rand*4)~=1)) 
 data(i,1)=40+rand*2+2*sin((i)/30); 
 end 
 ARM=0; 
end 
 
This code results in the following model plot and corresponding STFT analysis illustrated 

in Figures 13 and 14 below. 
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Figure 13. Plot of Simulated RSSI Signal With Abrupt Variation With Spoof 
 

Figure 14. Short-Term Fourier Transform of Plot in Fig 13. 
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The ARM-like power adjustment scenario would seem to be more problematic 

because at the instant of each abrupt change, there might be a high risk of a false positive. 

However, as was the case with the natural variation, the power adjustment variation is 

reflected in the presence of lower frequencies and the higher frequencies resulting from 

the spoof attack remain present. 

 Figures 15, 16 and 17 depict the conversion of STFT analysis into binary 

conclusions in the three original examples (base signal with no variation, natural 

variation, abrupt variation). 

 

Figure 15. Demonstration of STFT Technique Binary Conclusions Against Plot 
from Fig 5. 
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Figure 16. Demonstration of STFT Binary Conclusions Against Plot from Fig 11. 
 

Figure 17. Demonstration of STFT Binary Conclusions of Plot from Fig 13. 
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As can be seen from the graphs, the detection of the spoof occurs at 

approximately 5.2 seconds in every case. Note that each spoof begins at 5 seconds, so 

there is a slight delay in the detection of the spoof. This is due to the fact that in each 

case, it takes about 0.2 seconds to build up enough variance to cross the threshold set by 

the SSFA. 
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3.2 Signal Strength Fourier Analysis (SSFA) Explanation 
 

There are two phenomenon which contribute to creating those signature vertical 

bands in the STFT color-graphs, which represent the presence of higher magnitude of a 

large range of frequencies. The first is an interference which arises from the interleaving 

of two distinct distributions of data points which is discussed further later in the section. 

It is certain that the frequencies in the vertical band result from interference because 

when the STFT is performed on the victim and attacker traces separately as illustrated 

below, no higher level frequencies are present. Since the Fourier transform of a 

composite signal is the sum of the Fourier transforms of the contributing signals, it is 

clear from the color-graphs in Figures 20-23 that the higher frequencies must originate 

from interference between the two signals as opposed to from anything within the signals 

themselves. 

 

Figure 18. Plot of Combined Signal (Victim and 
Attacker) 

Figure 19. STFT of Combined Signal (Victim and 
Attacker) 
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Figure 20. Plot of Base Signal (Victim Only) Figure 21. STFT of Base Signal (Victim Only) 

Figure 22. Plot of Spoof Signal (Attacker Only) Figure 23. STFT of Spoof Signal (Attacker Only) 
 

The second phenomenon which creates the vertical bands in the STFT color-

graphs is the random intervals with which the interleaving takes place. If the interleaving 

of the two distinct distributions occurs with a regular interval such as every other or every 

third values, only specific frequencies are illuminated in the STFT. For example, if the 

Matlab code from the previous example is altered so that every second and third frame is 

from the spoofer, then only a specific frequency gets illuminated. 
for i=1:1000 
 data(i,1)=30+rand*3+5*sin(i/30); 
 if (i>500 && i<600 && mod(i,3)~=1)

data(i,1)=40+rand*2+2*sin((i)/30); 
 end 
end 
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Figure 24. Plot of Base Signal with Natural 
Variation with Regularly Interleaved Spoof Frames 

Figure 25. STFT of Base Signal with Natural 
Variation with Regularly Interleaved Spoof Frames 

 

When the interleaving is randomly driven, it requires many more frequency 

coefficients (to include higher frequencies) to describe the signal observed in the STFT 

window. This dramatic increase in frequency coefficients serves to be the evidence used 

to detect spoofing behavior. This frequency variance is governed by a special case of 

Bernoulli distribution in the formula below: 

( ) ( )pp −−= 12
12

2 θθσ
where p is the probability of changing from one state to the other and θ1 and θ2 are the 

values of the two states. The variance reaches its maximum value for a set of models 

when the probably of changing a state is 0.5. The variance is also quadratically related to 

the difference of the models. The intuition from this formula is that two things are 

contributing to variance used by the STFT analysis technique. The first is the value of p, 

which in our application represents how even of a mix of frames from both the attacker 

and the victim exist in a given STFT window. If there are no spoofed frames in a 
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window, then the chance of going to the second state (governed by 1-p) is zero and which 

also reduces the variance of the observed signal to zero. The second is how different the 

two signal strengths are. If the observed signal from an attacker and victim can be 

modeled by the same strength, then the variance will go to zero. Conversely, the variance 

increases quadratically as the signal difference between the two states grows.  

