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ABSTRACT

Wherein, with some insight, some formality and some scorn, ellipse-drawing algo-
rithms, which had been wont unpredictably to stray by a pixel here and there, are brought
to heel. The flawed designs of previous algorithms are attributed to premaiptieniza-
tion”: uncritical reuse of an algorithmic scheme that had been tuned for a special case
(circles) beyond the point of no return.

Theee is no pyal road to geometry.

The lgendary answer of Euclid to King Ptoloyne expressed desire for a less arduous introduction
to theElementsarries equal force in programming. There is no substitute for precise analysis.

The problem of drawing ellipses is simple, and the general outline of a solution .isTdleegin lies
a danger Programs get written by specifying a method of solution without fully specifying an ofgecti
mathematics figures only in deriving arithmetic details. Whemwadst cases look good enough, the pro-
gram is declared doneBut it is fragile because it lacks well defined mathematical properties. Its output
can be looked at but not built upon—a bad statefairaffor a basic subroutine. Better results faliiyom
mathematical study of the program as a whole, not just as a collection of isolated statements.

Published algorithms, which attempt to mimic the most highly optimized algorithms feingraircles,

have failed because the optimization depends on symmetry that ellipses lack. Thus thisxamalee
illustrates an often ignored truth of software engineering: to extend the functionality of a program, it is
sometimes necessary to backtofa more general starting point and rebuild, not just remodel. Sinee

ter,” i.e. more highly tuned, programs are likely to be less adaptable, it may be wise toepamatiervand

less perfected versions for theuoutionary potential.

Jon Bentlg, Brian Kernighan, and Chris Van Wylagehelpful criticism about presentation.
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Getting Raster Ellipses Right

M. Douglas Mcllroy

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

A concise incremental algorithm for raster approximations to ellipses in standard position pro-
duces approximations that are good to the lastlmven near octant boundaries or the thin
ends of highly eccentric ellipse3he resulting approximations commute with reflection about
the diagonal and are mathematically specifiable without reference to details of the algorithm.

1. Introduction

We ae concerned with approximating an ellipse by lighting pixels on a bitmibp.ellipse is cen-
tered on a point of a square grid, which for simplicity we takbe 0,0). Theprincipal axes are parallel to
the grid lines. The lengths of the semiaxesaa@db. When both quantities are pogéj the ellipse satis-
fies the familiar equation,
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When the length of a semiaxis is zero, the ellipse degenerates into a line segment.

More particularly we ae concerned with incremental approximation algorithms thathvia only
integer arithmetic.Accordingly a andb are taken to be ingers and the grid is taken to be the planegitte
lattice.
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Ideally an approximation to a simple carsrawn by lighting points of the integer lattice should be

Metrically accuate. Every point of the approximation should be as close to thee@as\ossible in
some sense.

Connected.The approximation should be connected by chess-kingsno

Topologically accuate. The topology of king-mee paths in the approximation should be the same
as the topology of the original curve.

Thin. Each lighted point should ha exactly two lighted king-mee reighbors. Thinnesis a corol-
lary of topological accurgc

Symmetric.Approximation should commute with the symmetry operations of the grid: translations,
rotations through multiples of/2, and reflections about horizontal, vertical and diagonal axes.

Describable. The approximation should be specifiable mathematically without reference to the
approximating algorithm.

These desiderata cannatvays be met in full.

Thinness and topological accuyamay not be achigble when the scale of features in the original
cune is mmparable to or smaller than the grid spacing of the bitmap; thets @igproximating diérent
stretches of the cuevimay come into adjacep®r coincidence. Irparticular figures withtails may result;
see Figure 1 and Appendix 2, Lemma\®e an sae the appearances, Wever, by understanding coinci-
dent or irrelgantly adjacent stretches of the approximation to be traced in separate sheets.

Thinness conflicts with metric accuyaat certain pixels calledquae corners. At a square corner
the points at three vertices of a grid square are lighted. Square corners sometimes occur in the approxima-
tions adopted in this paper; see Figure Bawever, there can be at most one square corner per quadrant,
near the point where the magnitude of the ellpdepe is 1. We dall argue that such square corners are
inevitable: to exorcise them, one would/éd sacrifice other critical properties.



Figure 1. An elongated ellipse with tails= 15, b = 1.

Incremental algorithms trace a connected approximation via chess-kireg,rmgaided by a function
that measures goodness of fit. On each of some set of grid lines that intersectelzegidrpoint is cho-
sen to minimize one of these criteria:

Displacemenbf the lighted point from the intersection, measured along the grid line.
Distanceof the lighted point from the curve, measured normal to the curve.
Residualbf the curves defining equation\eluated at the lighted point.

The three criteria agree for circles with mee radius, 2 but do not necessarily agree for ellipses; see Fig-
ures 2b and 2c.

We dall adopt the minimum-displacement criterioAn approximating point will be classed as a
minimum-horizontal-displacemepbint or aminimum-vertical-displacemeipbint according to the direc-
tion in which the minimized displacement is measured. Tloecgses are not mutually exchusi
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Figure 2. (a) Open circles mark square corners in the approximation to the ellipse with

a = b = 4. (b) The minimum-residual approximation far= 4 andb = 1 dffers from the
minimum-displacement approximation at the points mdrky open circles. (c) The mini-
mum-distance approximation far= 26 andb = 18 differs from the minimum-displacement
approximation at (20,11), mae#d by an open circle. At (20,11) and (20,12) the vertical dis-
placements from the ellipse are about 0.501 and 0.499; the normal distances are about 0.383
and 0.385.A dot marks the octant juncture where the slopelis

A Freeman appoximationis a minimum-displacement approximation where all grid lines are consid-
ered® The handling of ties betweenawpoints on one grid line is left open.

Most published incremental algorithms for wnag ellipses split the cuevinto octants bounded by
points where the absolute value of the slope is 0, dg.olUsing compass-point names for a represemati
outward normal, we speak of thee quadrant being divided intonaNE and areNEe octant. Thgunctureof
the octants is the point with slop#. Figure2c shows part of aE quadrant. Adot marks the juncture.
TheNNE octant lies to the left of the juncture, thee octant to the right. Compass directions are also used
to refer to directions between points; withortheast’ referring to ag bearing properly between north and
east, and so forthA single point lighted to the northeast of the juncture is calledwside point. The
square corner in thee quadrant of Figure 2a is an outside point.



The published algorithms that easeen, by Pitteray,* > Wirth,® Van Aken,” 8 Pratt? DaSilval® and
Kappel! consider only ertical displacements for theie octant and only horizontal displacements for the
ENE octant. Thisconvention is certain to yield a thin and connected approximation to each octant because
the slope of the ellipse is bounded to the rgntye] in the NNE octant and t¢g—oo, -1] in the ENE octant.

From the slope bounds also follows

Lemma 1. Any minimum-horizontal-displacement point fontieeoctant is also a minimum-vertical-dis-
placement point for that octant, unless the appnating point is an outside poinA smilar statement,
with the roles of horizontal and vertical inbbanged, holds for thene octant?

An outside point may be a minimum-displacement point in both directions, witness configutafioasd
6, but it need not be, witness configuratiahand10. (Numbered configurations refer to AppendixThe
reader will find it profitable to detour there and become familiar with theentions of the diagrams,
which illuminate nuances of the problem.)

According to Lemma 1 the oneay approximations that the published algorithms trace are atso tw
way Freeman approximations—except possibly at the juncture. The thinness of the one-way approxima-
tions implies that the Freeman approximation also is thin—again, except possibly at the juncture.

2. Generatingthe Freeman approximation

We sall deselop an analogue of the well known Bresenham algorithm for clrtdetrace thene
guadrant of an ellipse from north to east. Suppose the approximation has been traced to Fhie [pagat
ure 3. By monotonicity of the ellipse, thextepproximating point will be one of the three neighbors to
the east, southeast, or soutPoint E will be chosen if the ellipse meets either of the unit Ersor EH
centered thereS will be chosen if the ellipse mee®/ or SH; otherwiseSE will be chosen.
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Figure 3.

