
Manual

1. Notice

Warning:
This user manual is based on Solar release 1.0.1.

2. Overview
Here are some quick facts about Solar system to get you started, more information can be
found in various Solar publications.

• In Solar, sources publish events and applications make subscriptions to receive events. So
sources and applications are two types of Solar clients.

• You need to assign a static or context-sensitive name for the new source so it can be
discovered by applications.

• Applications make subscriptions to Solar in a small subscription language. A subscription
can be a simple source selection or a complicated operator graph.

• Solar consists of a set of Planets, and the sources and applications can connect to any of
them.

3. Client Facade
Class solar.Client is a facade object which you can use to interact with Solar system. It lets
you to advertise a (static or contexts-sensitive) name for a source, make subscription to
receive events. Its constructor takes two arguments: the hostname and the port number of the
Planet it should connect to. Its javadoc API can be found here.

4. Source
To write a new source, you must inherit it from the abstract class Source in the
solar.service.dag package. The new source class should implement following methods:

• run(): You should supply the logic of events producing here, typically an infinite loop.
You need to call publish method to send the event to all the subscribers of this source.

• handleQuery(Request query): If your source allows pull operation, you should implement

Page 1
Copyright © 2003 Dartmouth College. All rights reserved.

site:publications
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/docs/api/solar/Client.html


this method.
• main(String args[]): Although you can launch the new source from another class, it may

be simpler to use the main method to start a source with a name using Client interface.

You source class may look much like:

import java.util.List;
import java.util.Vector;
import solar.Client;
import solar.api.Event;
import solar.api.Request;
import solar.api.Attribute;
import solar.impl.EventFactory;
import solar.service.dag.Source;

public class MySource
extends Source

{
...
public void run()

throws Exception
{

...
while(true)
{

...
List attrs = new Vector();
Attribute attribute = new Attribute("dog_name", "skipper");
attrs.add(attribute);
...
Event new_event = EventFactory.getPlainEvent(attrs);
...
publish(new_event);
...

}
...

}

public Object handleQuery(Request query)
throws Exception

{
// return answer to the query

}

public static void main(String args[])
throws Exception

{
Client client = new Client("tahoe", 5470);
String advname = "[service=dog]";
client.advertise(advname, "mylobj", new MySource());

}
}

Manual

Page 2
Copyright © 2003 Dartmouth College. All rights reserved.



You can put any serializable object as attribute value, but then you have to get
SerializedEvent instead of PlainEvent. A dummy but complete example can be found as
ClockSource.java.

5. Operator
To write a new operator, you must inherit it from the abstract class Operator in the
solar.service.dag package. The new operator class should implement following methods:

• init(Options opts): Operator can be initialized with customized parameters (defined in the
subscription). After Solar loaded the operator onto a particular Planet, it will call this
method using the parameters you supplied to customize the operator. The javadoc for
Options can be found here.

• handleEvent(Event evt): You should supply the logic of processing received events here.
You need to call publish method to publish a new event to all the subscribers of this
operator.

• handleQuery(Request query): If your operator allows pull operation, you should
implement this method.

You operator class will look much like:

import serp.util.Options;
import java.util.List;
import solar.api.Event;
import solar.api.Request;
import solar.api.Attribute;
import solar.impl.PlainEvent;
import solar.service.dag.Operator;

public class MyOperator
extends Operator

{
...
public void init(Options opts)
{

//initialization using customized parameter...
}

public void handleEvent(Event evt)
throws Exception

{
...
//process the event
//publish a new event if necessary
...

}

public Object handleQuery(Request query)

Manual

Page 3
Copyright © 2003 Dartmouth College. All rights reserved.

http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/ClockSource.java
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/ClockSource.java
http://serp.sourceforge.net/docs/serp/util/Options.html


throws Exception
{

// return answer to the query
}

}

A sample dummy operator that appends attributes to received events can be found as
MutateOperator.java.

6. Application
To write a new operator, you must inherit it from the abstract class Application in the
solar.service.dag package. The new application class should implement following methods:

• handleEvent(Event evt): You should supply the logic of processing received events here.

You application segment may look much like:

import solar.api.Event;
import solar.service.dag.Application;

public class MyApp
extends Application

{
public void handleEvent(Event evt)

throws Exception
{

...
//process the event
...

}
}

A simple example can be found as EventPrinter.java.

7. Composition Language
Solar uses a XML-based data-flow language for applications to compose FAP graph, which
can then be used to make context-sensitive name advertisement or subscriptions. A sample
graph can be found here.

8. Running Solar
You must have Java 1.4.1 (or higher) to run Solar and its clients (run "java -version" to see
the Java version you are using). For department Linux machines, it is located at
/usr/java/j2sdk1.4.1/bin. There are two approaches to use Solar: 1) everyone connects your
sources and applications to a public Solar system, or 2) runs your own copy of Solar to

Manual

Page 4
Copyright © 2003 Dartmouth College. All rights reserved.

http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/MutateOperator.java
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/EventPrinter.java
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/EventPrinter.java
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/script/graph.xml


service your sources and applications. You need to follow second approach in case the shared
Solar crashed or does not function right.

• You need to download Solar package, and unpack it.
• If you are using department Linux machine, simply run "source script/env.rc" to setup the

environment. Otherwise, you need to put all the jar files in lib/ and dist/lib on your Java
classpath (linux, win32).

• Start a Planet:
• java solar.Planet -cfg script/solar.cfg
• if you got an exception when starting Planet, mostly likely the default port for Planet

(5460 and 5470) is used by another process on your host, either go to a different host
or specify a different port in script/solar.cfg if you know what you are doing.

• Start your sources (if any) and applications:
• If the host on which you run Planet is called "tahoe", then you need to initialize all the

Client (in sources and applications) with two parameters: "tahoe" and 5470 (or your
specified port).

• Try to run "java solar.test.ClockSource -host tahoe -port 5470 -name [sensor=clock]"
• Try to run "java solar.test.EventPrinter -host tahoe -port 5470 -query [sensor=clock]
• Your event printer shall print out the events published by clock source now.

Manual

Page 5
Copyright © 2003 Dartmouth College. All rights reserved.

http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/classpath.html
http://java.sun.com/j2se/1.4/docs/tooldocs/win32/classpath.html

	Manual
	1 Notice
	2 Overview
	3 Client Facade
	4 Source
	5 Operator
	6 Application
	7 Composition Language
	8 Running Solar


