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ABSTRACT

A wallpaper map is a conformal projection of a spherical earth onto regu-
lar polygons with which the plane can be tiled continuously. A complete
set of distinct wallpaper maps that satisfy certain natural symmetry condi-
tions is derived and illustrated. Though all of the projections have been
published before, some generalize to one-parameter families in which the
sphere is pre-transformed by a conformal automorphism.

Within a decade of Schwarz’s publication of a formula for conformally mapping a
circle onto a regular polygon,1 the noted American philosopher C. S. Peirce used it to cal-
culate a conformal map of the world in a square (Figure 1), with which the plane can be
tiled.2 The projection (more precisely, its inverse) is doubly periodic, and necessarily pos-
sesses isolated branch points,3 each of which is surrounded by multiple copies of a
mapped neighborhood. Other doubly periodic projections were published sporadically,
especially by O. S. Adams, until almost a century later L. P. Lee collected them and other
polygonal maps in a summary monograph.4 No more have appeared since. This paper
explains why, and in so doing gives a uniform account of this family of projections.

Figure 1. Peirce’s projection. A dissected square southern hemisphere is
arranged around a square northern hemisphere.
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Preliminaries

For our purposes, atiling is a covering of a surface by congruent, non-overlapping
regular polygons, ortiles, fitted edge-to-edge and vertex-to-vertex. A tiling projection is
a (one-to-many) conformal map from a tiling of the sphere to a tiling of the plane.
Restricted to a single spherical tile and one of its planar image tiles, the map must

(a) beconformal and bijective throughout the interior,
(b) continueacross each edge into an adjacent tile, conformally except at isolated

singularities,
(c) preserve the symmetry group of each spherical tile, and
(d) be the same in all tiles.

To state requirement (c) more precisely, let G andG′ be the (dihedral) symmetry groups
of a spherical polygon,X, and one of its planar images,X′, respectively; and let
f : X → X′ be the mapping function.Then for eachg∈G there must exist g′∈G′ such
that for every point x∈X

f (g(x)) = g′( f (x)) (1)

Requirement (d) says that tile-to-tile symmetries on the sphere and the plane com-
mute with mapping from sphere to plane.If f acts on spherical tilesX andY to produce
images in planar tilesX′ andY′ respectively, and g is a symmetry operation on the sphere
that takes tileX to Y, then there exists a symmetry operation,g′ on the plane that takes
X′ to Y′ such that (1) holds for all pointsx in X.

The p lines of reflective symmetry in a sphericalp-gon must map onto lines of
reflective symmetry in the plane.In particular a vertex or the midedge of an edge (here-
after called simply amidedge) of a spherical tile must map to a vertex or midedge (not
necessarily respectively) in the plane.Also, if p > 1, the center of a spherical tile must
map to the center of a planar tile.

Call the vertices and midedges collectively fixable pointsand number the fixable
points of a sphericalp-gon 0,1,. . . , 2p − 1 in order around the boundary, so that vertices
have even numbers and midedges odd. The fixable points of the correspondingp′-gon
image may be numbered similarly, with directions of increase being consistent under the
map. Afixable point numberedx on a spherical tile maps to a fixable point numbered
(kx + c) mod p′ on the planar image, where integerc represents a rotation andk = p′/p is
a positive integer (Theorem 1 below). If k is even, both kinds of fixable point map to just
one kind—vertex or midedge according asc is even or odd respectively. If k is odd, the
kinds of fixable points are preserved whenc is even and exchanged whenc is odd. For
continuity (condition (b)), the parity ofc must be the same in every tile.

These observations are summarized in a table, in which V and M denote vertices
and midedges; V,M → x, y means vertices map into fixable points of kindx and midedges
map into kindy.

c ev en c odd
k ev en V,M → V,V V,M → M,M
k odd V,M → V,M V,M → M,V

A tiling is completely characterized by its Schläfli symbol, {p, q}, which means
each tile hasp edges (or vertices) and each vertex is surrounded byq tiles.5
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Planar tilings comprise {3,6}, {4,4} and {6,3} (triangles, squares and hexagons).