 Therefore, it is the interference between the two distinct statistical distributions 

which generates the illumination of a higher frequency in the STFT combined with the 

random intervals of interleaving which spreads this illumination across many high and 

low frequencies creating the characteristic vertical band of a spoof in the STFT color-

graph. 
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3.3 Chi-Square Signal Strength Analysis Technique 
 

At Rutgers University’s WINLAB, PhD candidate Qing Li and Prof Wade Trappe 

have designed a system that attempts to detect a spoof by using a chi-square test statistic 

performed on a sliding window of 250 signal strength values [17]. 

 The chi-square approach builds a histogram for the “profile” of a device with 100 

bins representing the RSSI values from 0 to 100. When a new window is evaluated, a 

count is totaled for each bin based on the observed RSSIs of the window and a chi square 

statistical test is performed. The calculation used this formal, 

∑
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where k is the number of bins (100 in our case), O is the observed count in a specific bin 

and E is the expected count in a specific bin based on the distribution profile of the 

device. The null hypothesis for this test statistic is that the population of the profile 

window and the test window are the same. The chi-square approach uses a probability of 

error threshold of α = 0.01. If the chi-square value exceeds the critical value of 135.81 

(99 degrees of freedom, α = 0.01), then an alert has occurred. 

 To compare the efficacies of the two signal strength techniques, SSFA and the 

chi-square approach were run simultaneously against the model simulations preformed 

earlier on the SSFA. In these simulations, the first 250-frame window was used as the 

profile distribution and all future windows were compared against it. During simulations, 

I deliberately avoid placing spoof attacks during this first window. 
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Figure 26 illustrates the performance of techniques in the scenario with a spoof 

attack, occurring between t=5 and t=6, characterized by a base signal without variation. 

In it, both techniques are successful in detecting the spoof. Since it is a window-based 

detection scheme, the chi-square approach concludes that an attack as occurred between 

the times of 4.99 and 7.48 seconds, while SSFA concludes the spoof is occurring at 5.2 

seconds. There is again clearly a slight delay in SSFA conclusion due to the need to 

accumulate enough evidence to cross the high-frequency variance threshold (as explained 

earlier in this chapter). 

Figure 26. Comparison of Signal Strength Analysis Techniques Against Base 
Plot without Variation with Spoof 

 

Figure 27 depicts the same spoof attack with a legitimate signal characterized by a 

base signal with sinusoidal fluctuation to represent gradual natural environmental 

variation. This scenario illustrates the weakness of the chi-square approach. The profile 
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generated for this device in the first window causes many false positives to occur for the 

chi-square approach while SSFA is again able accurately detect the presence of a spoof 

between 5 and 6 seconds. This scenario will become very important later in the 

experimentation chapter. 

Figure 27. Comparison of Signal Strength Analysis Techniques Against Base Plot 
with Simulated Natural Variation with Spoof 

 

Figure 28 depicts ARM behavior with a spoof. In this case, it appears that both 

techniques have positively detected the attack (SSFA at 5.3 seconds and chi-square 

between 4.99 and 7.48 seconds).  
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Figure 28. Comparison of Signal Strength Analysis Techniques Against Base Plot 
with Simulated ARM-like Variation with Spoof 

 

The next scenario demonstrates when the chi-square approach clearly defeats the 

SSFA. This scenario involves a steady average legitimate signal with a relatively large 

amount of noise depicted in Figure 29 below. By increasing the level of noise by a factor 

of 3 over the previous iteration of a steady signal without variation, the chi-square 

approach still successfully picks out the window with the spoof in it, while SSFA suffers 

from numerous false positives.  
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Figure 29. Comparison of Signal Strength Analysis Techniques Against Base Plot with 
Large Level of Gaussian Noise with Spoof 

 

Finally the sensitivity of each signal strength technique was compared using the 

same Matlab code of a steady base signal without variation. In successive simulations the 

amount of spoofed frames was incrementally reduced to zero to determine at what point 

each technique could no longer detect the spoof. The simulations demonstrated that the 

chi-square approach appears to drop out at 22 spoofed frames in the 100 frame window, 

while SSFA could still successfully pick out a spoof with only about 4 spoofed frames as 

evidence in a 100 frame window. 
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3.4 Signal Strength Analysis Summary 
 