If the ellipse meetSV, then by Lemma 1 it must also me®il, for S is a minimum-ertical-dis-
placement point of thene octant. Thdatter fact follavs from observing that for the ellipse to m&at
with P lighted it must hee average slope less thati in the region south ofl and north ofSV; hence the
juncture lies north oSV.

To check for a south step, then, it suffices to check whether the ellipse $t¢e®ovided P lies
abore the x axis, this is eqwalent to checking that the right end 8H lies outside the ellipseWe reed
not worry about the possibility of a tie, where the ellipse m8etand SE exactly in their common end-
point, for that cannot happen; see Lemma 3 in AppendiaRdefiniteness in the algorithm, we shall arbi-
trarily break the tie indvar of the outer point, in this cagE

To check for an east step whérlies abwe the x axis, we similarly check whether the ellipse meets
EV by seeing whether thever end ofEV lies inside or on the ellipse. If the ellipse does not red&twe
check whether it meetSH by seeing whether the left endBH lies inside or on the ellips€For aesthetic
consisteny, ties are again broken iava of the outer point.)



By unwarranted analogy with the treatmentS)¥, the cited algorithms ignor&H. An dgorithm
thus simplified will not light the square corner in configuratibasnd20, athough it will light the corner in
the transposed configuratiob8and18. Thus the simplification defeats symmetry.

These considerations lead to

Algorithm O.
x:=0
y:=b
while y>0
mark(X, y)

if meets EMhen step E
else if meets EHhen step E
else if meets SHhen step S
else step SE

while x<a
mark(x, y)
step E

The first loop requireg > 0 to assure that th8H andEV tests are made only whéhlies abae the x axis.
The second loop runs outyaremaining steps along theaxis.

To express the predicateeetsanalytically we cefine an error functiona as
e(x,y) = b*x° + &y’ - a’b’
The equation of the ellipse &x, y) = 0 and the meeting conditions are

meets EV e(x+1,y-3)<0
meets EH e(x+3,y)<0
meets SH e(x+1,y-1)>0

The half-integer quantities can be respected irgartealculations by scaling, or by appropriately
rounding the fractional part. At the considered points, which all lie medr, the magnitude af is on the
order of maga® b®). Thirty-two-bit arithmetic with rounding (but not with scaling) is adequate to cope
with values ofa andb to just under 900.*

We transform thef tests algebraically to use integer arithmetic and the integer commotpeetbe

sione(x +3,y-1) - (a2 +b%/4.

e(x+1y-3)<0 {EV}
e(x+3,y-H+e(x+Ly-3)-e(x+3,y-3)<0
e(x+%,y—%)+b2(x+1)2—b2(x+l)2g0
e(x+?,y—%)—(a§+bz)/4+(22+b)/zg+ b2()§+1)2—b2(x+%)230
e(x+3,y-3) - (@+b)4+b°x<-a’/4-b

e(x+31,y-1) - (a2 +b?/4 + b*x < - (%40~ (a mod 3 — b?

The rounding in the right side of the last inequality is justified by the integrality of the left han@side.
larly

e(X+§,y)50 {EH}

e(x+% y-1) - (@+b)/4+ @ +b)4+e(x+1,y)-e(x+1,y-1)<0
e(x+31,y-1) - (@2+b?)/4+ aly < - b%/4

e(x+3,y3) ~ (&> +b)/4 + a’y < - (b*/40- (b mod 3

* Since an approximate poi(x, y) may be up to 1/2 unit bthe ellipse, a test point, séy+ % ,y—1), may be
3/2 unit of. At such a point, wita = b, y Ela, and x 20, we estimatde(x, y)| Z|@e/dy)ay| ¥3a®. Thus
e(x, y) is liable to werflow 32-bit registers aa > (2°4/3)'%, or a > 894,



e(x+%,y—1)>0{SH}
e(x+3,y-5) -~ (@+b)/4+(@+b)/a+e(x+5,y-1) - e(x+3,y-5)>0
o(x+3,y=3) ~ (@ +bI4 - Py >~ b4 - o

e(x+1,y-1)-(a®+b?/4-a’y>-b*40- (b mod) - &
Installing the transformed tests and arranging to calce(ate % Y~ %) incrementallywe et the follav-

ing program, for which = e(x + % Y~ %) - (a®+bd)/4 is a bop irvariant. Appendix3 gives an mplemen-
tation in C.

Algorithm 1.
x:=0
y:=b
t:= b?(x®+x) + a%(y? - y) — ab?
while y>0
mark(x, y)
if t+b’x<-@&%40-(a modd - b? {e(x+1,y-1)<0, EV}
Xx+=1
t +=b%2x+2)
elseif  t+a’y< - b%40- (b mod? {e(x+1,y)<0; EH}
X+=1

t +=b%2x+2)

elseif  t-a’y>-b?/40-(b modd -a® {e(x+3,y-1)>0; SH}
y-=1
t+=a’(-2y+2)

else
Xx+=1
y-=1
t +=b%2x+2) + a%(-2y +2)

while x<a

mark(x, y)
X+=1

It is a straightforward matter to check that the program works in degenerate casea whbrs
zero.

On thex axis theEH test would galuate to true at points inside the ellipse, or atpoint if b =0.
By modifying the loop condition so theH test gets performed witli =0 when there is a tail, we may
drop the second loop. The program in Appendix 3 incorporates thisAggendix 3 also explains toto
gan speed by exploiting the fact that not all of the tests are needed in all parts of the quadrant.

To trace an elliptic arc that spans only part of a quadrant, Algorithm 1 can be startgdmanian
mum-displacement point. One possible sticking pointrftow during the initialization oft, is more
apparent than realf t is in range, it can be computed in unsigned arithmetic withgatdeo oserflow to
yield a correct twos-complement result.

3. Discussion

RescuingEH from unjustified oblivion, Algorithm 1 generates a genuine Freeman approximation,
yet can be implemented as compactly as comparable algorithms that yield ad hoc approximations; witness
Appendix 3. Although | hee wnfidence in it, the desition has been long, informal, and riddled with case
analysis. Aproof outline exist$2 but it would be reassuring to aa brmal proof.

The Freeman approximation satisfies the six desiderata set forth at the outset;, & possibility
of having four square corner§he corners could be sheared off, although | dknbw a way to do so
without extra code. Rejecting square corners would entail other difficulties asAgeliragy may be lost:
in configuration6, for example, thebad” corner point is noticeably closer to the ellipse than are either of
its “good” neighbors. Invisual terms, uniformity of line will be bought at thepense of roundness of
shape, as Figure 2a ste Mosttellingly, the algorithms wsefulness for drawing elliptic arcs would be



sacrificed, as we shall see shorthrcs would hae © be dawn differently, with the almost certain result
that an arc ending at the juncture would not coincide with the underlying ellipse there.

The cited algorithms differ primarily in their treatment of the junctdreey switch between theNE
andeNE octants according taavious heuristic criteria that defeat one or more of the desiderata. As a result
none yields an approximation that is mathematically definable without reference to the algorithm. All can,
but do not necessarilyshear of square cornersDaSilva’s an stray; in configuratiob DaSilva visits (9,5)
rather than (9,6)°

Tails bedeil most of the algorithms; only Pratt is careful about tHeRittevay’s ariginal paper men-
tions tails it does not handle thefrhis later paper tries to cope by backing tof 4-connected (rook-
move) approximations. Typically algorithms designed withoutgad to tails suffer a catastrophic tracking
failure when a bar in Figure 3 stretches clear across the ellipse instead of cutting just oné Htaheh.
fishy tails of Figure 4, for example, arise from such a tracking failure imhW dgorithm® (In partial
redemption, Wth’s is he only algorithm that respects symmetry—by virtue of handling the major and
minor axes unsymmetrically!)

= m

Figure 4. A typical mistale in dawing tails. The ellipse is the same as
that in Figure 1a = 15,b = 1.

