
There Is No Royal Road to Programs

A Trilogy on
Raster Ellipses

and
Programming Methodology

M. Douglas McIlroy

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

Wherein, with some insight, some formality and some scorn, ellipse-drawing algo-
rithms, which had been wont unpredictably to stray by a pixel here and there, are brought
to heel. The flawed designs of previous algorithms are attributed to premature ‘‘optimiza-
tion’’: uncritical reuse of an algorithmic scheme that had been tuned for a special case
(circles) beyond the point of no return.

There is no royal road to geometry.

The legendary answer of Euclid to King Ptolomey’s expressed desire for a less arduous introduction
to theElementscarries equal force in programming. There is no substitute for precise analysis.

The problem of drawing ellipses is simple, and the general outline of a solution is clear. Therein lies
a danger. Programs get written by specifying a method of solution without fully specifying an objective;
mathematics figures only in deriving arithmetic details. When a few test cases look good enough, the pro-
gram is declared done.But it is fragile because it lacks well defined mathematical properties. Its output
can be looked at but not built upon—a bad state of affairs for a basic subroutine. Better results follow from
mathematical study of the program as a whole, not just as a collection of isolated statements.

Published algorithms, which attempt to mimic the most highly optimized algorithms for drawing circles,
have failed because the optimization depends on symmetry that ellipses lack. Thus this small example
illustrates an often ignored truth of software engineering: to extend the functionality of a program, it is
sometimes necessary to back off to a more general starting point and rebuild, not just remodel. Since ‘‘bet-
ter,’’ i .e. more highly tuned, programs are likely to be less adaptable, it may be wise to preserve earlier and
less perfected versions for their evolutionary potential.

Jon Bentley, Brian Kernighan, and Chris Van Wyk gav ehelpful criticism about presentation.

Contents

Getting Raster Ellipses Right.A dev elopment of the general algorithm, illustrated with many pictures of
pitfalls, plus an implementation in C.

Math before Code: A Soundly Derived Ellipse-drawing Algorithm.A more formal treatment. The same
algorithm is derived by a direct argument undistracted by motivating examples.

Ellipses Not Yet Made Easy. One of the papers that inspired this work is reproduced and criticized in regard
to its result and the methods by which it was obtained.Accessibly written, on an understandable and
graphic topic, it affords a revealing case study of pitfalls in practical computer science.

-2-

Getting Raster Ellipses Right

M. Douglas McIlroy

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

A concise incremental algorithm for raster approximations to ellipses in standard position pro-
duces approximations that are good to the last pixel even near octant boundaries or the thin
ends of highly eccentric ellipses.The resulting approximations commute with reflection about
the diagonal and are mathematically specifiable without reference to details of the algorithm.

1. Intr oduction

We are concerned with approximating an ellipse by lighting pixels on a bitmap.The ellipse is cen-
tered on a point of a square grid, which for simplicity we take to be (0,0). Theprincipal axes are parallel to
the grid lines. The lengths of the semiaxes area andb. When both quantities are positive, the ellipse satis-
fies the familiar equation,

x2

a2
+

y2

b2
= 1 (1)

When the length of a semiaxis is zero, the ellipse degenerates into a line segment.

More particularly, we are concerned with incremental approximation algorithms that involve only
integer arithmetic.Accordinglya andb are taken to be integers and the grid is taken to be the plane integer
lattice.

Ideally an approximation to a simple curve drawn by lighting points of the integer lattice should be

Metrically accurate. Every point of the approximation should be as close to the curve as possible in
some sense.

Connected.The approximation should be connected by chess-king moves.

Topologically accurate. The topology of king-move paths in the approximation should be the same
as the topology of the original curve.

Thin. Each lighted point should have exactly two lighted king-move neighbors. Thinnessis a corol-
lary of topological accuracy.

Symmetric.Approximation should commute with the symmetry operations of the grid: translations,
rotations through multiples ofπ /2, and reflections about horizontal, vertical and diagonal axes.

Describable. The approximation should be specifiable mathematically without reference to the
approximating algorithm.

These desiderata cannot always be met in full.

Thinness and topological accuracy may not be achievable when the scale of features in the original
curve is comparable to or smaller than the grid spacing of the bitmap; then pixels approximating different
stretches of the curve may come into adjacency or coincidence. Inparticular, figures withtails may result;
see Figure 1 and Appendix 2, Lemma 2.We can save the appearances, however, by understanding coinci-
dent or irrelevantly adjacent stretches of the approximation to be traced in separate sheets.

Thinness conflicts with metric accuracy at certain pixels calledsquare corners. At a square corner
the points at three vertices of a grid square are lighted. Square corners sometimes occur in the approxima-
tions adopted in this paper; see Figure 2a.However, there can be at most one square corner per quadrant,
near the point where the magnitude of the ellipse’s slope is 1. We shall argue that such square corners are
inevitable: to exorcise them, one would have to sacrifice other critical properties.

-3-

Figure 1. An elongated ellipse with tails,a = 15 , b = 1.

Incremental algorithms trace a connected approximation via chess-king moves, guided by a function
that measures goodness of fit. On each of some set of grid lines that intersect the curve a grid point is cho-
sen to minimize one of these criteria:

Displacementof the lighted point from the intersection, measured along the grid line.
Distanceof the lighted point from the curve, measured normal to the curve.
Residualof the curve’s defining equation evaluated at the lighted point.

The three criteria agree for circles with integer radius,1, 2 but do not necessarily agree for ellipses; see Fig-
ures 2b and 2c.

We shall adopt the minimum-displacement criterion.An approximating point will be classed as a
minimum-horizontal-displacementpoint or aminimum-vertical-displacementpoint according to the direc-
tion in which the minimized displacement is measured. The two classes are not mutually exclusive.

(b)(a) (c)

Figure 2. (a) Open circles mark square corners in the approximation to the ellipse with
a = b = 4. (b) The minimum-residual approximation fora = 4 and b = 1 differs from the
minimum-displacement approximation at the points marked by open circles. (c) The mini-
mum-distance approximation fora = 26 andb = 18 differs from the minimum-displacement
approximation at (20,11), marked by an open circle. At (20,11) and (20,12) the vertical dis-
placements from the ellipse are about 0.501 and 0.499; the normal distances are about 0.383
and 0.385.A dot marks the octant juncture where the slope is− 1.

A Fr eeman approximationis a minimum-displacement approximation where all grid lines are consid-
ered.3 The handling of ties between two points on one grid line is left open.

Most published incremental algorithms for drawing ellipses split the curve into octants bounded by
points where the absolute value of the slope is 0, 1, or∞. Using compass-point names for a representative
outward normal, we speak of theNE quadrant being divided into aNNE and anENE octant. Thejunctureof
the octants is the point with slope−1. Figure2c shows part of aNE quadrant. Adot marks the juncture.
TheNNE octant lies to the left of the juncture, theENE octant to the right. Compass directions are also used
to refer to directions between points; with ‘‘northeast’’ referring to any bearing properly between north and
east, and so forth.A single point lighted to the northeast of the juncture is called anoutside point.The
square corner in theNE quadrant of Figure 2a is an outside point.

-4-

The published algorithms that I have seen, by Pitteway,4, 5 Wirth,6 Van Aken,7, 8 Pratt,9 DaSilva,10 and
Kappel,11 consider only vertical displacements for theNNE octant and only horizontal displacements for the
ENE octant. Thisconvention is certain to yield a thin and connected approximation to each octant because
the slope of the ellipse is bounded to the range[−1, 0] in the NNE octant and to[−∞,−1] in the ENE octant.
From the slope bounds also follows

Lemma 1. Any minimum-horizontal-displacement point for theNNE octant is also a minimum-vertical-dis-
placement point for that octant, unless the approximating point is an outside point.A similar statement,
with the roles of horizontal and vertical interchanged, holds for theENE octant.2

An outside point may be a minimum-displacement point in both directions, witness configurations1, 5, and
6, but it need not be, witness configurations7 and10. (Numbered configurations refer to Appendix 1.The
reader will find it profitable to detour there and become familiar with the conventions of the diagrams,
which illuminate nuances of the problem.)

According to Lemma 1 the one-way approximations that the published algorithms trace are also two-
way Freeman approximations—except possibly at the juncture. The thinness of the one-way approxima-
tions implies that the Freeman approximation also is thin—again, except possibly at the juncture.

2. Generatingthe Freeman approximation

We shall develop an analogue of the well known Bresenham algorithm for circles1 to trace theNE

quadrant of an ellipse from north to east. Suppose the approximation has been traced to the pointP in Fig-
ure 3. By monotonicity of the ellipse, the next approximating point will be one of the three neighbors to
the east, southeast, or south.Point E will be chosen if the ellipse meets either of the unit barsEV or EH
centered there;S will be chosen if the ellipse meetsSV or SH; otherwiseSEwill be chosen.

E

SES

P

SV

SH

EH

EVV

H

Figure 3.

If the ellipse meetsSV, then by Lemma 1 it must also meetSH, for S is a minimum-vertical-dis-
placement point of theENE octant. Thelatter fact follows from observing that for the ellipse to meetSV
with P lighted it must have average slope less than−1 in the region south ofH and north ofSV; hence the
juncture lies north ofSV.