As demonstrated by the discussion in the last section, the chi-square approach can 

withstand greater Gaussian noise than SSFA, if the mean of the legitimate signal does not 

fluctuate. However, if there is fluctuation, even very large fluctuation, SSFA can still 

accurately pick out the spoof attacks while the chi-square approach generates many false 

positives. Additionally, SSFA is significantly more sensitive to smaller amounts of 

spoofing evidence. 
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Chapter 4: Experimentation 
 

4.1 Setup 
 

In order to compare the performance of the proposed spoof detection techniques, 

the spoof attack traces from the dataset in [9] were used. The dataset was in the form of 

dozens of pcap capture files created using tcpdump. Each capture file contained 

approximately 20 spoof attacks on the four devices usually taking place during a period 

of about 10 minutes.  

To process these data files a custom C program which relies on the libpcap 

utilities was written to process wireless networking frames [18]. This program, 

wifi_parser, enables the user to either read from a static pcap capture file or live data 

directly from a wireless interface. The user can additionally select which fields from 

either the 802.11 header, or the Prism (physical layer) header, which is added to each 

frame by a wireless card containing a Prism chipset. The output of this program is a 

single line of user-defined output for each frame processed. It was necessary to write a 

custom program because the two major text-based wireless networking parsers, Tcpdump 

and Tethereal, do not allow easy isolation of many header fields [16] [24]. The 
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wifi_parser help page below further describes some of the functionality built into this 

tool. 
[root@sudi-dhcp-139 devel]# ./wifi_parser -h 
 
Usage: ./wifi_parser 
 

options: 
 -c count       number of packets to count before exiting 
 -i interface   wireless network interface (default: ath0) 
 -r filename    read input from filename (supercedes -i) 
 -f filter      input capture filter 
 -s selection   header selector 
 -p prism       source contains prism header 
 -h this help 
 

header selector options: 
 Prism: 
 h host time 
 m mac time 
 c channel 
 i rssi 
 n signal quality 
 g signal 
 n noise 
 r rate 
 x istx 
 802.11: 
 t timestamp 
 l framelen 
 u duration 
 f frametype 
 y subtype 
 d destination 
 s source 
 b bssid 
 q sequence numbers 
 a flags 
 0:0:0:0:0:0:0:0 
 | | | | | | | \_Order 
 | | | | | | \___WEP 
 | | | | | \_____More Data 
 | | | | \_______Pwr Mgt 
 | | | \_________Retry 
 | | \___________More Frag 
 | \_____________From DS 
 \_______________To DS 
 

Below is example output from wifi_parser: 
[root@sudi-dhcp-139 testing]# ./wifi_parser -p -r mapreceiver100000.cap -s yaibstq -c 100 
1142390417.842684  15 0_0_0_0_0_0_0_0    Beacon bssid: 000b868139c8 s: 000b868139c8 seq: 2811  
1142390418.190113  23 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 526  
1142390418.191141  26 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 527  
1142390418.192145  25 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 528  
1142390418.193152  26 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 529  
1142390418.194214  24 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 530  
1142390418.195346  24 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 531  
1142390418.196372  26 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 532  
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1142390418.198596  24 0_0_0_0_0_0_0_0    Beacon bssid: 000b8680ff68 s: 000b8680ff68 seq: 533  
1142390418.199593  25 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 534  
1142390418.200652  26 0_1_0_0_0_0_0_0      Data bssid: 000b8680ff68 s: 0009e9b7400a seq: 535  

 

After parsing the capture files with wifi_parser, a Bash shell script was used to 

sort the arrival times, RSSIs and sequence numbers into separate files by source address. 

Each of these files was then individually analyzed using the various aforementioned 

spoof detection techniques. 

 

4.2 Results 
 

To present the results of the experiments, a detailed discussion of the results of 

the first experiment will be followed by a summary of the results for all 12 experiments. 