Why havethe published algorithms eschewed the Freeman approximatianarof ad toc criteria?
Optimistic imitation of the best algorithms for circles is doubtless part of the reason. When thayPitte
like dgorithms were seen to produce visually satitbry ellipses, details such as precise determination of
the juncture and respect for symmetry were simplgdtien. Perhaphe Freeman approximation has been
overlooked also because of an unspoken (and groundlesswrofieemma 1) wrry about the possibility
of excessive guare corners. Almost certainly the possibility of configurations suéhaasi 18 has been
overlooked.

Most of all, though, a desire for a fast I8dms probably upstaged other considerations: the pro-
grams hge been optimized prematurelhAt least for dreving full ellipses, where four points are plotted for
each one that is calculated, the price of one extra test to get the Freeman approximation is negligible.

Because their approximations are indescribable, the published algorithms cannot easily be modified
to draw elliptic arcs gven the endpoints Even when a proposed endpoint is verified to be a minimum-dis-
placement point, it may not belong to the approximativiould, for example, be a square corner that the
algorithm skips.An infinite loop can result from testing for termination against such a point. In contrast,
an arc-tracing program based on the Freeman approximation can be made accurate and safe because the
guestion of whether a point belongs to the approximation can be quickly decided.*

Some open questions: Is the uncertain configurdtdnealizable? Ishere a simpler ay to find the
Freeman approximation? Can general conic sections be handled as easily?

| wish to acknowledge Rob Pike, who requested the program, the reference that stimfatiesvit,
members of IFIP \&tking Group 2.3 on Programming Methodology for their insights into prograst de
opment, which helped shape it, and conscientious referees, who helped polish it.

* Solve (1) for y at integer x (or vice versa) and round, or check for a sign difference in the the error fuaction
evduated at the ends of ba¥sandH in Figure 3.
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Appendix 1. Inventory of configurations at the juncture

The diagrams belo enumerate all distinct ays that the ellipse can cross grid lines in the neighbor
hood of the juncture, where the slopeis Eachdiagram shows the four grid lines that surround the junc-
ture. Bardndicate intervals of equélent crossings as in Figure 3he midpoint of a bar will be lighted if
the ellipse intersects the bak bar missing from the top (or right) line is understood to be sdr@ee out
of sight to the left (or bottom)A dot marks the juncture.

Numbers shw the dimensions and the coordinates of a grid point for an ellipse that realizes the con-
figuration witha = b. Configurations markd X are impossible; see Lemmas 4 and 5 in Append@dh-
figuration13, marked ?, has no representatinith a <100Q its possibility is a number-theoretic question.
Note, though, that configuratidiBis the transpose df, and thus can be realized wigh< b.

The inventory is ordered lexicographically by decreasing positions of the bar on the left, top, right,
and bottom grid lines. Configurations inconsistent with a monotone decreasiegaeunot shwn. Nei-
ther are configurations thatowid violate slope requirements in grid squares that do not contain the junc-
ture: the gerage slope of the ellipse across a square must be atleésnly the NNE octant enters it, and
at most-1 if only theENE octant.

b=7 b=10

4.4) : (15.4)

8.4) ' 22 C
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Appendix 2. Supporting lemmas

Lemma 2. An approximate ellipse wittz @ has tails if and only if & 8b? and a> 0.

A tail occurs if(a—1,0 is lighted, or in other words if and only if the ordinate of the ellipse at
x =a-1lisless thai/2. Thusa>0and

y? = b’1 - (a-1)7%/a%) <1/4
Expand and clear of fractions:
a’—8ab’ +4b’>>0

Now a must exceed the larger root of the associated quadratic equation. (The smaller root is less than 1.)

If b> 0, this is equialent to

—1
>4b% + 4b* f1-
a 42

By Taylor’s theorem with remainder
a>8b’-12+R

where

=32
0<relOldy 10
8 k2000 4b20
Sinceb is a positve integer,R is surely less thah’2. Usingthe fact that is an intger, we find a > 8b? for

positve b. The result also holds fdr=0 and a > 0, in which case the approximate ellips@edrerates to a
line segment—all tail.

Lemma 3. The ellipse of equati@)with integral a and bdoes not pass through any point, one dauate
of whid is an nteger, and the other half an odd irger.

Suppose that the ellipse does pass through such a(poijt, Without loss of generalifyet x be an
integer andy = z/2, wherez is an odd intger We may assume thajcd(x, a) = gcd(z, 2b) =1; if it were
not, we could reduce the fractions in the defining equation

XX 7

—t —— =

a2z 4b?
to get a counterexample of the same form in which the assumption doe§ heldum of tw fractions in

lowest terms can be 1 only if their denominators are the s&tercea =2b. Becausex/a is in lowest
terms,x must be odd. Consequently wevhan tiple (X, z, a) with parities (odd,oddyen) that satisfies

1



X+Z=a
But as is well known, no such triple exists, for that would imply
1+1=x2+Z=a?=0(mod 4.

Lemma 4. Configurationg 8, 14, and 15 are impossible.
The coordinates of the juncture,(Y), must satisfy both the equation of the ellipse
2
% + >b’z =1 )
and its dewative
2x 2y dy
a2  b? dx
with dy/dx = —1. Solvingsimultaneouslywe find
a® b?
V@i Vi

)

W(X1.Y1
T

(X.Y)

(X2,Y2)

Figure 5.

Configurations4 and 8 are both remplified by Figure 5.The ellipse meets the top grid line at
(X1, Y1) and the right grid line abtG, y,). Fromthe figure we see that

1/2SX1SX<X2£X1+1/2 (3)

0Sy2<y1—3/2<YSy1 (4)
From the equation of the ellipse (1),
(xa/a)? + (y2/b)* =1

(Xola)” + (yo/b)* =1
Subtract and factor.
(Y1 = Y2) (Y1 + ¥2)07 = (%o = Xg)(Xo + X))/ &°

From (3)x, — x; <1/2. Alsofrom (3), the secondattor on the right is at mo2k; +1/2, which in turn is at
most 2X +1/2. Hence



& Y+ S X+
b2 Yi=Y2 )N tYo) = 1
From (4),y,-y>>32andy, 2Y:

3a

2 2
According to (2)a2Y/b? = X. Substituting and simplifying, we find

1 _a
X < é - 3 E y2

From (4)y, is nonngdive. Thus the last inequality implie¥ < 1/2, which contradicts (3). The figure is
impossible, as are its instancésnd8. The denvation has not used the assumpti@e b, so a @milar
argument prees the impossibility of the transposed configurati@dsand15.

(Y+y2)<X+%

Lemma 5. Configuratiorand9 are impossible.

Figure 6a illustrates configuratidh The ordinates of pointé& and B differ by more than 1We
shall shev this is impossible by considering Figure 6fhere pointsA and B’ are intersections of adjacent
grid lines with an ellipse in standard position. The ordinate& ahd B’ differ by exactly 1. By Rolles
theorem,* the junctur€X’,Y'), where the slope isl, must lie between the grid lines. Let pdirg, yo) be
the midpoint ofAB, and let the lengths of the semiaxes of the ellipsa laadb. (None ofxg, yo, &, or b
is constrained to be irdeal.) Sinceboth A andB' lie on the ellipse,

~
A (Xo=Y.yo +%2)=A

(XVY) yof A —

B ¥)

B
B’ =(Xo +%2,yo ~¥2)

(a) (b)
Figure 6.

(Xo— %)2 N (Yot %)2 _

a2 b2 1

(X + %)2 + (Yo- %)2

a? b2

Solve smultaneously fom? andb?:

a2 = (X0 * Yo)(XoYo +1/4)
Yo

b2 = (X0 * Yo)(XoYo +1/4)
Xo

Substituting in (2), we find

* Somevhere between the ends of a chord of a smooth curve, the tangent to thesinbe parallel to the
chord.