To check for a south step, then, it suffices to check whether the ellipse meetsSH. Provided P lies
above the x axis, this is equivalent to checking that the right end ofSH lies outside the ellipse.We need
not worry about the possibility of a tie, where the ellipse meetsSH andSE exactly in their common end-
point, for that cannot happen; see Lemma 3 in Appendix 2.For definiteness in the algorithm, we shall arbi-
trarily break the tie in favor of the outer point, in this caseSE.

To check for an east step whenP lies above the x axis, we similarly check whether the ellipse meets
EV by seeing whether the lower end ofEV lies inside or on the ellipse. If the ellipse does not meetEV, we
check whether it meetsEH by seeing whether the left end ofEH lies inside or on the ellipse.(For aesthetic
consistency, ties are again broken in favor of the outer point.)

-5-

By unwarranted analogy with the treatment ofSV, the cited algorithms ignoreEH. An algorithm
thus simplified will not light the square corner in configurations7 and20, although it will light the corner in
the transposed configurations10and18. Thus the simplification defeats symmetry.

These considerations lead to

Algorithm 0.

x : = 0
y : = b
while y > 0

mark(x, y)
if meets EVthen step E
else if meets EHthen step E
else if meets SHthen step S
else step SE

while x ≤ a
mark(x, y)
step E

The first loop requiresy > 0 to assure that theSH andEV tests are made only whenP lies above the x axis.
The second loop runs out any remaining steps along thex axis.

To express the predicatemeetsanalytically, we define an error functione as

e(x, y) = b2x2 + a2y2 − a2b2

The equation of the ellipse ise(x, y) = 0 and the meeting conditions are

meets EV:

meets EH:

meets SH:

e(x +1, y − 1
2) ≤ 0

e(x + 1
2 , y) ≤ 0

e(x + 1
2 , y −1) > 0

The half-integer quantities can be respected in integer calculations by scaling, or by appropriately
rounding the fractional part. At the considered points, which all lie neare = 0, the magnitude ofe is on the
order of max(a3, b3). Thirty-two-bit arithmetic with rounding (but not with scaling) is adequate to cope
with values ofa andb to just under 900.*

We transform theif tests algebraically to use integer arithmetic and the integer common subexpres-
sione(x + 1

2 , y − 1
2) − (a2 + b2)/4.

e(x +1, y − 1
2) ≤ 0 { EV}

e(x + 1
2 , y − 1

2) + e(x +1, y − 1
2) − e(x + 1

2 , y − 1
2) ≤ 0

e(x + 1
2 , y − 1

2) + b2(x +1)2 − b2(x + 1
2)2 ≤ 0

e(x + 1
2 , y − 1

2) − (a2 + b2)/4 + (a2 + b2)/4 + b2(x +1)2 − b2(x + 1
2)2 ≤ 0

e(x + 1
2 , y − 1

2) − (a2 + b2)/4 + b2x ≤ − a2/4 − b2

e(x + 1
2 , y − 1

2) − (a2 + b2)/4 + b2x ≤ − a2/4 − (a mod 2) − b2

The rounding in the right side of the last inequality is justified by the integrality of the left hand side.Simi-
larly

e(x + 1
2 , y) ≤ 0 { EH}

e(x + 1
2 , y − 1

2) − (a2 + b2)/4 + (a2 + b2)/4 + e(x + 1
2 , y) − e(x + 1

2 , y − 1
2) ≤ 0

e(x + 1
2 , y − 1

2) − (a2 + b2)/4 + a2y ≤ − b2/4
e(x + 1

2 , y − 1
2) − (a2 + b2)/4 + a2y ≤ − b2/4 − (b mod 2)

* Since an approximate point(x, y) may be up to 1/2 unit off the ellipse, a test point, say(x + 1
2 , y −1), may be

3/2 unit off. At such a point, witha = b, y ∼= a, and x ∼= 0, we estimate|e(x, y)| ∼= |(∂e/∂y)∆y| ∼= 3a3. Thus
e(x, y) is liable to overflow 32-bit registers ata > (231/3)1/3, or a > 894.

-6-

e(x + 1
2 , y −1) > 0 {SH}

e(x + 1
2 , y − 1

2) − (a2 + b2)/4 + (a2 + b2)/4 + e(x + 1
2 , y −1) − e(x + 1

2 , y − 1
2) > 0

e(x + 1
2 , y − 1

2) − (a2 + b2)/4 − a2y > − b2/4 − a2

e(x + 1
2 , y − 1

2) − (a2 + b2)/4 − a2y > − b2/4 − (b mod 2) − a2

Installing the transformed tests and arranging to calculatee(x + 1
2 , y − 1

2) incrementally, we get the follow-
ing program, for whicht = e(x + 1

2 , y − 1
2) − (a2 + b2)/4 is a loop invariant. Appendix3 giv es an implemen-

tation in C.

Algorithm 1.
x : = 0
y : = b
t : = b2(x2 + x) + a2(y2 − y) − a2b2

while y > 0
mark(x, y)
if t + b2x ≤ − a2/4 − (a mod 2) − b2 { e(x +1, y − 1

2) ≤ 0; EV}
x + = 1
t + = b2(2x + 2)

else if t + a2y ≤ − b2/4 − (b mod 2) { e(x + 1
2 , y) ≤ 0; EH}

x + = 1
t + = b2(2x + 2)

else if t − a2y > − b2/4 − (b mod 2) − a2 { e(x + 1
2 , y −1) >0; SH}

y − = 1
t + = a2(−2y + 2)

else
x + = 1
y − = 1
t + = b2(2x + 2) + a2(−2y + 2)

while x ≤ a
mark(x, y)
x + = 1

It is a straightforward matter to check that the program works in degenerate cases wherea or b is
zero.

On thex axis theEH test would evaluate to true at points inside the ellipse, or at any point if b = 0.
By modifying the loop condition so theEH test gets performed withy = 0 when there is a tail, we may
drop the second loop. The program in Appendix 3 incorporates this idea.Appendix 3 also explains how to
gain speed by exploiting the fact that not all of the tests are needed in all parts of the quadrant.

To trace an elliptic arc that spans only part of a quadrant, Algorithm 1 can be started at any mini-
mum-displacement point. One possible sticking point, overflow during the initialization oft, is more
apparent than real.If t is in range, it can be computed in unsigned arithmetic without regard to overflow to
yield a correct twos-complement result.

3. Discussion

RescuingEH from unjustified oblivion, Algorithm 1 generates a genuine Freeman approximation,
yet can be implemented as compactly as comparable algorithms that yield ad hoc approximations; witness
Appendix 3. Although I have confidence in it, the derivation has been long, informal, and riddled with case
analysis. Aproof outline exists,12 but it would be reassuring to have a formal proof.

The Freeman approximation satisfies the six desiderata set forth at the outset, save for the possibility
of having four square corners.The corners could be sheared off, although I don’t know a way to do so
without extra code. Rejecting square corners would entail other difficulties as well.Accuracy may be lost:
in configuration6, for example, the ‘‘bad’’ corner point is noticeably closer to the ellipse than are either of
its ‘‘good’’ neighbors. Invisual terms, uniformity of line will be bought at the expense of roundness of
shape, as Figure 2a shows. Mosttellingly, the algorithm’s usefulness for drawing elliptic arcs would be

-7-

sacrificed, as we shall see shortly. Arcs would have to be drawn differently, with the almost certain result
that an arc ending at the juncture would not coincide with the underlying ellipse there.

The cited algorithms differ primarily in their treatment of the juncture.They switch between theNNE

andENE octants according to various heuristic criteria that defeat one or more of the desiderata. As a result
none yields an approximation that is mathematically definable without reference to the algorithm. All can,
but do not necessarily, shear off square corners.DaSilva’s can stray; in configuration5 DaSilva visits (9,5)
rather than (9,6).10

Tails bedevil most of the algorithms; only Pratt is careful about them.9 Pitteway’s original paper men-
tions tails but does not handle them;4 his later paper tries to cope by backing off to 4-connected (rook-
move) approximations.5 Typically algorithms designed without regard to tails suffer a catastrophic tracking
failure when a bar in Figure 3 stretches clear across the ellipse instead of cutting just one branch.9, 10 The
fishy tails of Figure 4, for example, arise from such a tracking failure in Wirth’s algorithm.6 (In partial
redemption, Wirth’s is the only algorithm that respects symmetry—by virtue of handling the major and
minor axes unsymmetrically!)

Figure 4. A typical mistake in drawing tails. The ellipse is the same as
that in Figure 1:a = 15,b = 1.

Why hav ethe published algorithms eschewed the Freeman approximation in favor of ad hoc criteria?
Optimistic imitation of the best algorithms for circles is doubtless part of the reason. When the Pitteway-
like algorithms were seen to produce visually satisfactory ellipses, details such as precise determination of
the juncture and respect for symmetry were simply forgotten. Perhapsthe Freeman approximation has been
overlooked also because of an unspoken (and groundless, in view of Lemma 1) worry about the possibility
of excessive square corners. Almost certainly the possibility of configurations such as7 and18 has been
overlooked.