Finally, the experimentation summary will include discussion of several notable cases of 

interest. 
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Detailed Results of Experiment 1 
 
Device 000b868139c8 
- Experiencing five spoofs (at t = 144.2063, t = 198.0876, t = 288.3498, t = 310.1737, t= 
532.9158): 
 

Figure 30. Comparison of Signal Strength Analysis 
Techniques for Device 000b868139c8 
(Above graph is plot of RSSIs, below graph is 
comparison of Chi-square technique (top) and SSFA 
(bottom)) 

Figure 31. Comparison of Sequence Number Analysis 
Techniques for Device 000b868139c8 
(Above graph is plot of sequence numbers, below 
graph is comparison of Snort-wireless MacSpoof (top) 
and SNRA (bottom)) 

# True Positives # False Negatives #False Positives 
SSFA 4 / 5 1 / 5 0 / 238 steps 
Chi-square 5 / 5 0 / 5 3 / 8 windows 
SNRA 5 / 5 0 / 5 0 / 2381 frames 
MacSpoof 3 / 5 2 / 5 0 / 2381 frames 

Explanation: 
 

In this first example, SSFA is able to pick out four of the five attacks in Figure 30 

while the chi-square approach correctly identifies the windows of all five of the attacks, 

but produces three false positives of the remaining four 250 frame windows. This result is 

to be expected due to the shift in the mean of the signal at around t = 120 seconds. If the 

experiment were to run longer continuing same signal strength mean that existed for the 
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last 80% of the experiment, there would be more false positives. The space on the end 

where chi-square doesn’t produce a false positive is simply due to the fact that window 

had not accumulated 250 frames yet. 

In Figure 31, both sequence analysis techniques are very precise in their 

conclusions, however MacSpoof misses two smaller attacks which the SNRA performs 

without flaw. It is important to reiterate here that these techniques work well in these 

experiments because the attacks that were used were susceptible to sequence number 

analysis.  
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Device 000b8680ff68: 

- Experiencing six spoofs (at t = 62.7232, t = 125.2542, t = 166.0152, t = 212.6034, t= 
259.2065, t = 461.5391): 
 

Figure 32. Comparison of Signal Strength Analysis 
Techniques for Device 000b8680ff68 
(Above graph is plot of RSSIs, below graph is 
comparison of Chi-square technique (top) and SSFA 
(bottom)) 

Figure 33. Comparison of Sequence Number 
Analysis Techniques for Device 000b8680ff68 
(Above graph is plot of sequence numbers, below 
graph is comparison of Snort-wireless MacSpoof 
(top) and SNRA (bottom)) 

# True Positives # False Negatives #False Positives 
SSFA 6 / 6 0 / 6 0 / 1202 steps 
Chi-square 6 / 6 0 / 6 41 / 47 windows 
SNRA 6 / 6 0 / 6 0 / 12021 frames 
MacSpoof 5 / 6 1 / 6 0 / 12021 frames 

Explanation: 
 

Figure 32 depicts an example of spoof attacks with only minor signal strength 

difference from the base signal. Like the previous example, due to the calibration drift of 

the legitimate device, the chi-square technique generates false positives for every window 

after the initial reference window. Meanwhile, the SSFA is able to successfully pick out 

each attack perfectly. 

 In Figure 33, the performance of MacSpoof and Sequence Number Rate Analysis 

is close, however there is one attack that MacSpoof misses. 
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Device 000b868138b8  
- Experiencing three spoofs (at t = 0.039752, t = 46.4842, t = 580.9178): 
 

Figure 34. Comparison of Signal Strength Analysis 
Techniques for Device 000b868138b8 
(Above graph is plot of RSSIs, below graph is 
comparison of Chi-square technique (top) and SSFA 
(bottom)) 

Figure 35. Comparison of Sequence Number Analysis 
Techniques for Device 000b868138b8 
(Above graph is plot of sequence numbers, below 
graph is comparison of Snort-wireless MacSpoof (top) 
and SNRA (bottom)) 

# True Positives # False Negatives #False Positives 
SSFA 3 / 3 0 / 3 1 / 927 steps 
Chi-square 3 / 3 0 / 3 33 / 36 windows 
SNRA 3 / 3 0 / 3 0 / 9278 frames 
MacSpoof 2 / 3 1 / 3 0 / 9278 frames 

Explanation : 
 

Figure 34 illustrates a slew of false positives for chi-square technique versus one 

false positive for SSFA. Note there is an attack beginning at the very end of the 

experiment window.  In Figure 35, SNRA picks out every attack, while MacSpoof is only 

about to see two of the three.