. 1y
Y2=ys+- 2 5
B* 2 (5)
Consider nw the one-parameter family of ellipses that pass thraugne member has akB. A
second has ar8B; leta andb be the lengths of its semiex Then

(%o - %)2 + (Yo+ %)2 _
a2 b2

Sincexy andy, are fixed, a andb must vary inersely with each otherLet (X,Y) be te juncture of the
second ellipse. From (2) we see thatascreases ant decreasesy must decrease and vicerga. Sup-
pose the cum in Hgure 6a to be the cuevAB in Figure 6b Its juncture must lie at least one half unit
below A; thusY < yo. From (5),yo<Y,s0Y <Y'. From the iverse variation ofa andY it follows that
a> a and arcAB must lie outside aré&B, as fiown. ThereforeFigure 6b requires the ordinatesAfind
B to differ by less than 1, while Figure 6a requires them to differ by more than 1. This completes the proof
of the impossibility of configuratioB. Since the proof does not depend on the assumptiob, the trans-
posed configuratiofl is also impossible.

1




Appendix 3. Implementation in C

This program is based on the model in the, tend incorporates simplifications discussed there plus
other routine optimizations. The initializer forhas been specialized to &kto account the known values
of x andy. Constant calculations kia leen meed out of the loop. The strength of most multiplications in
the loop has been reducedariablesxc andyc are the coordinates of the center of the elligBee arith-
metic fits in 32-bilong integers for values od andb less than 896; the exact value has been confirmed
experimentally Bewae, the comma operator denotes serial, not parallel, assignment.

extern void point(int, int);

#define incx() x++, dxt += d2xt, t += dxt
#define incy() y--, dyt += d2yt, t += dyt
void ellipse(int xc, int yc, int a, int b)
{ [ * e(X)y)=b"2*"2+a"2*y"2 - a"2*b"2 */
intx=0,y=b;
long a2 = (long)a*a, b2 = (long)b*b;
long critl = -(a2/4 + a%?2 + b2);
long crit2 = -(b2/4 + b%?2 + a2);
long crit3 = -(b2/4 + b%?2);
long t = -a2*y; /*t = e(x+1/2,y-1/2) - (a"2+b"2)/4 */
long dxt = 2*b2*x, dyt = -2*a2*y;
long d2xt = 2*b2, d2yt = 2*a2;
while(y>=0 && x<=a) {
point(xc+x, yc+y);
if(x!=0 || y!=0)
point(xc-x, yc-y);
if(x!=0 && y!=0) {
point(xc+x, yc-y);
point(xc-X, yc+y);

}
if(t + b2*x <=critl ||  /*e(x+1,y-1/2) <=0*/
t + a 2*y <= crit3) [* e(x+1/2,y) <=0 */
incx();
else if(t - a2*y > crit2) /* e(x+1/2,y-1) > 0 */
incy();
else {
incx();
incy();
}
}
}
Optimization

Further modifications for &fiency are possible, but fe are justifiable unless point-dséng is
unusually fast and ellipses are unusually common in relation to other graphicveemi{iommorsubex-
pressions can be eliminated and constants pat@dg Moremultiplications can be reduced to additions.
There is no need to test< a unlessy = 0. Furthertests can be eliminated by splitting the single loop into
four: vertical tail,NNE arc,ENE arc, and horizontal tail. There are only south steps inehéal tail, which
continues while south steps are possible, only east steps in the horizontal tail, which continues @&hile
There are no east steps in t#ne arc, which may begin at the first south step innke arc. Pointsn the
vertical tail are reflectedertically, in the arcs vertically and horizontallgnd in the horizontal tail horizon-
tally unlessa = 0. Therarely efective EH test €rit3 ) may be placed last in the loop for thee arc, the
only place where it remains necessatry.



Testing

Mathematical proofs & lives of their own, and elve as he context of theorems becomes more
fully explored™® This phenomenon appears also in programming, where the exploragsnthakform of
testing and use. Programming has the further complication of bridgingthbegween proof and imple-
mentation: does the code faithfully mirror what was/pd@ Sleptical testing is ne@r amiss.

Besides various sporadic checks, the C program has been tested
For all values ofa andb in the range 0 to 4.
For circles of integer radius up to 20 and of radius divisible by 100 up to 1000.

Over small ranges around the firsivferitical points for tails, i.e. with one parameter near 8 times the
square of the othgin both orientations.

For a=1000 ad b =1 and vice versa.
For a andb in the range [890,900], which spans the onset of 32vkitlow.

For square corners in approximate circles, which happen for only four radii less than 1000, namely 4,
11, 134, and 375.

For the cases pictured in Appendix 1, the parameters for which were independently determined.

Outputs were checked mainly by mathematical, not merely visual, critemiaeach test case some of the
following checks were made.

Termination: a quadrant beginning(Btb) ends at &, 0).

Symmetry: the approximation foa,b) mirrors that for b, a); circles hae aght-fold symmetry.
Continuity: no coordinate changes by more than oneyadtap.

Thinness: a quadrant has at most one square corner.

Square corners happen where predicted.

Spot checks against ellipse coordinates calculated in floating point.

The dimensions at onset of tails.

Comparison against output fromititi’s dgorithm, sometimes for agreement and sometimes for pre-
dicted disagreement.



Math before Code:
A Soundly Derived Ellipse-drawing Algorithm

M. Douglas Mcliroy

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

The problem of dn&ing an ellipse on a raster is posed mathematically as the problem of con-
structing a Freeman approximation to a eunA straightforvard program is pred to gener-

ate the approximation, and then transformed into an efficient all-integer scheme. lItsvegic ha
ing been shaped by mathematics, the result is free of anomalies that pesléously pub-

lished programs, the outlines of which were designed with only cursory mathematical specifi-
cation. Mathematicwas used mainly to fill in detailsThe outlines, borrowed from the most
efficient algorithms for drawing circles, didnvork because tlyehad been specialized toarf

to be readily generalizable in amdirection.

This small example highlights a serious gitin software golution: advanced code is often an
inappropriate platform from which to launch radical advances in code.

Introduction

This note attempts to go beyond the relyi intuitive devdopment in the accompgimg paper “Getting
Raster Ellipses Riglitt o give a dear outline of a correctness proof of a simple ellipse-drawing algorithm.

The algorithm generates a Freeman approximatieherein a cure is quantized by plotting on each grid

line the nearest grid point to each intersection of that line with the.clfreemarapproximation enjgs

the distinction of being mathematically describable, readily computable, and respectful of the symmetries
of the grid, in the sense that approximation commutes with the symmetry operations.

A not-so-deeply hidden subdeis that formal analysis often has a place in the practicslaEment @en

of quite ‘obvious” algorithms. Ifthe objectie o a program is not perfectly clegt will help to spell it out
precisely and to be clear about whhe program meets the objeti Ditto for critical irvariants. The
message is not me but perhaps the application area is; graphics is one oy meoubts of seat-of-the-

pants programming, where mathematical understanding of the application is not matched by mathematical
analysis of the code.

At the end of the papethe algorithm is contrasted with previous ones in the literature, all of which can
produce mathematically anomalous results. It is argued that the methoglopdent, from mathematics
to program logic and not vice versa, is responsible for the better behavior of the present algorithm.

Terminology
A point Pis a coordinate paiR. x, P.y).

Point P is north of pointQ if P.y > Q.y, and directly northof Q if P.x=Q.x andP.y > Q.y. Smilar
definitions hold for east, south, and west.

Point P is northeastof pointQ if P is both north and east &f, and similarly for southeast, southwest, and
northwest.

A grid pointis a point with integer coordinate$vhen it can be inferred from context, a grid point may be
referred to simply as a point.

The neighbor functionsorth(P) denotes the nearest Bbamong all grid points directly north of poiRt
andnortheas{P) denotes the nearest to grid poihttmong all grid points northeast Bf Neighbors in the
remaining six principal compass directions are designated similarly.



Let functione be defined bye(a, b, x, y) = b?x? + a®y? - a’b®. If a>0 and b > 0, the ellipseis the cure
in the x-y plane defined bg(a, b, x, y) = 0, with the traditional canonical forxf/a? + y?/b? =1.

In the first quadrant the ellipse may be gdently specified by = f(a, b, X) or by x = f(b, a, y), where
f(a,b,x) =bVl-x2/a2, 0<x<a,0<a 0<bh.