Most of all, though, a desire for a fast loop9 has probably upstaged other considerations: the pro-
grams have been optimized prematurely. At least for drawing full ellipses, where four points are plotted for
each one that is calculated, the price of one extra test to get the Freeman approximation is negligible.

Because their approximations are indescribable, the published algorithms cannot easily be modified
to draw elliptic arcs given the endpoints.Even when a proposed endpoint is verified to be a minimum-dis-
placement point, it may not belong to the approximation.It could, for example, be a square corner that the
algorithm skips.An infinite loop can result from testing for termination against such a point. In contrast,
an arc-tracing program based on the Freeman approximation can be made accurate and safe because the
question of whether a point belongs to the approximation can be quickly decided.*

Some open questions: Is the uncertain configuration13 realizable? Isthere a simpler way to find the
Freeman approximation? Can general conic sections be handled as easily?

I wish to acknowledge Rob Pike, who requested the program, the reference that stimulated it,6 fellow
members of IFIP Working Group 2.3 on Programming Methodology for their insights into program devel-
opment, which helped shape it, and conscientious referees, who helped polish it.

* Solve (1) for y at integer x (or vice versa) and round, or check for a sign difference in the the error functione
evaluated at the ends of barsV andH in Figure 3.

-8-

References

References

1. J.Bresenham, “A l inear algorithm for incremental digital display of circular arcs,” Comm. ACM, 20,
pp. 100-106 (1977).

2. M. D. McIlroy, “Best approximate circles on integer grids,” ACM Trans. on Graphics,2, pp. 237-264
(Oct. 1983).

3. H.Freeman, “Computer processing of line-drawing images,”Computing Surveys,6, p. 63 (1974).

4. M. L. V. Pitteway, “Algorithms for drawing ellipses or hyperbolae with a digital plotter,” Computer
J., 10, pp. 282-289 (1967).

5. M. L. V. Pitteway, “Algorithms of conic generation” inFundamental Algorithms for Computer
Graphics,ed. R. A. Earnshaw, pp. 219-237, Springer-Verlag, Heidelberg (1985).

6. N. Wirth, “Drawing lines, circles and ellipses in a raster” inBeauty is our Business,ed. W. H. J. Fei-
jen, A. J. M. van Gasteren, D. Gries, and J. Misra, pp. 427-434, Springer-Verlag, New York (1990).

7. J. R. Van Aken, “An efficient ellipse-drawing algorithm,” IEEE Computer Graphics and Applica-
tions,4, 9, pp. 24-35 (1984).

8. J.Van Aken and M. Novak, “Curve-drawing algorithms for raster displays,” ACM Transactions on
Graphics,4, 2, pp. 147-169 (1985).

9. V. Pratt, “Techniques for conic splines” inComputer Graphics,ed. B. A. Barsky, 19, pp. 151-159,
ACM (1985). SIGGRAPH ’85 Conference Proceedings.

10. J.D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes,Computer Graphics Principles and Practice,
Addison-Wesley (1990).

11. M. A. Kappel, “An ellipse-drawing algorithm for raster displays” inFundamental Algorithms for
Computer Graphics,ed. R. A. Earnshaw, pp. 257-280, Springer-Verlag, Heidelberg (1985).

12. M. D. McIlroy, “There is no royal road to programs: a trilogy on raster ellipses and programming
methodology,” Computing Science Technical Report 155, AT&T Bell Laboratories (1990).

13. I.Lakatos,Proofs and Refutations: the Logic of Mathematical Discovery,Cambridge (1976).

-9-

Appendix 1. Inventory of configurations at the juncture

The diagrams below enumerate all distinct ways that the ellipse can cross grid lines in the neighbor-
hood of the juncture, where the slope is−1. Eachdiagram shows the four grid lines that surround the junc-
ture. Barsindicate intervals of equivalent crossings as in Figure 3.The midpoint of a bar will be lighted if
the ellipse intersects the bar. A bar missing from the top (or right) line is understood to be somewhere out
of sight to the left (or bottom).A dot marks the juncture.

Numbers show the dimensions and the coordinates of a grid point for an ellipse that realizes the con-
figuration witha ≥ b. Configurations marked X are impossible; see Lemmas 4 and 5 in Appendix 2.Con-
figuration13, marked ?, has no representative with a ≤ 1000; its possibility is a number-theoretic question.
Note, though, that configuration13 is the transpose of19, and thus can be realized witha < b.

The inventory is ordered lexicographically by decreasing positions of the bar on the left, top, right,
and bottom grid lines. Configurations inconsistent with a monotone decreasing curve are not shown. Nei-
ther are configurations that would violate slope requirements in grid squares that do not contain the junc-
ture: the average slope of the ellipse across a square must be at least−1 if only theNNE octant enters it, and
at most−1 if only theENE octant.

1

b = 7

a = 7

(4,4)

2

b = 10

a = 18

(15,4)

3

X

4

X

5

b = 8

a = 11

(8,4)

6

b = 4

a = 4

(2,2)

-10-

7

b = 6

a = 11

(9,2)

8

X

9

X

10

b = 14

a = 15

(10,9)

11

b = 1

a = 1

(0,0)

12

b = 3

a = 4

(3,1)

13

?

14

X

15

X

16

b = 1

a = 2

(1,0)

17

b = 2

a = 2

(1,1)

18

b = 25

a = 54

(49,10)

-11-

19

b = 1

a = 8

(7,0)

20

b = 2

a = 3

(2,1)

21

b = 3

a = 3

(2,2)

Appendix 2. Supporting lemmas

Lemma 2. An approximate ellipse with a≥ b has tails if and only if a≥ 8b2 and a> 0.

A tail occurs if(a −1, 0) is lighted, or in other words if and only if the ordinate of the ellipse at
x = a −1 is less than1/2. Thusa > 0 and

y2 = b2(1 − (a −1)2/a2) < 1/4

Expand and clear of fractions:

a2 − 8ab2 + 4b2 > 0

Now a must exceed the larger root of the associated quadratic equation. (The smaller root is less than 1.)

a > 4b2 + √ 16b4 − 4b2

If b > 0, this is equivalent to

a > 4b2 + 4b2√ 1 −
1

4b2

By Taylor’s theorem with remainder

a > 8b2 − 1/2 + R

where

0 < R ≤
1

8



1

4b2



2


1−

1

4b2



−3/2

Sinceb is a positive integer,R is surely less than1/2. Usingthe fact thata is an integer, we find a ≥ 8b2 for
positive b. The result also holds forb = 0 and a > 0, in which case the approximate ellipse degenerates to a
line segment—all tail.

Lemma 3. The ellipse of equation(1) with integral a and bdoes not pass through any point, one coordinate
of which is an integer, and the other half an odd integer.

Suppose that the ellipse does pass through such a point,(x, y). Without loss of generality, let x be an
integer andy = z/2, wherez is an odd integer. We may assume thatgcd(x, a) = gcd(z, 2b) = 1; if it were
not, we could reduce the fractions in the defining equation

x2

a2
+

z2

4b2
= 1

to get a counterexample of the same form in which the assumption does hold.The sum of two fractions in
lowest terms can be 1 only if their denominators are the same.Hencea = 2b. Becausex/a is in lowest
terms,x must be odd. Consequently we have a triple (x, z, a) with parities (odd,odd,even) that satisfies

-12-

x2 + z2 = a2

But as is well known, no such triple exists, for that would imply

1 + 1 ≡ x2 + z2 ≡ a2 ≡ 0(mod 4).

Lemma 4. Configurations4, 8, 14, and15are impossible.

The coordinates of the juncture, (X,Y), must satisfy both the equation of the ellipse

x2

a2
+

y2

b2
= 1 (1)

and its derivative

2x

a2
+

2y

b2

dy

dx
= 0

with dy/dx = −1. Solvingsimultaneously, we find

X =
a2

√ a2 + b2
, Y =

b2

√ a2 + b2
(2)

(x1 ,y1)

(X,Y)

(x2 ,y2)

Figure 5.

Configurations4 and 8 are both exemplified by Figure 5.The ellipse meets the top grid line at
(x1, y1) and the right grid line at (x2, y2). Fromthe figure we see that

1/2 ≤ x1 ≤ X < x2 ≤ x1 + 1/2 (3)

0 ≤ y2 < y1 − 3/2 < Y ≤ y1 (4)

From the equation of the ellipse (1),

(x1/a)2 + (y1/b)2 = 1

(x2/a)2 + (y2/b)2 = 1

Subtract and factor.

(y1 − y2)(y1 + y2)/b
2 = (x2 − x1)(x2 + x1)/a

2

From (3)x2 − x1 ≤ 1/2. Alsofrom (3), the second factor on the right is at most2x1 +1/2, which in turn is at
most 2X +1/2. Hence

-13-

a2

b2
(y1 − y2)(y1 + y2) ≤ X +

1

4

From (4),y1 − y2 > 3/2 and y1 ≥ Y:

3

2

a2

b2
(Y + y2) < X +

1

4

According to (2),a2Y/b2 = X. Substituting and simplifying, we find

X <
1

2
− 3

a2

b2
y2

From (4) y2 is nonnegative. Thus the last inequality impliesX < 1/2, which contradicts (3). The figure is
impossible, as are its instances4 and 8. The derivation has not used the assumptiona ≥ b, so a similar
argument proves the impossibility of the transposed configurations14and15.