Spherical tilings comprise {3,3}, {3,4}, {3,5}, {4,3} and {5,3} (corresponding to
the regular solids: tetrahedron, octahedron, icosahedron, cube and dodecahedron) plus the
infinite classes {2,n} ( gores) and {n,2} (hemispheres regarded as spherical polygons
with n 180° angles), wheren is a positive integer.6

In the degenerate case {2,1}, the sphere is cut by a slit that defines two coincident
edges. Theslit can be a great-circle arc of any positive length less than a circumference.
We take apole-to-pole slit (making one 360° gore) as a canonical representative of this
uncountable subclass.Tiling projections based on {2,1} and its dual {1,2} will be dis-
cussed under the heading ‘‘Conformal automorphisms of the sphere’’.

Characterization of tiling projections

Theorem 1. In a tiling projection from spherical tiling {p, q} to planar tiling
{p′, q′}
(i) p is a divisor of p′,
(ii) if any spherical vertex maps onto a planar vertex, q is a divisor of q′,
(iii) if any spherical vertex maps onto a planar midedge, qis 1 or 2, and
(iv) if any spherical edge point maps onto a planar vertex, q′ is even.

Proof of (i). The symmetry group of a regular n-gon is the dihedral group of order
2n, comprisingn rotations (including the identity) andn reflections. Property(i) follows
from the facts that the order-2p group of a spherical tile is isomorphic to a subgroup of
the order-2p′ group of its planar image, and the order of a subgroup is a divisor of the
order of a group.

The following lemma underlies the proofs of (ii)-(iv).

Lemma 1. If tile boundaries partition an arbitrarily small neighborhood of pointP
on the sphere, with planar image P′, then a neighborhood ofP′ contains kimages of
each set in the partition, where k  is a positive integer.

Proof of Lemma 1.Let point x′ in the plane trace a simple circuit aroundP′ small
enough to exclude vertices distinct fromP′. For continuity, its preimagex must trace a
closed (not necessarily simple) circuitC that winds aroundP, traversing a spherical
preimage tile for each traverse of one planar tile.For C to close,C must traverse every
tile incident onP the same number of times.

Proof of (ii) and (iii). WhenP andP′ are vertices, the multiplicity in Lemma 1 is
q′/q. whence property (ii). Property (iii) follows similarly from the fact that exactly 2
planar tiles touch a midedge, soq must be a divisor of 2.

Proof of (iv). The edge partitions a small neighborhood of the spherical edge point
into two parts. Thus,by Lemma 1,q′ must be a multiple of 2.

Corollary 1. In a tiling projection, the number, p, of vertices in a spherical tile is
at most 4.

Proof. In a planar tiling, the number of vertices per tile is at most 6. Hence by The-
orem 1, property (i), the numberp of vertices in a spherical tile is at most 6.For p = 6,
the only admissible Schläfli symbols—{6,2} for the sphere and {6,3} for the plane—are
ruled out by property (ii), unless all 6 spherical vertices map to planar midedges. In that
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case spherical midedges map to planar vertices, so by property (iv) q′ must be even (not
3). Hencep < 6.

A spherical tiling withp = 5 is ruled out by the lack of planar tilings in whichp′ is
a multiple of 5.

The remaining potential pairings of spherical and planar tilings are listed in Table
1. Several of the projections lack standard names; I have taken the liberty of assigning
short nicknames to all of them*.Some tiling projections can be understood in multiple
ways. For example, Peirce’s projection (Figure 1) can be described as a map to squares
{4,4} from 2 gores (2-vertex hemispheres) {2,2}, from 4 gores {2,4}, from 4-vertex
hemispheres {4,2}, or from 1-vertex hemispheres {1,2} in two ways.

Table 1. Potential and actual tiling projections. Actual projections are called
by nickname and further described in Table 2. Roman numerals designate
cases in Theorem 1 that prove impossibility. The starred entries generalize to
five distinct one-parameter families of projections.

Spherical Planartiling Planartiling
tiling V →V V →M

{3,6} {4,4} {3,6} {4,4}
M →M M →V M →V M →M

{1,2} Hex* Peirce* Hex* Peirce*
{2,1} i Square* i Adams*
{2,2} i Peirce i Peirce
{2,3} i ii i ii
{2,4} i Peirce i iii
{2,6} i ii i ii
{3,2} Hex i  i ii i
{3,3} Tetra i iii i
{3,4} ii i i i i
{4,2} i Peirce i Peirce
{4,3} i ii i ii

Implementation

The first step in every construction is a standard conformal projection from sphere
to plane. For all projections except Tetra, the second step is defined in terms of a stan-
dard Schwarz transform, which maps the unit disc in thez-plane onto a regular n-gon in
thew-plane:

w =
z

0
∫ (1 − zn)−2/ndz (2)

The z plane is cut from |z| = 1 to infinity along rays from the origin throughnth roots of
unity. Shifting the lower limit of the integral toz = 1, we obtain the alternate formula

* Peirce and Tetra were originally called ‘‘quincuncial’’ and ‘‘tetrahedric’’.
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Table 2. Characteristics and origins of projections.Branch-point entriesb(e)
give the number, b, of branch points of exponente on the boundary of each
planar tile. The measure of angles at branch points in the plane ise times the
measure of corresponding angles on the sphere.