If a=0 the ellipse degenerates to a north-south segmdnt; @ it degenerates to an east-west segment.

Associated with each grid point in the first quadrantveréical bardenotedP.V, which is a north-south
segment of length 1 centered &) and a similarly centeretlorizontal bay P. H. The vertical bar is half
open to the north; the horizontal bar is half open to the east.
The predicaté/(P) means that the ellipse interse&sv and H(P) means that the ellipse interseétsH.
Formally,

V(P)=P.y- %15 f(a,b,P.x)<P.y+ %1

H(P)=P.x-3< f(b,a,P.y)<P.x+3.
Grid point P is said to bdightedif the ellipse intersects either bae. if the ellipse passes near enough to
P to makeV (P) or H(P) true.

Basic obsevations

1. Functionf is continuous and one-to-one.

2. Thevaue of f(a, b, X) decreases monotonically asncreases froox =0to x = a.

3. Theslope of the curveg = f(a, b, X) decreases monotonically asncreases froox =0to x = a.
The following three lemmas are straightforward consequences of continuity and monotonicity.

Lemma 1. If a first-quadrant poim is lighted, no first-quadrant point northeast or southwed® &
lighted.

Lemma 2. If P is lighted, andP is interior to the first quadrant, then (at least) oneas(P), south-
eas(P), or south(P) is lighted.

Lemma 3. If grid point? and R, whereR is directly east (or south) d?, are lighted, then the ellipse
intersect).V (or Q. H) for every grid pointQ in the interior of the line segment frofto R.

Problem statement

Given nonngyaive integersa andb, construct the Freeman approximation to the ellipse in the first quad-
rant, i.e. construct the sstof

lighted grid points in P|P.x=20& P.y >0} if a>0andb > 0;

grid points in {0, y)|0<s y< b}if a=0;

grid points in {(x,0)]0< x< a}if b=0.
The algorithm should use only integer arithmetic.

General plan

We dall walk the grid visiting lighted points and accumulating arset lighted points. The walk starts at
the north and steps east or south whkiengossible, otherwise southeast, and/ésahe quadrant only when
all lighted points hae keen visited. Other quadrants may be filled in by symmetry.

Program 0 handles a narrowed problem, which omits the possibiliy=df or b =0 and uses real, not
integer arithmetic. Transformations and generalizations finally lead to Program 4, an efficient solution to
the full problem.

Invariant
When grid pointP is visited,P is lighted andl' comprises all lighted points north or westof



Program O.
Preconditiona>0 & b >0

T:=0

P:=(0b)

while P.y=20& P.x<a
TO=P
if P.x<a&& V(eas(P)) - P.x+=1 {1}
[[ P.x<aé& H(eas(P)) - P.x+=1 {2}
[ P.y>0 && H(soutP)) - P.y-=1 {3}
[ P.y>0&V(southP)) - P.y—-=1 {4}
[ P.x=a-Py-=1 {5}
[P.y=0- P.x+=1 {6}
else - P.x+=1,P.y-=1 {7}

PostconditionT = S

In program 0 some of the guards use &&, the conditional and operator from C, to fonesbtatimg f
outside its range. The set-updating operateris formed analogously te=in C.

The pseudoguarelse , with the obvious meaning of the thegaion of the disjunction of all other guards,

is used to control thexecution of a southeast step. Direct testH@SoutheaqtP)) and V (southeastP))

would be inadequate because thien¢ of the southeast neighbor being lighted is not necessarily incompati-
ble with the east (or south) neighbor being lighted. In such a case, the other neighbor must be visited first
lest it be skipped.

Proof of Program 0

Initialization. The initial point(Q, b) is lighted. Therare no lighted points to the north(6fb) and no first
guadrant points to the west. Thus theaitant is established.

Termination. At every iterationP. x increases oP. y decreases teards its respecte tound. Thdoop can
(and must) terminate only after thetreme poini(a, 0) is visited. Thetruth of the postcondition is estab-
lished at case 5 belo

The invariant will be praved by analyzing the numbered cases in the loop.

Cases 1 and 2. The guards assuredhafP) is lighted. Bythe irvariant, all lighted points north or west
of P are inT before the step. By Lemma 1, no point southwestasf(P) nor northeast oP is lighted;
addingP to T preserves the uariant.

Cases 3 and 4. Lékaases 1 and 2 with south exchanged for east, north for wedt, fandH .

Case 5. The current poirR,= (a, y), is lighted, as is the extremum of the elligse0). Hence(by Lemma
3, if y >1) south(P) is lighted. Thenvariant is thus preseed whenP.y > 0. If P.y =0, the ivariant and
the fact that there are no lighted points eagip®), imply that the updating of establishes the postcondi-
tion. Theloop terminates by stepping to an unlighted point.

Case 6. Lile ase 5, withP = (x, 0).
Case 7. The other guards assure that neias(P) nor souti(P) is lighted, thatP.y >0, and that
P.x <a. Thus, by Lemma 2southeadiP) is lighted. LetQ = southeagP). No points northeast or

directly north ofQ are lighted (by the guards, Lemma 1, and theriant). Similarlyno points southwest
or directly west of) are lighted. Thus the step preserves theriant.

Transformation to simpler code

Having proved Program 0, we proceed by transformation. Program 1 follows from weakening some guards
and noting that case 4 is superfluous.

Case 1. The guarding termV(eas{P)) means P.y-is<f(abP.x+1)<P.y+3 If
f(a,b,P.x)<P.y+ % monotonicity impliesf (a, b, eas(P). x) < eas{P). y + 1, which is the second test
in V(eas(P)). If f(a,b,P.x)=P.y+ % then forP to be lighted as thevariant requiresH (P) must be
true. Monotonicityprecludes the cuevfrom intersectingP. H and passing alve eas(P).V. In dther



evant the second test M(eas(P)) is satisfied; it can be dropped from the guard.

Case 2. The guarding terhh(eas(P)) meansP. x + % < f(b,a,P.y)<P.x+ % the second inequality of
which requires that the ellipse not pass eastas{P). H. If, however, the ellipse does so, then some point
directly east ofP must be lighted, so by Lemma 3 the ellipse must intersas{P).V and case 1 is
selectable. Becausmse 1 and case 2veathe same outcome, the second inequality may be dropped from
H (eas(P)) without changing the effect of the program.

Case 3. The guarding terbh(souti(P)) meansP. x — % < f(b,ay-1)<P.x+ % The first inequality can
be dropped from the guard for reasons similar to thaga for simplifying the guard in case 1.

Case 4. The ellipse intersesisuti(P). V. We dall shav that it must also intersesbuti(P). H, so @ase 4,
having the same outcome as case 3, is subsumed by case 3.

Since the ellipse intersectsuth(P).V, it cannot intersecP.V. Hence, for P to be lighted, the ellipse must
intersectP. H. By monotonicity the intersection must lie westf By continuity, the ellipse must also
intersect the open gmentK that joins(P.x-3,P.y~-1) to (P.x,P.y-1). Betweenits intersections
with H andK the ellipse has mean slope less thkhnhence by monotonicity of the slope, the ellipse has
slope less tharl at dl points south ofK. A curve of dope less tharl and continuous eer the north-
south range ofouthi(P).V, which meetsouti(P).V, must also meetouti{P). H.

Program 1.

Preconditiona>0& b >0

T:=0

P:=(0,b)

while P.y>20& P.x<a
TO=P
if P.x<a&& P.y-1<f(abP.x+1) - P.x+=1 {1}
[ P.x<a&P.x+is< f(baP.y) - P.x+=1 {2}
0P.y>08&& P.x+3>f(b,aP.y-1) - P.y-=1 {3}
[ P.x=a-Py-=1 {5}
IP.y=0- P.x+=1 {6}
[else - P.x+=1,P.y-=1 {7}

PostconditionT = S
To get rid of the square root we replace formulad iby equvalent formulas ine. If y can be less than
zero, an inequality of the form< f(a, b, X) is replaced byy < 0| e(a, b, X, y) < 0; the resulting disjunction
is interpreted as a case split (between cases 1 and 1a). The id@mttyy, X) = e(a, b, x, y) allows agu-
ments to be rearranged.

