Manual

1. Notice

}Thisuser manual is based on Solar release 1.0.1. ‘

2. Overview

Here are some quick facts about Solar system to get you started, more information can be
found in various Solar publications.

* In Solar, sources publish events and applications make subscriptions to receive events. So
sources and applications are two types of Solar clients.

* You need to assign a static or context-sensitive name for the new source so it can be
discovered by applications.

» Applications make subscriptions to Solar in a small subscription language. A subscription
can be a simple source selection or a complicated operator graph.

» Solar consists of a set of Planets, and the sources and applications can connect to any of
them.

3. Client Facade

Class solar.Client is a facade object which you can use to interact with Solar system. It lets
you to advertise a (static or contexts-sensitive) name for a source, make subscription to
receive events. Its constructor takes two arguments: the hostname and the port number of the
Planet it should connect to. Itsjavadoc API can be found here.

4. Source

To write a new source, you must inherit it from the abstract class Source in the
solar.service.dag package. The new source class should implement following methods:

« run(): You should supply the logic of events producing here, typically an infinite loop.
Y ou need to call publish method to send the event to all the subscribers of this source.
» handleQuery(Request query): If your source allows pull operation, you should implement

Page 1

site:publications
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/docs/api/solar/Client.html

this method.

Manual

e main(String args[]): Although you can launch the new source from another class, it may
be simpler to use the main method to start a source with a name using Client interface.

Y ou source class may ook much like:

i mport java.util.List;

i mport java.util.Vector;

i mport solar.Cient;

i mport sol ar. api . Event;

i mport sol ar. api . Request ;

i mport sol ar.api.Attribute;

i mport sol ar.inpl.Event Factory;
i mport sol ar. servi ce. dag. Sour ce;

public class My/Source
ext ends Source

public void run()
t hrows Exception

?hile(true)

List attrs = new Vector();

Attribute attribute = new Attri bute("dog nane",

attrs.add(attri bute);

Event new _event = Event Factory. get Pl ai nEvent(attrs);

bhblish(nemLevent);

}

public Object handl eQuery(Request query)
t hrows Exception

/1 return answer to the query

}

public static void main(String args[])
t hrows Exception

{
Client client = new dient("tahoe"
String advnane = "[service=dog]";
client.advertise(advnane, "nylobj",
}

new MySource());

"ski pper");

Page 2

Manual

You can put

any seridlizable object as attribute value, but then you have to get

SerializedEvent instead of PlainEvent. A dummy but complete example can be found as
ClockSource.java.

5. Operator

To write a new operator, you must inherit it from the abstract class Operator in the
solar.service.dag package. The new operator class should implement following methods:

« init(Options opts): Operator can be initialized with customized parameters (defined in the
subscription). After Solar loaded the operator onto a particular Planet, it will call this
method using the parameters you supplied to customize the operator. The javadoc for
Options can be found here.

« handleEvent(Event evt): Y ou should supply the logic of processing received events here.
Y ou need to call publish method to publish a new event to all the subscribers of this

operator.

« handleQuery(Request query): If your operator allows pull operation, you should
implement this method.

Y ou operator class will look much like:

i mport serp.util.Options;
i mport java.util.List;

i mport sol ar.
i mport sol ar.
i mport sol ar.
.impl.PlainEvent;
i mport sol ar.

i mport sol ar

public class

api . Event ;

api . Request ;

api . Attribute

servi ce. dag. Oper at or;

MyQper at or

ext ends Oper at or

{

bhblic void init(Options opts)

//initialization using custoni zed paraneter..

public void handl eEvent (Event evt)
t hrows Exception

f o~ —~— -

}

)brocess t he event
/publish a new event if necessary

public Cbject handl eQuery(Request query)

Page 3

http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/ClockSource.java
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/ClockSource.java
http://serp.sourceforge.net/docs/serp/util/Options.html

Manual

t hrows Exception

/1 return answer to the query

}
A sample dummy operator that appends attributes to received events can be found as
M utateOperator.java.

6. Application

To write a new operator, you must inherit it from the abstract class Application in the
solar.service.dag package. The new application class should implement following methods:

» handleEvent(Event evt): Y ou should supply the logic of processing received events here.
Y ou application segment may look much like:

i mport sol ar. api . Event;
i mport sol ar. service. dag. Application

public class MyApp
ext ends Application
{

public voi d handl eEvent (Event evt)
t hrows Exception
{

])brocess t he event

}

A simple example can be found as EventPrinter.java.

7. Composition Language

Solar uses a XML-based data-flow language for applications to compose FAP graph, which
can then be used to make context-sensitive name advertisement or subscriptions. A sample
graph can be found here.

8. Running Solar

You must have Java 1.4.1 (or higher) to run Solar and its clients (run "java -version” to see
the Java verson you are using). For department Linux machines, it is located at
lusrl/javalj2sdk1.4.1/bin. There are two approaches to use Solar: 1) everyone connects your
sources and applications to a public Solar system, or 2) runs your own copy of Solar to

Page 4

http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/MutateOperator.java
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/EventPrinter.java
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/src/java/solar/test/EventPrinter.java
http://www.cs.dartmouth.edu/~solar/site2/xrelease/latest/script/graph.xml

Manual

service your sources and applications. Y ou need to follow second approach in case the shared
Solar crashed or does not function right.

Y ou need to download Solar package, and unpack it.

If you are using department Linux machine, smply run "source script/env.rc" to setup the

environment. Otherwise, you need to put al the jar filesin lib/ and dist/lib on your Java

classpath (linux, win32).

Start a Planet:

» javasolar.Planet -cfg script/solar.cfg

» if you got an exception when starting Planet, mostly likely the default port for Planet
(5460 and 5470) is used by another process on your host, either go to a different host
or specify adifferent port in script/solar.cfg if you know what you are doing.

Start your sources (if any) and applications:

» If the host on which you run Planet is called "tahoe", then you need to initialize all the
Client (in sources and applications) with two parameters. "tahoe" and 5470 (or your
specified port).

* Trytorun"javasolar.test.ClockSource -host tahoe -port 5470 -name [sensor=clock]"

* Trytorun"javasolar.test.EventPrinter -host tahoe -port 5470 -query [sensor=clock]

* Your event printer shall print out the events published by clock source now.

Page 5

http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/classpath.html
http://java.sun.com/j2se/1.4/docs/tooldocs/win32/classpath.html

	Manual
	1 Notice
	2 Overview
	3 Client Facade
	4 Source
	5 Operator
	6 Application
	7 Composition Language
	8 Running Solar