Nickname Figure;Table Tiles Branch Author, Date
Spherical Planar Points

Peirce 1,2, 11; 3(a) hemisphere square 4(1
2) Peirce, 18792

Hex 12; 3(b) hemisphere triangle 3(1
3) Adams, 19257

Square 13;3(d), 4(b) 360° gore square 2(14), 2(1
2) Adams, 19298

Adams 14;4(c) 360°gore square 6(1
2) Adams, 19369

Tetra 15;3(c) tetrahedral triangle 3(12) Lee, 196510

triangle

w = wn +
z

1
∫ (1 − z)−2/n fn(z)dz (3)

where

wn

fn(z)

=

=

=

1

0
∫ (1 − zn)−2/ndz

1

n
Β(1 /n, 1 − 2/n) =

Γ(1 /n)Γ(1 − 2/n)

n Γ(1 − 1/n)



1 − zn

1 − z



−2/n

Β and Γ are standard beta and gamma functions11 and fn(z) is analytic and nonzero at
z = 1. From(3) we see that the transform multiplies, by a factor of (1− 2/n), the measure
of angles between lines that meet atz = 1. In particular, the image of a smooth curve that
passes throughz = 1 turns abruptly atw = wn making an angle of measure (1− 2/n)π .

Tetra involves a slight variant of the preceding scheme. In Table 3(c), the rhombus
ABCEhas anglesπ /3 and 2π /3 in the z-plane and angles twice as large on the sphere and
on its stereographic image in thew-plane. Bysymmetry, the short diagonal on the sphere
(arc AC in stereographic projection) maps to the short diagonal in thez-plane. The expo-
nent−1/2 in the integrand realizes the halving of angles.

For some wallpaper maps, the Schwarz transform is applied, as shown in Table 3,
to a conformal image of the sphere stereographically projected onto the closed complex
plane. For others it is applied, as shown in Table 4, to an image projected onto the unit
disc by the Lagrange projection.

As inverses of doubly periodic functions, the wallpaper projections may be
expressed in terms of standard elliptic integrals.12 I hav e found, though, that working
directly from Schwarz integrals is computationally simpler than sophisticated elliptic-
integral algorithms, and just as efficient for our purpose.

Expanding the integrand in (2) by the binomial theorem yields a power series rep-
resentation of the transform, with radius of convergence 1.



-6-

w = z
∞

k=0
Σ 


−2/n

k



(−1)k

k + 1
znk (4)

To evaluate the transform near the singularity atz = 1, change variables in (3) to place the
singularity aty = 0.

w =

=

=

wn − ∫
1−z

0
(1 − (1 − y)n)−2/ndy

wn − ∫
1−z

0




n

k=1
Σ 


n

k



(−1)k−1yk


−2/n

dy

wn − (1 − z)1−2/nFn(1 − z)

(5)

whereFn is a power series withFn(0) > 0. Table 5 gives floating-point coefficients for
Fn. Using (4) in a neighborhood ofz = 0 and (5) in a neighborhood ofz = 1, one may
evaluate the transform throughout a fundamental region, as highlighted in Tables 3 and 4.
The remainder of the projection can be filled in by symmetry. I have found |z2| = 0. 6 to
be a workable choice for the boundary between the two neighborhoods.

Similar reasoning applied to the formula for Tetra,

w = ∫
z

0
(1 − z3)−1/2dz

leads to

w =
Γ(1 / 3)Γ(1 / 2)

3Γ(5 / 6)
− (1 − z)1/2G(1 − z) (6)

whereG is a power series, coefficients for which are also given in Table 5. The series
converges fast enough to be used for calculating the projection throughout the fundamen-
tal region.

Conformal automorphisms of the sphere

The fact that the center of a tile in the spherical tiling {1,2} is not fixed by its sym-
metry group allows wallpaper maps based on this tiling to be modified by a preparatory
conformal transformation of the sphere onto itself, provided the transform respects the
symmetry group.For example, if the sphere is tiled by two hemispheres with their com-
mon vertex at the north pole, a suitable preparatory transformation is to map the sphere to
a polar stereographic projection at one scale and back to the sphere on another scale.Fig-
ure 2 illustrates this scheme applied to Pierce.