The conditional && operators are no longer necessary beequeike f, has no range restrictions.

Program 2.

Preconditiona>0& b >0

T:=0

P:=(0,b)

while P.y>20& P.x<a
TO=P
if P.x<a&e(ab,P.x+LP.y-1)<0- P.x+=1 {1}
[P.x<a&P.y-3<0- P.x+=1 {1a}
0P.x<a&e(@bP.x+1 P.y)y<0- P.x+=1 {2}
|]P.y>0&e(a,b,P.x+§,P.y—1)>0qP.y—=1 {3}
[ P.x=a- P.y-=1 {5}
[ P.y=0- P.x+=1 {6}
else - P.x+=1,P.y-=1 {7}

PostconditionT = S



For al x = a, we havee(a, b, x,y) > Ounless k,y) =(a,0). If P =(a, 0), the outcomes of cases 1 and 2 are
the same as that of case ®therwise the second tests in cases 1 and 2ailill Thusthe testP. x < a can
be dropped from the guards in cases 1 and 2.

Case lais subsumed by case 6.

Because(a, b, x + 1 ,0) < 0 for all integer x < a, case 2 will be selectable whény =0 and P. x < a, thus
subsuming case 6 unleBsx = a. In the latter situationP = (a,0) and case 6 has the same outcome (ter
mination) as case 5. Thus case 6 may be dropped.

By trying case 3 only when (the weakened) case 2 fails, we caenpoase 3 from being considered when
P.y =0, unlessP. x = a. If case 3 werexecutable in the latter situation, itould hare the same outcome
(termination) as case 5. Thus the tesy > 0 may be dropped from guard 3.

_Sincee(a,Sb, a+ % ) > Ofor all y, the weakened guard 3 willvedys be true whef®. x = a, thus subsum-
ing case 5.

Program 3.
Preconditiona>0& b >0
T:=0
P:=(0,b)
while P.y>20& P.x<a
TO=P
if e@b,P.x+1L,P.y-3)<0- P.x+=1 {1}
0 e@b,P.x+% P.y)<0 - P.x+=1 {2}
else -
if e@b,P.x+3 P.y-1)>0- P.y-=1 {3}
else - P.x+=1,P.y-=1 {7}

PostconditionT = S

Meeting the full specification

The precondition can be weakenedata 0 & b > 0 because(0, b, ---) would be positie in the guards of
cases 1 and 2Whena =0, only cases 3 and 7 can happen; the program would generate a north-south line
segment as required.

The precondition can be further weakenedat® 0 & b >0 becausee(a, 0, x,0) =0 and at least one of
cases 1 and 2 wouldvedys be selectable whén=0 and P.y =0. For b =0, the initial value oP.y is O;
hence the program would generate an east-west line segment as required.

The guards in Program 3violve integer multiples of 1/4.Nonintegger values may appear in the terms
b?(P. x + 3)* and a®(P. y - 1), which result when the definition @fis substituted into the guard3he
requirement for integer arithmetic can be meet by scaling. Scalingvég hastens the onset ofaflow;
judicious rounding is better.

The functionhy(a, b, X, y) = e(a, b, x+1,y - %) - a?/4 is a plynomial aver the inteers. Interms ofhy, the
guard in case 1 becoméga, b, x, y) < —a?/4, which at integer arguments is egplént to the all-intger
expressionhy(a, b, x, y) < -[&%/400- a mod 2. Replacing each guard similarlye dtain an all-integer pro-
gram.



Program 4.
Preconditiona=0& b=0

let
hy(a, b, x,y) = e(a, b, x +1,y - 1) - a%/4
hy(a, b, x,y) = e(a,b,x+1,y) - b?/4
hy(a, b, x,y) =e(a b, x+1,y-1) - b%/4
T:=0
P:=(0,b)
while P.y=20& P.x<a
TO=P
if hy(a b, x,y)<-@/40-amod2- P.x+=1 {1}
0 hy(a b, x,y) < -b*40-b mod2 - P.x+=1 {2}
else -
if hg(a,b,x,y)>-b%4bmod2- P.y-=1 {3}
else - P.x+=1,P.y-=1 {7}

PostconditionT = S

Further arithmetic transformations (propagating constants, reducing the strength of multiplications, elimi-
nating common subexpressions, movingaiiant expressions out of the loop) can significantly imgro
efficieng. Such generic optimizations are incorporated irerg published ellipse-tracing algorithm,
including that in the first paper of this trilagyioweve, snce the are independent of the details of the
ellipse problem, we shall not pursue them further here.

Discussion

Although the topic has been studied for yeatst > revious algorithms yield ad hoc approximations that
lack a precise mathematical specification independent of the details of the algofitempublished
descriptions tend to concentrate on algebraic manipulation of the prograrficienef, while ignoring the
guestion of just what locus the program traces.

In particular dl but one of the cited algorithms can vyield different approximations for the same ellipse
depending on the orientation of the major axifie single rceptiorf is an artifact of treating the major
and minor axes differently.

All the cited algorithms bear a superficial resemblance to Program 4 with optimizations as suggested abo
None, havever, incorporates case 2. This lack leads to asymmetry under transpoBitioexample, with-

out case 2 the lighted poifit 3) would be missed whef@a, b) = (2, 3), yet its transpos, 1) would be vis-

ited when &, b) =(3,2).

From the published descriptions, | infer that the logical scheme of the algorithms came first; mathematics
was wsed only to fill in details. The basic intuition was to imitate as closely as possible the octant-plotting
technique originated by Pittay, which had preed so siccessful with circles. Proper location and treat-
ment of the octant join, which had been &iati subproblem for circles, became the central, and finally
defeating, problem for ellipses. All solutions were heuristic.

The present derétion proceeds in an opposite direction, from the mathematics to the logical structure of
Program 4.There is still an initial algorithmic intuition: the plan to walk from north to east. Imipgo
Program O it was necessary to confirm the intuition that the walk would visit all lighted points.

From a more abstract viewpoint, the published algorithms represent attempts to generalize from highly spe-
cialized code for the circle. The circle codes assume 8-fold symmét&This paper instead has pro-
ceeded by generalizing Bresenhariess refined algorithm for a quadrdnthich only assumes fourfold
symmetry dl that can be counted on in an ellipsehe latter generalizationvolves little more than the
discovery of case 2, while generalization from octant algorithms requires at least a sound octant test, sepa-
rate treatment for each octant, and a sattsfy treatment of the octant join. None of the published algo-
rithms meets this multiple challenge fully.

In diagrammatic terms, the éwgpproaches may be understood as proceeding by specialization and general-
ization in opposite orders, as shown in Figure 1. Unfortunately tbepaths do not commuteThe



stumbling block is generalizing from octant circle algorithms, whicke Heen specialized toaf It is
much easier to generalize from the more malleable quadrant circle algorithm.

Quadrant circle generalize Quadrant ellipse
_— >
(Bresenham) (Program 0)
specializ% specializ%

Octant circle generalize
_ >
(Horn)

Efficient ellipse
Figure 1.

The lesson is broadly applicablé’s easier to reengineer less sophisticated cddedustrial strength’
programs are ligly to be less amenable to major changes than are protofygethis reason, major steps
in software golution may necessitate stepping back in thglgaenetic tree in order to surge forward in an
altered direction. Perhaps it would be well to presgrimitive vasions of &olving programs as a kind of
health insurance against software sclerosis.

Moral: You cant add raisins after the bread is baked.
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Ellipses Not Yet Made Easy

M. D. Mcllroy

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

A paper by N. Wirth, ‘Drawing Lines, Circles and Ellipses in a Rasteexcerpted here by
permission, illustrates methodological issues that arise in the simple problemwafigdra
ellipses. Thepaper like ahers on the subject, attempts to generalize from a highly optimized
algorithm for drawing circlesThe result is foredoomed because the model has been special-
ized beyond the point of no return. More agingly and crisply written than much practical
literature in computer science, the paper affords an atteaatd instructve aldition to that
branch of the literature which Wirth himself has acknowledged as having “taughhdtao

do it” 2 in matters of both style and substance.

