
Communication Files:
Inter process IO before Pipes

M. Douglas McIlroy

Dartmouth College
doug@cs.dartmouth.edu

February, 2017

Intr oduction

Some time after the introduction of pipes to Unix, we in the Bell Labs Unix lab learned
that the Dartmouth Time-Sharing System (DTSS) had a mechanism for process-to-
process IO called communication files. Unfortunately we didn’t know exactly how they
worked. When I retired from Bell Labs to Dartmouth in 1997, I asked around fruitlessly
for further information. At last, at a DTSS reunion organized by Tom Kurtz, who had fos-
tered the project, I met Sidney Marshall, who had been involved in the implementation.
He explained the concept. The picture was rounded out in discussion with another partici-
pant, Stephen Garland, who had edited the DTSS Programming Manual.

Communication files were much more complicated than Unix pipes. They were also
more powerful. Pipes could be simulated by communication files, but not vice versa. A
pipe can handle neither the two-way communication nor the out-of-band signaling that
communication files support.

The programming manual’s description of communication files ran to many pages. [avail-
able at http://www.cs.dartmouth.edu/~doug/DTSS/DTSSchapter5.pdf] As a result, com-
munication files remained beyond the working toolkit even of many DTSS insiders. Nev-
ertheless communication files played an indispensable role: one or more communication
files mediated every user’s interaction with the system.

Much of the detail below comes from collections of DTSS documents that Garland and
Marshall have deposited with the Dartmouth library. Further information was gleaned
from an email conversation among DTSS alumni, to which Peter Doyle kindly introduced
me.

Dates

Communication files significantly antedated Unix pipes. Evidence from design docu-
ments puts the origin of the concept sometime in 1967, between the writing of an outline
of features for the Phase II DTSS system dated March, which doesn’t mention communi-
cation files, and a summary of executive services dated 29 August, which does. As com-
munication files were used for terminal sessions, they were operational when the system
went live on January 6, 1969 [John Kemeny, January 20, 1969]. (More than three years
before pipes debuted in UNIX.) A DTSS glossary from the time contains the description,

-2-

‘‘Communications [sic] file - A type of file organization which allows direct communica-
tion with a job in the system rather than with an input/output device.’’ The facility was
described briefly in a 1969 conference session about DTSS:

A communications file allows two jobs to interact directly without the use of
secondary storage. A communications file has one end in each of two jobs. It
is the software analog of a channel-to-channel adaptor. This structure allows
job-to-job interactions using the same procedures as for more conventional
files. The two ends are labeled master end and slave end. A job at the slave
end of a communications file cannot easily distinguish this file from a con-
ventional file. Since a job at the master end of a communications file can
control and monitor all data transmitted on that file, a master end job
can simulate a data file, thereby providing a useful debugging aid and
also providing a convenient mechanism for interfacing running jobs to
unexpected data structures. [my emphasis; Robert F. Hargraves, Jr. and
Andrew G. Stephenson, ‘‘Design considerations for an educational time-
sharing system’’, AFIPS Spring Joint Computer Conference 1969, pages
657-664]

Dim reflections of the insight in the highlighted sentence began to appear in Unix-family
systems in the 1980s. The full concept finally took hold as a guiding principle in Plan 9,
still without awareness of this early formulation.

Functionality

Communication files gave complete control of the open-file API to a user process. The
concept, which Sidney Marshall and other DTSS alumni attribute to Ken Lochner,
[http://www.cs.rit.edu/swm/history/DTSS.doc] was motivated by the intent to handle the
details of terminal sessions outside the kernel, in accord with the policy that an ‘‘absolute
minimum of the executive system was written to run in master-mode, so as to make
debugging and modification of software as easy as possible.’’ [K emeny, ibid] The Har-
graves/Stephenson paper describes the terminal-handling mechanism in considerable
detail.

In full generality, communication files supported synchronous and asynchronous data
transfer, random access, status inquiries, out-of-band signaling, error reporting and access
control in addition to the primary read, write and close operations. Within this broad out-
line, the semantics of the API was determined by each individual master process.

A process could set up a communication file, hold on to one end—the ‘‘master’’—and
pass the other ‘‘slave’’ end to a descendent process. Data transfers were always initiated
at a slave end. The master end, alerted by interrupt, would match a slave write with one or
more master reads.