The transformation just described slips the equator away from the midplane of the
poles, like a waistband drooping away from an ample midriff. Thus I call such a trans-
form adroop. Figure 3 is an example of a globe transformed by a droop.

The same transformation idea is pertinent to a {2,1} tiling with a meridian slit of
length other thanπ . By stereographic rescaling about the center of the tile, the length of
the slit may be adjusted toπ , while preserving the two reflective symmetries of the tile.

These conformal automorphisms let us generalize the starred entries in Table 1 to
one-parameter families. The two starred entries for Peirce denote distinct families. Inone
family, the ends of the droop axis map to planar vertices; in the other (Figure 2) they map
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Figure 2. An aspect of the Peirce projection devised independently by
Guyou.13 At the top is a Peirce projection of two hemispheres. Atthe bot-
tom, the hemispheres are regarded as {1,2} polygons with a lone vertex at
the north pole. A droop shifts parallel 15°S to the normal position of the
equator, emphasizing Antarctica and the Southern Ocean at the expense of
the Arctic Ocean and northern Eurasia.The vertex of each hemisphere is
mapped to the midedge of the edge of a square.

to midedges. The two starred entries for Hex, however, yield only one family. In each
case one end of the droop axis passes through a vertex, the other through a midedge.The
two cases differ only in regard to which end the droop is measured from.Thus the six
starred entries give rise to only five distinct parameterized families.

The choice of parameter is quite like the choice of standard parallels in more famil-
iar projections such as the Albers or Bonne projections. In fact a convenient way to spec-
ify a polar droop is to name the parallel that becomes equidistant from the poles.

We now show that these generalizations exhaust the possibilities for wallpaper
maps subject to the given symmetry conditions. The remainder of this section establishes

Theorem 2. The set of tiling projections comprises exactly the projections identified
in Table 2. All but Tetra generalize to single-parameter families; Peirce generalizes in
two distinct ways.

In the following discussion, the terms ‘‘meridian’’, ‘ ‘parallel’’, ‘ ‘pole’’ and ‘‘equa-
tor’’ generally refer to a mapped image of a standard spherical reticule, just as they do in
discussions of a flat map, although here the image happens to lie on a sphere.Several
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properties of the standard reticule need not be preserved.

Meridians need not be great circles.
Parallels need not lie in parallel planes (though distinct parallels cannot intersect).
The two poles, where meridians meet, need not be antipodal.
The equator need not lie in the midplane between the poles.

Figure 3. Orthographic views from the front, side, and back of a globe trans-
formed by a droop about (0°N, 20°E).Points on the outer edge of the front
view were originally 130° away from the center.

Any conformal map of the sphere onto itself may be represented as the product of
three conformal steps:

s: Map the sphere onto the closed complex plane by polar stereographic projection.
f : Conformally map the closed complex plane one-to-one onto itself.
s−1: Map the plane back onto the sphere by inverse stereographic projection.

If s is taken to project a sphere of diameter 1 from viewpoint V at the south pole
onto a plane tangent at the north pole (Figure 4), then spherical coordinates (θ ,φ ), where
θ is measured from the north pole, map to polar coordinates (r ,φ ) and back by the formu-
las

r = s(θ ) = tan(θ /2), θ = s−1(r ) = 2 tan−1 r

V

r

θ

θ /2

Figure 4. Construction of stereographic projection.

Function f must belong to the class of linear-fractional transforms—the only ana-
lytic functions that map the closed complex plane invertibly onto the closed complex
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plane.14

f (z) =
az+ b

cz+ d
, ad − bc ≠ 0

The four coefficients may be scaled arbitrarily (e.g. to make
f = xn(1 + O(x)), n∈{ − 1, 0, 1} near x = 0). Hencethree parameters suffice to identify
any member of the class, from which fact follows

Corollary 2. A conformal automorphism of the sphere is determined by its behavior
at three points.

