
SARRAY(3) SARRAY(3)

NAME
sarray, ssarray, bsarray, lcp, scode − suffix-array tools

SYNOPSIS
#include "sarray.h"
int sarray(int *a, int n);
int ssarray(int *a);
int bsarray(unsigned char *s, int *a, int n);
int *lcp(int *a, char *s, int n);
unsigned char *scode(char *s);

DESCRIPTION
Sarray and ssarray convert array a into a suffix array for a. The n values in a must form a contiguous set of
integers in the range 0 to some positive value, with 0 occurring only as an endmark, in a[n−1].

Bsarray builds, in a (of length n+1), a suffix array for the n-byte string b, which need not contain an end-
mark.

All three suffix-array builders return the index at which the whole string is identified in a. (This value is
used in Burrows-Wheeler data compression.)

Lcp returns an array l, in which l[j] is the length of the longest common prefix of the suffixes identified by
a[j−1] and a[j], except l[0]=0. It runs in time O(n) and uses temporary space equal in size to a.

Scode returns an encoding of string s in a form suitable for input to sarray or ssarray.

Explanation
Suffix arrays are useful for information retrieval, biological sequence analysis, plagiarism detection, data
compression, linguistic analysis, etc.

A suffix array identifies, in lexicographic order, the (positions of) the suffixes of a given string. Thus the
suffix array for the string "abab", including its final null character, is {4,2,0,3,1}, identifying the suffixes "",
"ab", "abab", "b", "bab". Equivalently, it identifies circular shifts in lexicographic order. For the string
"abab", with # as a visible endmark, the shifts are "#abab", "ab#ab", "abab#", "b#aba", "bab#a".

The three array-building functions run in time O(n log n). Sarray and bsarray use a hybrid algorithm, typi-
cally several times as fast as the deliberately simple ssarray . All three require temporary space equal in
size to a. Space overhead may be reduced by using qsort(3) with a suitable comparison function, but run-
ning time then becomes at best O(nm log n) m is the length of the longest repeated substring.

EXAMPLES
Build, in a and l respectively, a suffix array for string s and the associated lcp array.

int *l;
int n = strlen(s)+1;
int *a = scode(s);
sarray(a, n);
l = lcp(a, s, n);

Build the same suffix array, using bsarray.
int n = strlen(s);
int *a = malloc((n+1)*sizeof(int));
bsarray((unsigned char*)s, a, n);

DIAGNOSTICS
Sarray, ssarray, and bsarray return −1 for bad data or insufficient space.

Lcp and scode return malloc’ed arrays, or 0 for bad data or insufficient space.

1