A process could acquire a slave end in two ways. The slave end could be inherited by a
newly created child process, in which case the child could be oblivious to the fact that it
was dealing with a communication file. Alternatively, the slave end could be transmitted
by a PASS operation executed by a process that had access to the communication file.
The target process had to overtly prepare to receive a PASS, which came via interrupt.

-3-

Usage

A notable application of communication files was in support of conferences, which
behaved somewhat like conference phone calls. Conferences were a service of SIMON
(SImple MONitor), the primary user interface to the system, like a shell in Multics or
Unix. A conference was created by a LINK operation, which started an arbitrary program
to manage the conference. Other user sessions could subsequently JOIN the named con-
ference link. The program managing a conference did not hold the master ends for the
conference. That function was performed by a program called MOTIF (Multiple On-line
Terminal InterFace), which handled arrivals and departures and gathered communication
into a single multiplexed data stream to the conference manager. [John McGeachie,
‘‘Multiple terminals under user program control in a time-sharing environment’’, CACM
16 (1973) 587-590]

Among the uses of conferences were multiperson games, and online course registration.
One conference, which we would now call a chat room, ran essentially continuously for
some 15 years.

Comparative success of communication files and pipes

Why did communication files attract little notice in the computing community, while
Unix pipes had lasting influence?

A major reason is simply the huge spread of Unix, which caught attention for its simplic-
ity, utility and low cost. Yet even at home in Dartmouth, communication files were used
for only a few specific applications, while pipes became part of every Unix programmer’s
toolkit. Unix’s command-line combinator ‘‘|’ ’ fostered the habit; nothing in DTSS did.
The question then becomes why not?

A facile answer is that Unix pipes and the pipe combinator were created as (almost)
inseparable twins. By contrast, Lochner’s grand concept stood nearly alone, abetted only
by MOTIF for conferences. Communication files became familiar to very few people.
There was a forbidding amount of detail to learn. The potential barrier between the mech-
anism and a simple use like pipes was quite high.

A similar phenomenon can be seen in the rarity in Unix of pipe topologies other than sim-
ple chains. Nothing like MOTIF has gained purchase to suppport games and analogous
applications. Although many shells, including the very popular bash, have offered some
facilities for conncting processes in tree- and even dag-shaped topologies, the capability
has barely been exploited. One deterrent is the lack of a standard convention for passing
open IO connections beyond stdin and stdout, which might enable fancier plumbing. Per-
haps Diomidis Spinellis’s recent and quite comprehensive dgsh has a chance of injecting
dag connections into the vernacular. [http://www.spinelllis.gr/cs/dgsh.html]

Using communication files, it would have been easy to implement a pipe combinator in
SIMON. I have not heard that the possibility was ever discussed. Even if it had been pro-
posed, a pipe would effectively have been like a two-party conference coordinated by a
pass-through process in the middle. The prospect of increasing the population of active
processes might have been worrisome. It is also likely that some motivating factors were
uncommon in the largely student environment: (1) multistep computations made of cas-
cading programs and (2) a library of discrete utility programs beyond compilers, editors
and word processors, available for combining.

-4-

Ahead of its time?

Pipes simply enabled interprocess IO—a small variation on the preexisting Unix model.
Communication files were a concept of a different order—a lifting of the file API to user-
level implementation. In this, it was more akin to Plan 9’s 9P protocol than to familiar IO.
Shoehorned into the IO model, instead of being engineered from the ground up, commuu-
nication files became complicated beyond necessity for the purpose of piping, but not
comprehensive enough to enable a completely fresh approach to distributed computing as
Plan 9 would eventually do.

Had it been widely known, the underlying idea of separating the file interface from its
implementation in order to enable alternate implementations might have inspired Plan
9-like efforts earlier. As events actually transpired, Plan 9 attracted considerable interest,
and some of its surface features were promptly incorporated into other systems, while its
central principle had little influence. Twenty years after Plan 9 and nearly fifty after
DTSS, the incumbent mechanisms of distributed computing remain largely unaffected by
either. By the time Plan 9 offered the distilled essence of communication files, the
momentum of the old model seems to have become too great to deflect.