Lemma 5. Configurations3 and9 are impossible.

Figure 6a illustrates configuration3. The ordinates of pointsA and B differ by more than 1.We
shall show this is impossible by considering Figure 6b. There pointsA andB′ are intersections of adjacent
grid lines with an ellipse in standard position. The ordinates ofA and B′ differ by exactly 1. By Rolle’s
theorem,* the juncture(X′,Y′), where the slope is−1, must lie between the grid lines. Let point(x0, y0) be
the midpoint ofAB′, and let the lengths of the semiaxes of the ellipse bea′ andb′. (None ofx0, y0, a′, or b′

is constrained to be integral.) Sinceboth A andB′ lie on the ellipse,

(a)

B

A

(X,Y) y0
(X,Y)

B

(b)

(X′ ,Y′)

(x0 ,y0)

B′ = (x0 + ½,y0 − ½)

(x0 − ½,y0 + ½)= A

Figure 6.

(x0 − 1
2)2

a′2 +
(y0 + 1

2)2

b′2 = 1

(x0 + 1
2)2

a′2 +
(y0 − 1

2)2

b′2 = 1

Solve simultaneously fora′2 andb′2:

a′2 =
(x0 + y0)(x0y0 +1/4)

y0

b′2 =
(x0 + y0)(x0y0 +1/4)

x0

Substituting in (2), we find

* Somewhere between the ends of a chord of a smooth curve, the tangent to the curve must be parallel to the
chord.

-14-

Y′2 = y2
0 +

1

4

y0

x0
(5)

Consider now the one-parameter family of ellipses that pass throughA. One member has arcAB′. A
second has arcAB; let a andb be the lengths of its semiaxes. Then

(x0 − 1
2)2

a2
+

(y0 + 1
2)2

b2
= 1

Sincex0 and y0 are fixed, a andb must vary inversely with each other. Let (X,Y) be the juncture of the
second ellipse. From (2) we see that asa increases andb decreases,Y must decrease and vice versa. Sup-
pose the curve in Figure 6a to be the curve AB in Figure 6b. Its juncture must lie at least one half unit
below A; thusY < y0. From (5), y0 < Y′, so Y < Y′. From the inverse variation ofa andY it follows that
a > a′ and arcAB must lie outside arcAB′, as shown. ThereforeFigure 6b requires the ordinates ofA and
B to differ by less than 1, while Figure 6a requires them to differ by more than 1. This completes the proof
of the impossibility of configuration3. Since the proof does not depend on the assumptiona ≥ b, the trans-
posed configuration9 is also impossible.

-15-

Appendix 3. Implementation in C

This program is based on the model in the text, and incorporates simplifications discussed there plus
other routine optimizations. The initializer fort has been specialized to take into account the known values
of x andy . Constant calculations have been moved out of the loop.The strength of most multiplications in
the loop has been reduced.Variablesxc andyc are the coordinates of the center of the ellipse.The arith-
metic fits in 32-bitlong integers for values ofa andb less than 896; the exact value has been confirmed
experimentally. Bew are, the comma operator denotes serial, not parallel, assignment.

extern void point(int, int);

#define incx() x++, dxt += d2xt, t += dxt
#define incy() y--, dyt += d2yt, t += dyt

void ellipse(int xc, int yc, int a, int b)
{ / * e (x,y) = bˆ2*xˆ2 + aˆ2*yˆ2 - aˆ2*bˆ2 */

int x = 0, y = b;
long a2 = (long)a*a, b2 = (long)b*b;
long crit1 = -(a2/4 + a%2 + b2);
long crit2 = -(b2/4 + b%2 + a2);
long crit3 = -(b2/4 + b%2);
long t = -a2*y; /* t = e(x+1/2,y-1/2) - (aˆ2+bˆ2)/4 */
long dxt = 2*b2*x, dyt = -2*a2*y;
long d2xt = 2*b2, d2yt = 2*a2;

while(y>=0 && x<=a) {
point(xc+x, yc+y);
if(x!=0 || y!=0)

point(xc-x, yc-y);
if(x!=0 && y!=0) {

point(xc+x, yc-y);
point(xc-x, yc+y);

}
if(t + b2*x <= crit1 || /* e(x+1,y-1/2) <= 0 */

t + a 2*y <= crit3) /* e(x+1/2,y) <= 0 */
incx();

else if(t - a2*y > crit2) /* e(x+1/2,y-1) > 0 */
incy();

else {
incx();
incy();

}
}

}

Optimization

Further modifications for efficiency are possible, but few are justifiable unless point-drawing is
unusually fast and ellipses are unusually common in relation to other graphic primitives. Commonsubex-
pressions can be eliminated and constants propagated. Moremultiplications can be reduced to additions.
There is no need to testx ≤ a unlessy = 0. Furthertests can be eliminated by splitting the single loop into
four: vertical tail,NNE arc,ENE arc, and horizontal tail. There are only south steps in the vertical tail, which
continues while south steps are possible, only east steps in the horizontal tail, which continues whilex ≤ a.
There are no east steps in theENE arc, which may begin at the first south step in theNNE arc. Pointsin the
vertical tail are reflected vertically, in the arcs vertically and horizontally, and in the horizontal tail horizon-
tally unlessa = 0. Therarely effective EH test (crit3) may be placed last in the loop for theNNE arc, the
only place where it remains necessary.

-16-

Testing

Mathematical proofs have liv es of their own, and evolve as the context of theorems becomes more
fully explored.13 This phenomenon appears also in programming, where the exploration takes the form of
testing and use. Programming has the further complication of bridging the gap between proof and imple-
mentation: does the code faithfully mirror what was proved? Skeptical testing is never amiss.

Besides various sporadic checks, the C program has been tested

For all values ofa andb in the range 0 to 4.

For circles of integer radius up to 20 and of radius divisible by 100 up to 1000.

Over small ranges around the first few critical points for tails, i.e. with one parameter near 8 times the
square of the other, in both orientations.

For a = 1000 and b = 1 and vice versa.

For a andb in the range [890,900], which spans the onset of 32-bit overflow.

For square corners in approximate circles, which happen for only four radii less than 1000, namely 4,
11, 134, and 373.1

For the cases pictured in Appendix 1, the parameters for which were independently determined.

Outputs were checked mainly by mathematical, not merely visual, criteria.For each test case some of the
following checks were made.

Termination: a quadrant beginning at(0, b) ends at (a, 0).

Symmetry: the approximation for (a, b) mirrors that for (b, a); circles have eight-fold symmetry.

Continuity: no coordinate changes by more than one at any step.

Thinness: a quadrant has at most one square corner.

Square corners happen where predicted.

Spot checks against ellipse coordinates calculated in floating point.

The dimensions at onset of tails.

Comparison against output from Wirth’s algorithm, sometimes for agreement and sometimes for pre-
dicted disagreement.

-17-

Math before Code:
A Soundly Derived Ellipse-drawing Algorithm

M. Douglas McIlroy

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

The problem of drawing an ellipse on a raster is posed mathematically as the problem of con-
structing a Freeman approximation to a curve. A straightforward program is proved to gener-
ate the approximation, and then transformed into an efficient all-integer scheme. Its logic hav-
ing been shaped by mathematics, the result is free of anomalies that bedevil previously pub-
lished programs, the outlines of which were designed with only cursory mathematical specifi-
cation. Mathematicswas used mainly to fill in details.The outlines, borrowed from the most
efficient algorithms for drawing circles, didn’t work because they had been specialized too far
to be readily generalizable in a new direction.

This small example highlights a serious pitfall in software evolution: advanced code is often an
inappropriate platform from which to launch radical advances in code.

Introduction

This note attempts to go beyond the relatively intuitive dev elopment in the accompanying paper, ‘‘Getting
Raster Ellipses Right,’’ t o giv e a clear outline of a correctness proof of a simple ellipse-drawing algorithm.

The algorithm generates a Freeman approximation,1 wherein a curve is quantized by plotting on each grid
line the nearest grid point to each intersection of that line with the curve. Freemanapproximation enjoys
the distinction of being mathematically describable, readily computable, and respectful of the symmetries
of the grid, in the sense that approximation commutes with the symmetry operations.

A not-so-deeply hidden subtext is that formal analysis often has a place in the practical development even
of quite ‘‘obvious’’ algorithms. If the objective of a program is not perfectly clear, it will help to spell it out
precisely, and to be clear about why the program meets the objective. Ditto for critical invariants. The
message is not new, but perhaps the application area is; graphics is one of many redoubts of seat-of-the-
pants programming, where mathematical understanding of the application is not matched by mathematical
analysis of the code.

At the end of the paper, the algorithm is contrasted with previous ones in the literature, all of which can
produce mathematically anomalous results. It is argued that the method of development, from mathematics
to program logic and not vice versa, is responsible for the better behavior of the present algorithm.