Wirth’s words appear in full-size type, my annotations in small size.

Abstract. In a tutorial style, Bresenhamdgorithms for drawing straight lines and circles argettgped
using Dijkstras notation and discipline. The circle algorithm is then generalized for drawing ellipses.

The ‘“tutorial’” exposition is admirably suited as a case stddy it reveals just hav the design of the
ellipse-draving algorithm went astrays lad mary similar algorithms published pveusly. It does not,
however, well illustrate Dijkstras rigor, as it later admits:"“We alopt his notation but deviate from his
discipline by specifying the task algorithmically rather than by a result pretlica@ncentrating on
method without careful gard for purpose, the delopment fails to consider the problem and the pro-
gram as a connected whole. No precise ohjedt gated, and single statements are analyzed in isola-
tion, without reference to boundary conditions imposed by gbnt€he result is a program with
unknown properties, which cannot be trusted for general use.

[Beware of programs with imprecise specificatigns.

Introduction. Recently | needed to incorporate a raster drawing algorithm into one of my progiémas.
Bresenham algorithm is known to be efficient and therefore was &t tdrmy search. Literature quickly
revealed descriptions in seral sources [1,3]; all | needed to do was to translate them intcavayrite
notation. Havever, | wished—in contrast to the computer—not to interpret the algorithrhsotunder-
standthem. Ihad to disceer that the sources picked were, albeit typical, quite inadequate for this purpose.
They reflected the widespread wighat programming courses are to teach the use of a (specific) program-
ming language, whereas the algorithms are simpigngi

How frequently technical papers utter the worecent’ in the first sentence to suggest labor at the scien-
tific frontier! The present topic, though admittedly not at the fronkti@s more than passing interest.
Everybody (including me) who conscientiously studies algorithms of thevBjttBresenham type seems
impelled to impree the neer quite complete analysis* >The analysis is delicate—more delicate than
the paper recognizes.

If, as Wirth charges, graphics texts intend to help teach programming languages, then so does the present
paper More analysis is aimed at getting efficient code for languagesi&cal than at critical under
standing of the problem. The@ved concern for efficieryoupstages considerations of purpose.

The unusual diction of the last phrase, “whereas the algorithms are simgty ghspires a complemen-
tary interpretation: a good tutorial will steé © give algorithms simplybut it will also strve t© justify
them adequatelyWirth succeeds on presentationf bot justification; one canjustify the unjustifiable.
A more thorough attempt mightV@uwncovered the impasse.



Dijkstra was an early and outspoken critic of thiswiend he correctly pointed out that thefidil-
ties of programming are primarily inherent in the subject, namely in cong&uetisoning. Irorder to
emphasize this central theme, he compressed the notational issue to a bare minimum by postulating his o
notation that is concisely defined within avfeormulas [2].

The capsule description misses the genius of Dijkstitation: its suppression of spurious detail about
sequencing. Hadnere “compression of the notational issugéen the central purpose, the notation
would not stand out among others.

The present treatment illustrates Dijksdredtation little more than it does his discipline. Guarded com-
mands appear only as trivial egalents for @eryday while and if-then-else constructs. The
deployment of synonyms is window-dressing, not a methodologicabram Thenotation that is
mainly—and productiely—used in the paper is elementary algebra; no computer scientist should be
without it.

[Further introduction, a section on lines, and a section on circles are omitted.]

Ellipses. Similarly to the circle algorithm, we wish to design an algorithm for plotting ellipses by proceed-
ing in steps to find raster points to be marked.

Grammatically the adverbsimilarly’’ has to modify the mainerb, but that gies, “We wish similarly”
However agorithms wish, it is probably not as we dBerhaps it is as computers do; seiets intro-
ductory paragraphThe slapdash Englishyen though well abee threshold for most computing journals,
symptomizes a less than careful approach to the whatlle. wn writing inexactly one hides inexact rea-
soning, en from oneself.

[What's worth telling is worth telling well.

We mncentrate on the first quadrant; the other three quadrants cavelexddoy symmetry arguments and
require no additional computation.

“No additional computatiohf eally means “no more code to be displayed in this paper
Let the ellipse be defined by the fallimg equation. Again without loss of generalityve sssume
O<ac<h.

E: (x/a)? + (y/b)?> =1

The customary meaning o@vithout loss of generalityis that in some obvious way the general problem
can be mapped into a special case. Herelehwr, generality has certainly been lost. The possibility of
a=0, an ellipse of zero width, and a perfectly reasonable limiting case, should be restorgdeal an
implementation. Imagina ime-lapse animation of Saturn dying at the moment the rings appear edge on.

[Handle limiting cases.

More seriously the highly technical restrictiom < b is “simply given"—never explained and ner
appealed to in the delopment. ‘et the program can fail without it.

We gart with the pointP(0, b) and proceed by incrementingin each step, and decrementindgf neces-
sary.

Here, as throughout the paptire reader is left to infer thatandb are intgers. Theassumption is cen-
tral to the correctness of the algorithm.

The extra identifieP, like E in the previous equation, serves no purpose whate
The exact ordinate of the next point follows from the defining equation:

Y =by(L-((x+1)/a)%)

The notation here depends on the omitted part of the .p&pisran ordinate on the true ellipsgis a
raster approximation® Next point” was defined informally by usage to mean the point on the true ellipse
at the next integer abscissa.

The raster point coordinate must satisfy
y =12 <by(L-((x+1)/a)’)



Y2 -y +1/4 < b? - b(x +1)*/a®
a’y? — a’y + a’l4 < a’b® - b?x% - 2b’x - b?
b2x? + 2b%x + a?y? — a’y + a’l4 - a’b® + b < 0
The second line of the deation is unjustified ify <1/2 or if x+1 >a. The former gent can happen and

cause trouble, as we shall see lafEne latter cannot, but thaadt is not foreseeable at this stage of the
derivation.

[Attend to boundary conditions.

The necessary and sufficient condition for decrementiigythereforeh = 0 with the auxiliary ariableh
being defined as

h = b?x? + 2b?x + a%y? — a%y + a?/4 — a’b® + b?

Although it appears suddenly and unexplainedly here, the discussion about decreynpataitels that
in the omitted discussion of circles.

As in the case of the circle, the termination condition is met as sopméght have o be decreased by
more than 1 after an increasexdby 1, i.e. when the tangent to the @iis geater than 45°Unlike in the
case of the circle, leever, this condition is not obviously gén by x =y. We reject the obvious solution of
computing the ordinate for which the celw derivative is -1, [sic] because this computation alonewd
involve at kast the square root function.

The English of the paragraph, and especially of the sentegéenley, ‘Unlike in the case df,won't
stand up to scrutin

The notion of decreasing after increasing is excessively sequential. To Smplify the maintenance of
the loop ivariant, and to woid needlessly werspecifying the code, one would prefer to say that at each
step eitherx alone is modified, ox andy are modified simultaneouslyThe presentation here, which
decides which to do first, bears on Pascal more than on the problem.

The last sentence betrays a lack of analysis. The ordinate in quesyienbia’+b?)™*2. The square

root can be remad by qquaring to get a polynomial discriminator function, as Wirth has just done to
obtainh. The resulting fourth powers, wever, threaten to werflow small registers. Unlessinusually

wide arithmetic is at hand, it is well to seek a discriminator of lower degree, which the paper proceeds to
do in a noel way.

Instead we compute a functignsmilar to h, incrementally Its origin stems [sic] from the inequality
y - 32 <byA-((x+1)/a)?)

implying that the ordinate of the xtepoint be at least 3/2 units beldhe current raster point. Therefore, a
decrease o by 2 would be necessary for an increasexdfy 1 only A similar development as forh
yields the functiorg as

g = b®x% + 2b%x + a?y? - 3a%y + 9a%/4 — ab? + b?
andx can be incremented as longgs O.