47 
 

Device 000b8680e4e8: 

- Experiencing five spoofs (at t = 237.365044, t = 368.419378, t = 414.982608, t = 
486.31211, t = 544.536608): 

Figure 36. Comparison of Signal Strength Analysis 
Techniques for Device 000b8680e4e8 
(Above graph is plot of RSSIs, below graph is 
comparison of Chi-square technique (top) and SSFA 
(bottom)) 

Figure 37. Comparison of Sequence Number 
Analysis Techniques for Device 000b8680e4e8 
(Above graph is plot of sequence numbers, below 
graph is comparison of Snort-wireless MacSpoof 
(top) and SNRA (bottom)) 

# True Positives # False Negatives #False Positives 
SSFA 2 / 5 3 / 5 0 / 84 steps 
Chi-square 4 / 5 1 / 5 1 / 3 windows 
SNRA 0 / 5 5 / 5 0 / 840 frames 
MacSpoof 0 / 5 5 / 5 0 / 840 frames 

Explanation: 
 

The behavior in this experiment depicts an example of the hidden node 

phenomenon. After about 140 seconds, the legitimate device is no longer heard for the 

remainder of the experiment. Another node which was closer was most likely drowning 

out this hidden node. In any event, the results are worth studying because this behavior 

will always be a challenge to any sensor-based system.  

 In Figure 37, both sequence number techniques failed to detect anything simply 

because too much time had expired between legitimate frames and attacker frames. The 

signal strength techniques fared better because time is not part of the analysis. The first 
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spoof frame which is transmitted almost 90 seconds after the last legitimate frame 

appears to each window count-based technique as a frame which immediately follows the 

last legitimate frame. 

 The chi-square technique predictably detects a statistical aberration for every 

frame window it analyzes after the reference window. It is correct on most of the attacks 

but simply because all of the remaining windows only contain attack frames. It misses the 

final attack because it has simply not gathered enough data to make a determination about 

the final window. 

A key ingredient to the success of both of the sequence number analysis 

techniques and SSFA is that both the attacker and the target must be transmitting frames 

at about the same time. It is the interleaving that creates the gaps in sequence number 

analysis and higher frequencies in the STFT. 

 
Summary of Experiment 1 
 
19 Spoof Attacks # TP TP Rate # FN FN Rate #FP FP Rate 
SSFA 15 79% 4 21% 1 / 2,452 0% 
Chi-square 18 79% 1 5% 77 / 94 82% 
SNRA 14 74% 5 26% 0 / 24,520 0% 
MacSpoof 10 53% 9 47% 0 / 24,520 0% 
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Summary of Results 1-12 
 
143 Spoof Attacks # TP TP Rate # FN FN Rate #FP FP Rate 
SSFA 115 80.42% 28 19.58% 22 / 42,756 0.05% 
Chi-square 140 98.59% 3 1.41% 1418 / 1561 90.84% 
SNRA 122 85.31% 21 14.69% 1 / 427,752 0.0002%
MacSpoof 118 82.52% 25 17.48% 92 / 427,752 0.02% 

The table above summarized the detection or True Positive (TP) rate, missed 

detection or False Negative (FN) rate, and False Positive (FP) rate. Between the two 

signal strength analysis techniques, the chi-square technique has a significantly higher 

detection rate, however, its FP rate is so high it renders it useless. Generally, four out of 

five spoofs are correctly detected using the SSFA. 

 The performance of the sequence number analysis techniques is much closer, 

however SNRA performs slightly better in every category. 

 One device all of the techniques had trouble with was 000b8680e4e8 simply 

because its signal strength was so low it was very hard for the sensor to hear and when 

the sensor cannot hear the legitimate signal it makes it very difficult to detect a spoof. In 

fact, the vast majority of all of the missed detections in all of the experiments were from 

this device. By removing this hard-to-hear device from the performance statistics as 

illustrated in the table below, the detection rates improve dramatically while the false 

positive rates remain the same. 

114 Spoof Attacks # TP TP Rate # FN FN Rate #FP FP Rate 
SSFA 107 93.86% 7 6.14% 21 / 41,819 0.05% 
Chi-square 113 99.12% 1 0.88% 1418 / 1556 91.13% 
SNRA 111 97.37% 3 2.63% 1 / 418,334 0.0002%
MacSpoof 108 94.74% 6 5.26% 85 / 418,334 0.02% 
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The chi-square technique performed poorly in these experiments. In the adjusted 

performance statistics the SSFA achieved a 93.86% detection rate however still suffered 

from an expected false positive occurring once every 1991 window steps or about 19910 

frames. The Sequence Number Rate Analysis Technique did exceptionally well with an 

adjusted detection rate of 97.37% and a false positive only occurring every 418,334 

frames. 