Terminology

A point P is a coordinate pair (P. x, P. y).

Point P is north of point Q if P. y > Q. y, and directly northof Q if P. x = Q. x and P. y > Q. y. Similar
definitions hold for east, south, and west.

Point P is northeastof pointQ if P is both north and east ofQ, and similarly for southeast, southwest, and
northwest.

A grid point is a point with integer coordinates.When it can be inferred from context, a grid point may be
referred to simply as a point.

The neighbor functionsnorth(P) denotes the nearest toP among all grid points directly north of pointP;
andnortheast(P) denotes the nearest to grid pointP among all grid points northeast ofP. Neighbors in the
remaining six principal compass directions are designated similarly.

-18-

Let functione be defined bye(a, b, x, y) = b2x2 + a2y2 − a2b2. If a > 0 and b > 0, the ellipseis the curve
in thex-y plane defined bye(a, b, x, y) = 0, with the traditional canonical formx2/a2 + y2/b2 = 1.

In the first quadrant the ellipse may be equivalently specified byy = f (a, b, x) or by x = f (b, a, y), where

f (a, b, x) = b√ 1− x2/a2, 0 ≤ x ≤ a, 0 < a, 0 < b.

If a = 0 the ellipse degenerates to a north-south segment; ifb = 0 it degenerates to an east-west segment.

Associated with each grid point in the first quadrant is avertical bardenotedP.V, which is a north-south
segment of length 1 centered onP, and a similarly centeredhorizontal bar, P. H . The vertical bar is half
open to the north; the horizontal bar is half open to the east.

The predicateV(P) means that the ellipse intersectsP.V andH(P) means that the ellipse intersectsP. H .
Formally,

V(P) ≡ P. y − 1
2 ≤ f (a, b, P. x) < P. y + 1

2,
H(P) ≡ P. x − 1

2 ≤ f (b, a, P. y) < P. x + 1
2.

Grid point P is said to belighted if the ellipse intersects either bar, i.e. if the ellipse passes near enough to
P to makeV(P) or H(P) true.

Basic observations

1. Functionf is continuous and one-to-one.

2. Thevalue of f (a, b, x) decreases monotonically asx increases fromx = 0 to x = a.

3. Theslope of the curvey = f (a, b, x) decreases monotonically asx increases fromx = 0 to x = a.

The following three lemmas are straightforward consequences of continuity and monotonicity.

Lemma 1. If a first-quadrant pointP is lighted, no first-quadrant point northeast or southwest ofP is
lighted.

Lemma 2. If P is lighted, andP is interior to the first quadrant, then (at least) one ofeast(P), south-
east(P), or south(P) is lighted.

Lemma 3. If grid pointsP and R, where R is directly east (or south) ofP, are lighted, then the ellipse
intersectsQ.V (or Q. H) for every grid pointQ in the interior of the line segment fromP to R.

Problem statement

Given nonnegative integersa andb, construct the Freeman approximation to the ellipse in the first quad-
rant, i.e. construct the setS of

lighted grid points in {P| P. x ≥ 0 & P. y ≥ 0} if a > 0 andb > 0;
grid points in {(0, y)| 0≤ y ≤ b} i f a = 0;
grid points in {(x, 0)| 0≤ x ≤ a} i f b = 0.

The algorithm should use only integer arithmetic.

General plan

We shall walk the grid visiting lighted points and accumulating a setT of lighted points. The walk starts at
the north and steps east or south whenever possible, otherwise southeast, and leaves the quadrant only when
all lighted points have been visited. Other quadrants may be filled in by symmetry.

Program 0 handles a narrowed problem, which omits the possibility ofa = 0 or b = 0 and uses real, not
integer, arithmetic. Transformations and generalizations finally lead to Program 4, an efficient solution to
the full problem.

Invariant

When grid pointP is visited,P is lighted andT comprises all lighted points north or west ofP.

-19-

Program 0.

Precondition:a > 0 & b > 0

T : = ∅
P : = (0, b)
while P. y ≥ 0 & P. x ≤ a

T ∪ = P
if P. x < a && V(east(P)) → P. x + =1 {1}
[] P. x < a & H(east(P)) → P. x + =1 {2}
[] P. y > 0 && H(south(P)) → P. y − =1 {3}
[] P. y > 0 & V(south(P)) → P. y − =1 {4}
[] P. x = a → P. y − =1 {5}
[] P. y = 0 → P. x + =1 {6}
else → P. x + =1, P. y − =1 {7}

Postcondition:T = S

In program 0 some of the guards use &&, the conditional and operator from C, to forestall evaluating f
outside its range. The set-updating operator∪ = is formed analogously to+ = in C.

The pseudoguardelse , with the obvious meaning of the the negation of the disjunction of all other guards,
is used to control the execution of a southeast step. Direct tests ofH(southeast(P)) and V(southeast(P))
would be inadequate because the event of the southeast neighbor being lighted is not necessarily incompati-
ble with the east (or south) neighbor being lighted. In such a case, the other neighbor must be visited first
lest it be skipped.

Proof of Program 0

Initialization. The initial point(0, b) is lighted. Thereare no lighted points to the north of(0, b) and no first
quadrant points to the west. Thus the invariant is established.

Termination. At every iterationP. x increases orP. y decreases towards its respective bound. Theloop can
(and must) terminate only after the extreme point(a, 0) is visited. Thetruth of the postcondition is estab-
lished at case 5 below.

The invariant will be proved by analyzing the numbered cases in the loop.

Cases 1 and 2. The guards assure thateast(P) is lighted. Bythe invariant, all lighted points north or west
of P are inT before the step. By Lemma 1, no point southwest ofeast(P) nor northeast ofP is lighted;
addingP to T preserves the invariant.

Cases 3 and 4. Like cases 1 and 2 with south exchanged for east, north for west, andV for H .

Case 5. The current point,P = (a, y), is lighted, as is the extremum of the ellipse,(a, 0). Hence(by Lemma
3, if y > 1) south(P) is lighted. Theinvariant is thus preserved whenP. y > 0. If P. y = 0, the invariant and
the fact that there are no lighted points east of(a, 0), imply that the updating ofT establishes the postcondi-
tion. Theloop terminates by stepping to an unlighted point.

Case 6. Like case 5, withP = (x, 0).

Case 7. The other guards assure that neithereast(P) nor south(P) is lighted, thatP. y > 0, and that
P. x < a. Thus, by Lemma 2,southeast(P) is lighted. LetQ = southeast(P). No points northeast or
directly north ofQ are lighted (by the guards, Lemma 1, and the invariant). Similarlyno points southwest
or directly west ofQ are lighted. Thus the step preserves the invariant.

Tr ansformation to simpler code

Having proved Program 0, we proceed by transformation. Program 1 follows from weakening some guards
and noting that case 4 is superfluous.

Case 1. The guarding termV(east(P)) means P. y − 1
2 ≤ f (a, b, P. x +1) < P. y + 1

2. If
f (a, b, P. x) < P. y + 1

2, monotonicity implies f (a, b, east(P). x) < east(P). y + 1
2, which is the second test

in V(east(P)). If f (a, b, P. x) ≥ P. y + 1
2, then forP to be lighted as the invariant requires,H(P) must be

true. Monotonicityprecludes the curve from intersectingP. H and passing above east(P).V. In either

-20-

ev ent the second test inV(east(P)) is satisfied; it can be dropped from the guard.

Case 2. The guarding termH(east(P)) meansP. x + 1
2 ≤ f (b, a, P. y) < P. x + 1

2, the second inequality of
which requires that the ellipse not pass east ofeast(P). H . If, however, the ellipse does so, then some point
directly east ofP must be lighted, so by Lemma 3 the ellipse must intersecteast(P).V and case 1 is
selectable. Becausecase 1 and case 2 have the same outcome, the second inequality may be dropped from
H(east(P)) without changing the effect of the program.

Case 3. The guarding termH(south(P)) meansP. x − 1
2 ≤ f (b, a, y −1) < P. x + 1

2. The first inequality can
be dropped from the guard for reasons similar to those given for simplifying the guard in case 1.

Case 4. The ellipse intersectssouth(P).V. We shall show that it must also intersectsouth(P). H , so case 4,
having the same outcome as case 3, is subsumed by case 3.

Since the ellipse intersectssouth(P).V, it cannot intersectP.V. Hence, for P to be lighted, the ellipse must
intersectP. H . By monotonicity the intersection must lie west ofP. By continuity, the ellipse must also
intersect the open segment K that joins(P. x − 1

2 , P. y − 1
2) to (P. x, P. y − 1

2). Betweenits intersections
with H andK the ellipse has mean slope less than−1, hence by monotonicity of the slope, the ellipse has
slope less than−1 at all points south ofK . A curve of slope less than−1 and continuous over the north-
south range ofsouth(P).V, which meetssouth(P).V, must also meetsouth(P). H .

Program 1.