Beware, the explanation is bacland. Molation, not satisfaction, of the inequality would imply the unde-
sired outcome. Furthermore, if the ellipse is sufficiently margocan decrease by wainteger amount,
not just 1 or 2. More significantlyhat if y should nger decrease by more than ITrhis happens when
a=b=1. Inthis case thg test turns out to wrk by luck of a compensating error: the dation of g is
flawed by the same inattention to range restrictions as was thetioerof h.

The first quadrant of the ellipse is then completed by the same process, starting at tAéap@)inof [sic]
incrementingy and conditionally decrementing The auxiliary function here is obtained from thevpre
ous case ofi by systematically substituting y, a, b for y, x, b, a.

The wording is impreciself one understands “the same procegstest for termination the sameaw
then it will not necessarily work for drawing the long branch of a gkaflipse. Herethe asymmetry



imposed by the unexplained preconditeos b comes into play.

The dewation of the incrementing values fér and g follow [sic] from the application of the axiom of
assignment: on incrementingthe incrementation di is obtained from

{h=b>x% + 2b?x + k}
h:=h+ b%2x +3)
{h=b%x% + 2b%x + b? + 2b%x + 2b? + k}
X:=x+1
{h=b%x? + 2b?x + k}

on incrementingy, the incrementation di is obtained from
{(h=ay -ay+ k)
h:=h-2a%y-1)
{h=a%y?-2a%y +a? - (a’y — @) + k}
yi=y-1
{h=2a%y*+a’y + Kk}

and the incrementation dfis obtained from

{g=a’y’ -3’y + k}
g:=g-2a(y-2)
{g=a’y’ -2’y + & - 3@y - &) + k}
y:=y-1
{g=a%y? -3’y + K}
In each stretch of the preceding detibn, k represents nonchanging terms, as was explained in the omit-

ted part of the paperAll this formalism, havever, is misplaced methodologylt smply says that the
update step is

X, ¥, h,g:=x+1,y +Ay, h+Ah, g+Ag

whereAh = h(x +1,y +Ay) — h(x, y) and Ag is defined similarly Most of the declopment is
concerned with inconsistent intermediate stafiédweir necessity in Pascal is no reason to inflict
them on an exposition of an algorithmic idea.

[Use formalism for function, not fashign.

This completes the design considerations for the following algorithm.

X:=0,y:=0;
h:=(a?DIV4) - ba® + b% g:=(9/4)a? - 3ba’ + b
dog<0 - Mark(x,y)
ifh<0 - d:=(2x+3)b% g:=g+d
D h=20 - d:=(@x+3)b? -2(y-1)a%
g:=g+d+2a%
y:=y-1
fi;
h:=h+d; x:=x+1
od;
X:=a, yl:=y, y:=0;
h:=(b?>DIV 4) - ab? + 2a%
doy<yl - Mark(x,y)
if h<0 - h:=h+(y+3)a?
I h=0 - h:=h+@Qy+3)a®-2(x-1)b% x:=x-1
fi;
y:=y+1
od



The reader is left to puzzle out the inconsistent division operators in the secon@h@le.in the pro-
gram is not the same as thén the deelopment. ltis rounded dan to the nearest imger As the omit-
ted part of the papexplained, rounding does not change the outcomeofemst in the algorithm Simi-
larly, g may be rounded down and the first term of its initializer may be replaq@a®pIV 4.

The second initialization df should be the same as the first watAndb interchanged.

The second loop isafally flawed, because the unstated side condition for the validity dftést can be
violated. Thatondition,x =1/2, is violated whener an dlipse is so narne as to be endered with tails

one pixel wide at either end. See the accompanying figure for the result. Apparently the pragram w
never tested against such obviously stressful cases.

A subtler trouble is that the endpoint of the second loop does not necessarily coincide with the last point
calculated (but not plotted) in the first loopor example, witha=2 and b =3, the first loop ends at

(1,3), while the second loop ends(@t3). | infer that it was simply assumed that theotendpoints vould
coincide. Ifthe possibility of mismatch had been recognized, there shoullean some analysis of

how bad it can be.
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Proper tails and fightails,a = 1, b = 15. Figurerotated 90° to see ace.

We dose this essay with the remark that value$ ofiay become quite Ige and that thereforeverflow
may occur when the algorithm is interpreted by computers withficient word size.Unfortunately most
computer systems do not indicate geeoverflow! Using 32-bit arithmetic, ellipses with values afandb
up to 1000 can be drawn without failure.

The exclamation directs attentioway from software to hardare. All computer hardware that | can
think of indicates intger overflow, dthough not by trapping. Compiled code for languages suclass P
cal almost uniersally ignores the indication, howes.

The claim of a range up to 1000 is too ro8yhere the slope of the ellipse is near zero, the discriminator
g may be galuated at points up to 2 unitsvay from g =0. (Thealgorithm visits points as much as 1/2
unit off the ellipse, andy =0 is dsplaced 3/2 units from the ellipse.) At such a point with b, x 0O
andy Oa, the magnitude of), estimated a§{dg/dy)Ay|, is goproximately 4°. Thus werflow is liable to
occur at parameter values aro#i/4)'*, not much more than 800Testing confirms this estimate.

[Big-oh estimates are not quantivati

There is more to sayit is bad practice to dma points twice. In particular double plotting is self-nullify-

ing when drawing by>&lusive a into a bitmap. Double plotting at the beginnings of the arcs points can
be arerted by proper coding of thdark procedure. Haever, double plotting can also occur where the
two hranches meetFor example, in the poorly closing example mentionedvab@ =2 and b =3),
Mark(0, 3) will be called in the second loop as well as in the first.

Other important properties of the algorithm are left to be takeraitin fWl the two branches alays
meet without a gp? Ifnot, color would leak out on attempting to shade the inside of an ellipse. (This is
not an idle question. The omitted algorithm for circbes produce gps.) W circles dravn by the
algorithm be symmetric about the diagonak x? The answer is not immediately obvious, because in
all but the smallest circles, the juncture of the tnanches lies éthe diagonal.

[Formulate and confirm proper behavjor.




The ellipse-drawing algorithm works élkwo ships setting out from fexd points on the shores of the first
quadrant to rendezvous near the octant juncture. The miistidi$ailing will be experienced in leiag

the harbors, where the sharpest and most confined turns mustigpatedy and at the meeting point,

where precision docking is required. Just as at sea, where the steering of a ship may be trusted to an
apprentice seaman in opeter but needs an experienced pilot for closeigation, so ellipse-dming

can be entrusted to simple homuek-assignment code only in the open and needs more attention in the
critical stretches. The present algorithm has not earned aflitense.

REFERENCES [for Wirth]

[1]
(2]
3]

N. Cossitt. Line Drawing with the NS32CG16 and Drawing ¢l#&s with the NS32CG16lechnical
Report AN-522 and AN-523, National Semiconductor Corp., 1988

E. W. Dijkstra. Guardedcommands, non-determingcand the formal devition of programs.
Comm. ACM18(8):453-457, August 1975.

J. D. Foley and A Van Dam. Fundamentals of Interactive Computeraphics. Addison-Weslyg,
1982.

References

1. N. Wirth, “Drawing lines, circles and ellipses in a rasterBeauty is our Businessd. W H. J. Fei-
jen, A. J. M. van Gasteren, D. Gries, and J. Misra, pp. 427-434, Springer-VenayoNe(1990).

2. N. Wirth, “From Modula to Oberoh,Software—Pactice and Experien¢d 8, pp. 661-670 (1988).
Acknowledgements.

3. M. L. V. Pitteway, “Algorithms for drawing ellipses oryperbolae with a digital plottérComputer
J., 10, pp. 282-289 (1967).

4. J.Bresenham,A linear algorithm for incremental digital display of circular &r€&ymm. £M, 20,
pp. 100-106 (1977).

5. M. D. Mcllroy, “Best approximate circles on integer gridsCM Trans. on Gaphics,2, pp. 237-264

(Oct. 1983).