 Some experiments contained traces of attacks which demonstrated some items of 

interest which are worth drawing attention to. The most striking of these are the examples 

of where SSFA correctly picks out spoofs that are not apparent to the human eye, such as 

the trace of device 000b8680ff68 in experiment #4 depicted in Figure 38. 

Figure 38. Comparison of Signal Strength Analysis Techniques on Plot with 
Imperceptible Spoofs, Experiment #4,  000b8680ff68 

 
Figure 39 depicts another remarkably successful spoof detection using SSFA. 

This time, again, it was of the device 000b8680ff68, but in experiment #8. 
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Figure 39. Comparison of Signal Strength Analysis Techniques on Plot with 
Imperceptible Spoofs, Experiment 8, 000b8680ff68 

 
The analysis of 000b868139c8 in experiment #7 depicted in Figure 40 illustrates 

the breakdown of MacSpoof when dealing with a trace that is experiencing large amounts 

of natural loss. 

Figure 40. Comparison of Sequence Number Analysis Techniques, 
Experiment #7 000b868139c8 
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Figure 41 illustrates one of the few examples where the noise level was too high 

for STFT to work. The one spoof attack is picked out at the beginning; however, it is 

followed by quite a few false positives. 

Figure 41. Comparison of Signal Strength Analysis Techniques, 
Experiment #4, 000b868138b8 

 

Aside from the infrequent missed detection or false positive, SNRA rarely 

produced many errors.  

 Finally, in a trace without any attacks, conducted outside the above experiments, 

was the capture of Automated Power Management behavior in the wild. As can been seen 

in Figure 42, SSFA handles the abrupt changes in signal mean well without throwing a 

single false positive. 
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Figure 42. Comparison of Signal Strength Analysis Techniques Against a 
Base Signal Experiencing a Large Amount of Automated Power 
Management.  
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4.3 Overall Experimentation Summary 
 

SSFA for using signal strength to detect spoofs convincingly outperformed a 

straight statistical approach as demonstrated by the chi-square approach. The SNRA also 

outperformed the open-source networking security benchmark, Snort-wireless’s 

MacSpoof. In some instances, SSFA could correctly identify a spoof attack where human 

inspection would have failed. This is a very remarkable accomplishment.  
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Chapter 5: Conclusions 
 

5.1 Summary 
 

The paper has demonstrated both in simulation and in experimentation that the 

Sequence Number Rate Analysis (SNRA) technique performed better in detection and 

false positive rates than Snort-wireless’s MacSpoof. SNRA accomplished this feat by 

calculating a frame transmission rate using the difference of sequence numbers divided 

by the difference of arrival times of consecutive frames. When this rate surpasses a 

theoretical frame transmission rate for 802.11b, SNRA concludes a spoof has occurred. 

The experimental results of the previous chapter confirm the superiority of the proposed 

technique over MacSpoof in most realistic situations. 

Additionally, the paper has demonstrated that using the Short-Term Fourier 

Transform, the Signal Strength Fourier Analysis (SSFA) could detect spoofs of stationary 

devices using signal strength as evidence with greater accuracy and far fewer false 

positives than another research project. This technique proved that it was able to survive 

the calibration drift and automated power management that pose the greatest challenges 

to other detection schemes based on signal strength.  
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5.2 Future Work 
 

A possible extension of this work would be to extend the SSFA to survive mobile 

transmitting devices or environments with large moving objects with RF reflective 

surfaces. One thing not covered in detail in this paper was that it is key to SSFA that the 

legitimate signal source is stationary. This not a far-fetched assumption to make because, 

more often than not, the victim of the spoofing behavior is an access point which is 

stationary. The reason moving objects are a problem is because when a device moves 

through a 3-dimensional space the many paths of emissions going from the source to the 

sensor can change abruptly due to something such as a reflecting surface. These abrupt 

changes from multipath also cause vertical bands in the STFT colorgraph and are very 

difficult to distinguish from authentic attacks. 

 Additionally, another area of future work would be implementing the hash 

function for retransmitted frames as described in Chapter 3. If a table of hash values for 

every sequence number was maintained for each hardware address, then when a frame 

was sent with its retransmit bit set, a hash value comparison could determine it the frame 

truly was a legitimate retransmission or a frame attempting to evade a sequence number 

analysis technique. 
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