Precondition:a > 0 & b > 0

T : = ∅
P : = (0, b)
while P. y ≥ 0 & P. x ≤ a

T ∪ = P
if P. x < a && P. y − 1

2 ≤ f (a, b, P. x +1) → P. x + =1 {1}
[] P. x < a & P. x + 1

2 ≤ f (b, a, P. y) → P. x + =1 {2}
[] P. y > 0 && P. x + 1

2 > f (b, a, P. y −1) → P. y − =1 {3}
[] P. x = a → P. y − =1 {5}
[] P. y = 0 → P. x + =1 {6}
[] else → P. x + =1, P. y − =1 {7}

Postcondition:T = S

To get rid of the square root we replace formulas inf by equivalent formulas ine. If y can be less than
zero, an inequality of the formy ≤ f (a, b, x) is replaced byy < 0|e(a, b, x, y) ≤ 0; the resulting disjunction
is interpreted as a case split (between cases 1 and 1a). The identitye(b, a, y, x) = e(a, b, x, y) allows argu-
ments to be rearranged.

The conditional && operators are no longer necessary becausee, unlike f , has no range restrictions.

Program 2.

Precondition:a > 0 & b > 0

T : = ∅
P : = (0, b)
while P. y ≥ 0 & P. x ≤ a

T ∪ = P
if P. x < a & e(a, b, P. x +1,P. y − 1

2) ≤ 0 → P. x + =1 {1}
[] P. x < a & P. y − 1

2 < 0 → P. x + =1 {1a}
[] P. x < a & e(a, b, P. x + 1

2 , P. y) ≤ 0 → P. x + =1 {2}
[] P. y > 0 & e(a, b, P. x + 1

2 , P. y −1) > 0 → P. y − =1 {3}
[] P. x = a → P. y − =1 {5}
[] P. y = 0 → P. x + =1 {6}
else → P. x + =1, P. y − =1 {7}

Postcondition:T = S

-21-

For all x ≥ a, we hav ee(a, b, x, y) > 0 unless (x, y) = (a, 0). If P = (a, 0), the outcomes of cases 1 and 2 are
the same as that of case 6.Otherwise the second tests in cases 1 and 2 will fail. Thusthe testP. x < a can
be dropped from the guards in cases 1 and 2.

Case 1a is subsumed by case 6.

Becausee(a, b, x + 1
2 , 0) < 0 for all integer x < a, case 2 will be selectable whenP. y = 0 and P. x < a, thus

subsuming case 6 unlessP. x = a. In the latter situation,P = (a, 0) and case 6 has the same outcome (ter-
mination) as case 5. Thus case 6 may be dropped.

By trying case 3 only when (the weakened) case 2 fails, we can prevent case 3 from being considered when
P. y = 0, unlessP. x = a. If case 3 were executable in the latter situation, it would have the same outcome
(termination) as case 5. Thus the testP. y > 0 may be dropped from guard 3.

Sincee(a, b, a + 1
2 , y) > 0 for all y, the weakened guard 3 will always be true whenP. x = a, thus subsum-

ing case 5.

Program 3.

Precondition:a > 0 & b > 0

T : = ∅
P : = (0, b)
while P. y ≥ 0 & P. x ≤ a

T ∪ = P
if e(a, b, P. x +1,P. y − 1

2) ≤ 0 → P. x + =1 {1}
[] e(a, b, P. x + 1

2 , P. y) ≤ 0 → P. x + =1 {2}
else →

if e(a, b, P. x + 1
2 , P. y −1) > 0 → P. y − =1 {3}

else → P. x + =1, P. y − =1 {7}

Postcondition:T = S

Meeting the full specification

The precondition can be weakened toa ≥ 0 & b > 0 becausee(0, b,. . .) would be positive in the guards of
cases 1 and 2.Whena = 0, only cases 3 and 7 can happen; the program would generate a north-south line
segment as required.

The precondition can be further weakened toa ≥ 0 & b ≥ 0 becausee(a, 0, x, 0) = 0 and at least one of
cases 1 and 2 would always be selectable whenb = 0 and P. y = 0. For b = 0, the initial value ofP. y is 0;
hence the program would generate an east-west line segment as required.

The guards in Program 3 involve integer multiples of 1/4.Noninteger values may appear in the terms
b2(P. x + 1

2)2 and a2(P. y − 1
2)2, which result when the definition ofe is substituted into the guards.The

requirement for integer arithmetic can be meet by scaling. Scaling, however, hastens the onset of overflow;
judicious rounding is better.

The functionh1(a, b, x, y) = e(a, b, x +1, y − 1
2) − a2/4 is a polynomial over the integers. Interms ofh1, the

guard in case 1 becomesh1(a, b, x, y) ≤ −a2/4, which at integer arguments is equivalent to the all-integer
expressionh1(a, b, x, y) ≤ −a2/4 − a mod 2. Replacing each guard similarly, we obtain an all-integer pro-
gram.

-22-

Program 4.

Precondition:a ≥ 0 & b ≥ 0

let
h1(a, b, x, y) = e(a, b, x +1, y − 1

2) − a2/4
h2(a, b, x, y) = e(a, b, x + 1

2 , y) − b2/4
h3(a, b, x, y) = e(a, b, x + 1

2 , y −1) − b2/4
T : = ∅
P : = (0, b)
while P. y ≥ 0 & P. x ≤ a

T ∪ = P
if h1(a, b, x, y) ≤ −a2/4 − a mod 2→ P. x + =1 {1}
[] h2(a, b, x, y) ≤ −b2/4 − b mod 2→ P. x + =1 {2}
else →

if h3(a, b, x, y) > −b2/4 − b mod 2→ P. y − =1 {3}
else → P. x + =1, P. y − =1 {7}

Postcondition:T = S

Further arithmetic transformations (propagating constants, reducing the strength of multiplications, elimi-
nating common subexpressions, moving invariant expressions out of the loop) can significantly improve
efficiency. Such generic optimizations are incorporated in every published ellipse-tracing algorithm,
including that in the first paper of this trilogy. Howev er, since they are independent of the details of the
ellipse problem, we shall not pursue them further here.

Discussion

Although the topic has been studied for years,2, 3, 4, 5, 6previous algorithms yield ad hoc approximations that
lack a precise mathematical specification independent of the details of the algorithm.The published
descriptions tend to concentrate on algebraic manipulation of the program for efficiency, while ignoring the
question of just what locus the program traces.

In particular, all but one of the cited algorithms can yield different approximations for the same ellipse
depending on the orientation of the major axis.The single exception6 is an artifact of treating the major
and minor axes differently.

All the cited algorithms bear a superficial resemblance to Program 4 with optimizations as suggested above.
None, however, incorporates case 2. This lack leads to asymmetry under transposition.For example, with-
out case 2 the lighted point(1 ,3) would be missed when(a, b) = (2,3), yet its transpose(3,1) would be vis-
ited when (a, b) = (3, 2).

From the published descriptions, I infer that the logical scheme of the algorithms came first; mathematics
was used only to fill in details. The basic intuition was to imitate as closely as possible the octant-plotting
technique originated by Pitteway, which had proved so successful with circles. Proper location and treat-
ment of the octant join, which had been a trivial subproblem for circles, became the central, and finally
defeating, problem for ellipses. All solutions were heuristic.

The present derivation proceeds in an opposite direction, from the mathematics to the logical structure of
Program 4.There is still an initial algorithmic intuition: the plan to walk from north to east. In proving
Program 0 it was necessary to confirm the intuition that the walk would visit all lighted points.

From a more abstract viewpoint, the published algorithms represent attempts to generalize from highly spe-
cialized code for the circle. The circle codes assume 8-fold symmetry.5, 7, 8 This paper instead has pro-
ceeded by generalizing Bresenham’s less refined algorithm for a quadrant,9 which only assumes fourfold
symmetry, all that can be counted on in an ellipse.The latter generalization involves little more than the
discovery of case 2, while generalization from octant algorithms requires at least a sound octant test, sepa-
rate treatment for each octant, and a satisfactory treatment of the octant join. None of the published algo-
rithms meets this multiple challenge fully.

In diagrammatic terms, the two approaches may be understood as proceeding by specialization and general-
ization in opposite orders, as shown in Figure 1. Unfortunately the two paths do not commute.The

-23-

stumbling block is generalizing from octant circle algorithms, which have been specialized too far. It is
much easier to generalize from the more malleable quadrant circle algorithm.

Quadrant circle
(Bresenham)

generalize Quadrant ellipse
(Program 0)

specialize

Efficient ellipse

specialize

Octant circle
(Horn)

generalize

Figure 1.

The lesson is broadly applicable.It’s easier to reengineer less sophisticated code.‘‘ Industrial strength’’
programs are likely to be less amenable to major changes than are prototypes.For this reason, major steps
in software evolution may necessitate stepping back in the phylogenetic tree in order to surge forward in an
altered direction. Perhaps it would be well to preserve primitive versions of evolving programs as a kind of
health insurance against software sclerosis.

Moral: You can’t add raisins after the bread is baked.

References

1. H.Freeman, “Computer processing of line-drawing images,”Computing Surveys,6, p. 63 (1974).

2. M. L. V. Pitteway, “Algorithms for drawing ellipses or hyperbolae with a digital plotter,” Computer
J., 10, pp. 282-289 (1967).

3. V. Pratt, “Techniques for conic splines” inComputer Graphics,ed. B. A. Barsky, 19, pp. 151-159,
ACM (1985). SIGGRAPH ’85 Conference Proceedings.

4. J. R. Van Aken, “An efficient ellipse-drawing algorithm,” IEEE Computer Graphics and Applica-
tions,4, 9, pp. 24-35 (1984).

5. J.D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes,Computer Graphics Principles and Practice,
Addison-Wesley (1990).

6. N. Wirth, “Drawing lines, circles and ellipses in a raster” inBeauty is our Business,ed. W. H. J. Fei-
jen, A. J. M. van Gasteren, D. Gries, and J. Misra, pp. 427-434, Springer-Verlag, New York (1990).

7. B. K. P. Horn, “Circle generators for display devices,” Computer Graphics and Image Processing,5,
pp. 280-288 (1976).

8. M. D. McIlroy, “Best approximate circles on integer grids,” ACM Trans. on Graphics,2, pp. 237-264
(Oct. 1983).

9. J.Bresenham, “A l inear algorithm for incremental digital display of circular arcs,” Comm. ACM, 20,
pp. 100-106 (1977).

-24-

Ellipses Not Yet Made Easy

M. D. McIlroy

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

A paper by N. Wirth, ‘‘Drawing Lines, Circles and Ellipses in a Raster,’’1 excerpted here by
permission, illustrates methodological issues that arise in the simple problem of drawing
ellipses. Thepaper, like others on the subject, attempts to generalize from a highly optimized
algorithm for drawing circles.The result is foredoomed because the model has been special-
ized beyond the point of no return. More engagingly and crisply written than much practical
literature in computer science, the paper affords an attractive and instructive addition to that
branch of the literature which Wirth himself has acknowledged as having ‘‘taught how not to
do it,’’ 2 in matters of both style and substance.

Wirth’s words appear in full-size type, my annotations in small size.

Abstract. In a tutorial style, Bresenham’s algorithms for drawing straight lines and circles are developed
using Dijkstra’s notation and discipline. The circle algorithm is then generalized for drawing ellipses.

The ‘‘tutorial’’ exposition is admirably suited as a case study, for it reveals just how the design of the
ellipse-drawing algorithm went astray, as had many similar algorithms published previously. It does not,
however, well illustrate Dijkstra’s rigor, as it later admits: ‘‘We adopt his notation but deviate from his
discipline by specifying the task algorithmically rather than by a result predicate.’’ Concentrating on
method without careful regard for purpose, the development fails to consider the problem and the pro-
gram as a connected whole. No precise objective is stated, and single statements are analyzed in isola-
tion, without reference to boundary conditions imposed by context. The result is a program with
unknown properties, which cannot be trusted for general use.

Beware of programs with imprecise specifications.

Introduction. Recently, I needed to incorporate a raster drawing algorithm into one of my programs.The
Bresenham algorithm is known to be efficient and therefore was the target of my search. Literature quickly
revealed descriptions in several sources [1,3]; all I needed to do was to translate them into my favourite
notation. However, I wished—in contrast to the computer—not to interpret the algorithms but to under-
standthem. Ihad to discover that the sources picked were, albeit typical, quite inadequate for this purpose.
They reflected the widespread view that programming courses are to teach the use of a (specific) program-
ming language, whereas the algorithms are simply given.

How frequently technical papers utter the word ‘‘recent’’ in the first sentence to suggest labor at the scien-
tific frontier! The present topic, though admittedly not at the frontier, has more than passing interest.
Everybody (including me) who conscientiously studies algorithms of the Pitteway-Bresenham type seems
impelled to improve the never quite complete analysis.3, 4, 5The analysis is delicate—more delicate than
the paper recognizes.

If, as Wirth charges, graphics texts intend to help teach programming languages, then so does the present
paper. More analysis is aimed at getting efficient code for languages like Pascal than at critical under-
standing of the problem. The avowed concern for efficiency upstages considerations of purpose.

The unusual diction of the last phrase, ‘‘whereas the algorithms are simply given,’’ i nspires a complemen-
tary interpretation: a good tutorial will strive to giv e algorithms simply, but it will also strive to justify
them adequately. Wirth succeeds on presentation, but not justification; one can’t justify the unjustifiable.
A more thorough attempt might have uncovered the impasse.

-25-

Dijkstra was an early and outspoken critic of this view, and he correctly pointed out that the difficul-
ties of programming are primarily inherent in the subject, namely in constructive reasoning. Inorder to
emphasize this central theme, he compressed the notational issue to a bare minimum by postulating his own
notation that is concisely defined within a few formulas [2].

The capsule description misses the genius of Dijkstra’s notation: its suppression of spurious detail about
sequencing. Hadmere ‘‘compression of the notational issue’’ been the central purpose, the notation
would not stand out among others.

The present treatment illustrates Dijkstra’s notation little more than it does his discipline. Guarded com-
mands appear only as trivial equivalents for everyday while and if-then-else constructs. The
deployment of synonyms is window-dressing, not a methodological advance. Thenotation that is
mainly—and productively—used in the paper is elementary algebra; no computer scientist should be
without it.

[Further introduction, a section on lines, and a section on circles are omitted.]

Ellipses. Similarly to the circle algorithm, we wish to design an algorithm for plotting ellipses by proceed-
ing in steps to find raster points to be marked.

Grammatically the adverb ‘‘similarly’ ’ has to modify the main verb, but that gives, ‘‘We wish similarly.’’
However algorithms wish, it is probably not as we do.Perhaps it is as computers do; see Wirth’s intro-
ductory paragraph.The slapdash English, even though well above threshold for most computing journals,
symptomizes a less than careful approach to the whole work. In writing inexactly one hides inexact rea-
soning, even from oneself.

What’s worth telling is worth telling well.

We concentrate on the first quadrant; the other three quadrants can be covered by symmetry arguments and
require no additional computation.

‘‘ No additional computation’’ really means ‘‘no more code to be displayed in this paper.’’

Let the ellipse be defined by the following equation.Again without loss of generality, we assume
0 < a ≤ b.

E: (x/a)2 + (y/b)2 = 1

The customary meaning of ‘‘without loss of generality’’ is that in some obvious way the general problem
can be mapped into a special case. Here, however, generality has certainly been lost. The possibility of
a = 0, an ellipse of zero width, and a perfectly reasonable limiting case, should be restored in any real
implementation. Imaginea time-lapse animation of Saturn dying at the moment the rings appear edge on.

Handle limiting cases.

More seriously, the highly technical restrictiona ≤ b is ‘‘simply given’’—never explained and never
appealed to in the development. Yet the program can fail without it.

We start with the pointP(0, b) and proceed by incrementingx in each step, and decrementingy if neces-
sary.

Here, as throughout the paper, the reader is left to infer thata andb are integers. Theassumption is cen-
tral to the correctness of the algorithm.

The extra identifierP, like E in the previous equation, serves no purpose whatever.

The exact ordinate of the next point follows from the defining equation:

Y = b √(1− ((x +1) /a)2)

The notation here depends on the omitted part of the paper. Y is an ordinate on the true ellipse;y is a
raster approximation.‘‘ Next point’’ was defined informally by usage to mean the point on the true ellipse
at the next integer abscissa.

The raster point coordinate must satisfy

y − 1/2 < b √(1− ((x +1) /a)2)

-26-

y2 − y + 1/4 < b2 − b2(x +1)2/a2

a2y2 − a2y + a2/4 < a2b2 − b2x2 − 2b2x − b2

b2x2 + 2b2x + a2y2 − a2y + a2/4 − a2b2 + b2 < 0

The second line of the derivation is unjustified ify < 1/2 or if x +1 > a. The former event can happen and
cause trouble, as we shall see later. The latter cannot, but that fact is not foreseeable at this stage of the
derivation.

Attend to boundary conditions.

The necessary and sufficient condition for decrementingy is thereforeh ≥ 0 with the auxiliary variableh
being defined as

h = b2x2 + 2b2x + a2y2 − a2y + a2/4 − a2b2 + b2

Although it appears suddenly and unexplainedly here, the discussion about decrementingy parallels that
in the omitted discussion of circles.

As in the case of the circle, the termination condition is met as soon asy might have to be decreased by
more than 1 after an increase ofx by 1, i.e. when the tangent to the curve is greater than 45°.Unlike in the
case of the circle, however, this condition is not obviously given by x = y. We reject the obvious solution of
computing the ordinate for which the curve’s derivative is -1, [sic] because this computation alone would
involve at least the square root function.

The English of the paragraph, and especially of the sentence beginning, ‘‘Unlik e in the case of,’’ w on’t
stand up to scrutiny.

The notion of decreasingy after increasingx is excessively sequential.To simplify the maintenance of
the loop invariant, and to avoid needlessly overspecifying the code, one would prefer to say that at each
step eitherx alone is modified, orx and y are modified simultaneously. The presentation here, which
decides which to do first, bears on Pascal more than on the problem.

The last sentence betrays a lack of analysis. The ordinate in question isy = b2(a2 + b2)−1/2. The square
root can be removed by squaring to get a polynomial discriminator function, as Wirth has just done to
obtain h. The resulting fourth powers, however, threaten to overflow small registers. Unlessunusually
wide arithmetic is at hand, it is well to seek a discriminator of lower degree, which the paper proceeds to
do in a novel way.

Instead we compute a functiong, similar to h, incrementally. Its origin stems [sic] from the inequality

y − 3/2 < b √(1− ((x +1) /a)2)

implying that the ordinate of the next point be at least 3/2 units below the current raster point. Therefore, a
decrease ofy by 2 would be necessary for an increase ofx by 1 only. A similar development as forh
yields the functiong as

g = b2x2 + 2b2x + a2y2 − 3a2y + 9a2/4 − a2b2 + b2

andx can be incremented as long asg < 0.

Beware, the explanation is backward. Violation, not satisfaction, of the inequality would imply the unde-
sired outcome. Furthermore, if the ellipse is sufficiently narrow, y can decrease by any integer amount,
not just 1 or 2. More significantly, what if y should never decrease by more than 1?This happens when
a = b = 1. In this case theg test turns out to work by luck of a compensating error: the derivation of g is
flawed by the same inattention to range restrictions as was the derivation of h.

The first quadrant of the ellipse is then completed by the same process, starting at the pointP(a, 0), of [sic]
incrementingy and conditionally decrementingx. The auxiliary function here is obtained from the previ-
ous case ofh by systematically substitutingx, y, a, b for y, x, b, a.

The wording is imprecise.If one understands ‘‘the same process’’ to test for termination the same way,
then it will not necessarily work for drawing the long branch of a skinny ellipse. Herethe asymmetry

-27-

imposed by the unexplained preconditiona ≤ b comes into play.

The derivation of the incrementing values forh and g follow [sic] from the application of the axiom of
assignment: on incrementingx the incrementation ofh is obtained from

{ h = b2x2 + 2b2x + k}
h : = h + b2(2x + 3)
{ h = b2x2 + 2b2x + b2 + 2b2x + 2b2 + k}
x : = x + 1
{ h = b2x2 + 2b2x + k}

on incrementingy, the incrementation ofh is obtained from

{ h = a2y2 − a2y + k}
h : = h − 2a2(y −1)
{ h = a2y2 − 2a2y + a2 − (a2y − a2) + k}
y : = y − 1
{ h = a2y2 + a2y + k}

and the incrementation ofg is obtained from

{ g = a2y2 − 3a2y + k}
g : = g − 2a2(y − 2)
{ g = a2y2 − 2a2y + a2 − 3(a2y − a2) + k}
y : = y − 1
{ g = a2y2 − 3a2y + k}

In each stretch of the preceding derivation, k represents nonchanging terms, as was explained in the omit-
ted part of the paper. All this formalism, however, is misplaced methodology. It simply says that the
update step is

x, y, h, g : = x +1, y + ∆y, h+ ∆h, g+ ∆g

where∆h = h(x +1, y + ∆y) − h(x, y) and ∆g is defined similarly. Most of the development is
concerned with inconsistent intermediate states.Their necessity in Pascal is no reason to inflict
them on an exposition of an algorithmic idea.

Use formalism for function, not fashion.

This completes the design considerations for the following algorithm.

x : = 0; y : = 0;
h : = (a2 DIV 4) − ba2 + b2; g : = (9 /4)a2 − 3ba2 + b2;

do g < 0 → Mark(x, y);
if h < 0 → d : = (2x + 3)b2; g : = g + d
[] h ≥ 0 → d : = (2x +3)b2 − 2(y −1)a2;

g : = g + d + 2a2;
y : = y − 1

fi ;
h : = h + d; x : = x + 1

od;
x : = a; y1 := y; y : = 0;
h : = (b2 DIV 4) − ab2 + 2a2;
do y ≤ y1 → Mark(x, y);

if h < 0 → h : = h + (2y +3)a2

[] h ≥ 0 → h : = h + (2y +3)a2 − 2(x −1)b2; x : = x − 1
fi ;
y : = y + 1

od

-28-

The reader is left to puzzle out the inconsistent division operators in the second line.The h in the pro-
gram is not the same as theh in the development. Itis rounded down to the nearest integer. As the omit-
ted part of the paper explained, rounding does not change the outcome of any test in the algorithm.Simi-
larly, g may be rounded down and the first term of its initializer may be replaced by(9a2) DIV 4.

The second initialization ofh should be the same as the first witha andb interchanged.

The second loop is fatally flawed, because the unstated side condition for the validity of theh test can be
violated. Thatcondition,x ≥ 1/2, is violated whenever an ellipse is so narrow as to be rendered with tails
one pixel wide at either end. See the accompanying figure for the result. Apparently the program was
never tested against such obviously stressful cases.

A subtler trouble is that the endpoint of the second loop does not necessarily coincide with the last point
calculated (but not plotted) in the first loop.For example, witha = 2 and b = 3, the first loop ends at
(1 ,3), while the second loop ends at(0,3). I infer that it was simply assumed that the two endpoints would
coincide. If the possibility of mismatch had been recognized, there should have been some analysis of
how bad it can be.

Proper tails and fishy tails,a = 1, b = 15. Figurerotated 90° to save space.

We close this essay with the remark that values ofh may become quite large and that therefore overflow
may occur when the algorithm is interpreted by computers with insufficient word size.Unfortunately, most
computer systems do not indicate integer overflow! Using32-bit arithmetic, ellipses with values ofa andb
up to 1000 can be drawn without failure.

The exclamation directs attention away from software to hardware. All computer hardware that I can
think of indicates integer overflow, although not by trapping. Compiled code for languages such as Pas-
cal almost universally ignores the indication, however.

The claim of a range up to 1000 is too rosy. Where the slope of the ellipse is near zero, the discriminator
g may be evaluated at points up to 2 units away from g = 0. (Thealgorithm visits points as much as 1/2
unit off the ellipse, andg = 0 is displaced 3/2 units from the ellipse.) At such a point witha = b, x ∼ 0
andy ∼ a, the magnitude ofg, estimated as|(∂g/∂y)∆y| , is approximately 4a3. Thus overflow is liable to
occur at parameter values around(231/4)1/3, not much more than 800.Testing confirms this estimate.

Big-oh estimates are not quantitative.

There is more to say. It is bad practice to draw points twice. In particular, double plotting is self-nullify-
ing when drawing by exclusive or into a bitmap. Double plotting at the beginnings of the arcs points can
be averted by proper coding of theMark procedure. However, double plotting can also occur where the
two branches meet.For example, in the poorly closing example mentioned above (a = 2 and b = 3),
Mark(0,3) will be called in the second loop as well as in the first.

Other important properties of the algorithm are left to be taken on faith. Will the two branches always
meet without a gap? Ifnot, color would leak out on attempting to shade the inside of an ellipse. (This is
not an idle question. The omitted algorithm for circlescan produce gaps.) Will circles drawn by the
algorithm be symmetric about the diagonal,y = x? The answer is not immediately obvious, because in
all but the smallest circles, the juncture of the two branches lies off the diagonal.

Formulate and confirm proper behavior.

-29-

The ellipse-drawing algorithm works like two ships setting out from fixed points on the shores of the first
quadrant to rendezvous near the octant juncture. The most difficult sailing will be experienced in leaving
the harbors, where the sharpest and most confined turns must be navigated, and at the meeting point,
where precision docking is required. Just as at sea, where the steering of a ship may be trusted to an
apprentice seaman in open water, but needs an experienced pilot for close navigation, so ellipse-drawing
can be entrusted to simple homework-assignment code only in the open and needs more attention in the
critical stretches. The present algorithm has not earned a pilot’s license.

REFERENCES [for Wirth]

[1] N. Cossitt. Line Drawing with the NS32CG16 and Drawing Circles with the NS32CG16.Technical
Report AN-522 and AN-523, National Semiconductor Corp., 1988

[2] E. W. Dijkstra. Guardedcommands, non-determinacy, and the formal derivation of programs.
Comm. ACM,18(8):453-457, August 1975.

[3] J. D. Foley and A Van Dam. Fundamentals of Interactive Computer Graphics. Addison-Wesley,
1982.

References

1. N. Wirth, “Drawing lines, circles and ellipses in a raster” inBeauty is our Business,ed. W. H. J. Fei-
jen, A. J. M. van Gasteren, D. Gries, and J. Misra, pp. 427-434, Springer-Verlag, New York (1990).

2. N. Wirth, “From Modula to Oberon,” Software—Practice and Experience, 18, pp. 661-670 (1988).
Acknowledgements.

3. M. L. V. Pitteway, “Algorithms for drawing ellipses or hyperbolae with a digital plotter,” Computer
J., 10, pp. 282-289 (1967).

4. J.Bresenham, “A l inear algorithm for incremental digital display of circular arcs,” Comm. ACM, 20,
pp. 100-106 (1977).

5. M. D. McIlroy, “Best approximate circles on integer grids,” ACM Trans. on Graphics,2, pp. 237-264
(Oct. 1983).