Besides preserving angles, all three steps map circles onto circles.14 (On the com-
plex plane, straight lines count as circles of infinite radius.) Thus meridians and parallels
appear on the plane as two orthogonal systems of coaxal circles,15 illustrated in Figure 5.
The meridians, which pass through the images of the north and south poles, form a coaxal
system of ‘‘intersecting type’’. When the distance between poles is finite, the centers of
meridians must lie on the perpendicular bisector of the segment determined by the poles.
As on the sphere, parallels are trajectories orthogonal to the meridians and form a coaxal
system of ‘‘nonintersecting type’’. Eachparallel is disjoint from the others and separates
the two poles. When the distance between poles is finite, the centers of the parallels fall
on the line determined by the poles. When one pole lies at infinity, meridians become
straight lines radiating from the other pole and parallels become concentric circles.

(0,q)

(p, 0)(−k, 0)

Figure 5. Representative members of two orthogonal systems of coaxal cir-
cles. Meridiansare centered on they axis and parallels on thex axis. Poles
are at (± k, 0). Meridiansintersect parallels at right angles.Thick circles are
a typical parallel centered at (p, 0) with squared radiusp2 − k2, a typical
meridian centered at (0,q) with squared radiusq2 + k2, and the smallest
meridian circle (radiusk).
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If s is a polar stereographic projection, andf is a dilation about the pole by a factor
of m, so that the transform is a droop, the inverse stereographic projection maps parallelθ
to θ ′ according to

θ ′/2 = tan−1 mr = tan−1(m tanθ /2)

When m ≠ 1, the projected parallels cluster towards one pole.The inverse of a droop
with dilation factorm is a droop about the same center with dilation factor 1/m, or equiv-
alently a droop about an antipodal center with dilation factorm.

The conformal sphere-to-sphere transformations form an automorphism group that
acts on what I calldroopy spheres. In particular the group includes a transformation from
any droopy sphere onto astandard sphere, where the equator lies in the midplane
between antipodal poles.

Lemma 2. A droopy sphere can be transformed to a standard sphere by a single
droop about an appropriate axis.

Proof of Lemma 2.If the poles of the droopy sphere are antipodal, pick any point
E on the equator. There exists a droop about a pole of a standard sphere that will make
the equator pass throughE while preserving the poles.With the behavior of three points
known, the transform is completely specified. Its inverse is the required transform.

Although we have described a droop as involving a dilation of the projection plane
by some factorm, we can equally well view that as a dilation of the sphere by a factor of
1/m. We shall do so for the rest of this section.

If the poles are not antipodal, consider first how to back-project arbitrary orthogo-
nal systems of coaxal circles with two finite poles,N andS, and a distinguished equator
onto a standard sphere.Let E be the intersection of the equator and segmentNS. Figure
6 shows a cross-section of a back-projection onto a standard sphere tangent toNS. The
caption explains how to determine the point of tangency, orientation, and size of the
sphere.

Figure 7 shows how to arrange for three points on a droopy sphere with pole-to-
equator angles ofα and β to project to exactly the same three points as do the corre-
sponding points on a standard sphere. The caption explains that, by rotating and dilating
the two spheres appropriately,* their tangent points can be made to coincide.The
required transformation is a droop about that point.

To complete the proof of Theorem 2, we note that a nontrivial droop preserves
reflective symmetry only about planes through the axis of the droop.Hence, the axis of a
droop applied to a {1,2} tiling of the sphere must pass through the single vertex through
which pass the plane of symmetry for each hemispheric tile and the plane of tile-to-tile
symmetry. Similarly, the axis of a droop applied to a {2,1} tiling must pass through the
center of the single gore, where the gore’s two planes of symmetry meet. As these are the
only applicable droops, and the set of droops comprise all the nontrivial conformal auto-
morphisms of the sphere, we have now characterized all admissible generalizations of the
basic tiling projections.

* Dilation and rotation parameters are calculated in Appendix 1.
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N SEp

V1

Figure 6. Back projection onto a standard sphere from an arbitrary coaxal
system in planep with polesN andS. A standard sphere, with tick marks at
the poles and equator, is placed with a meridian tangent to the unique straight
meridian in p. In p, the equator meets the straight meridian atE. The
dashed circles are the loci of viewpoints from whichNE and ES subtend
π /4; V1 is the unique viewpoint that achieves both.

Relaxed requirements

If the rather stringent conditions laid out among ‘‘Preliminaries’’ are relaxed, more
wallpaper maps become possible. Some examples:

1. If the projection is not required to be the same in all tiles, then the composition of
any droop with any projection in Table 2 becomes admissible.

2. If a tile’s symmetry group is not required to be preserved, the Cox projection16

joins the menagerie.Cox maps a {2,1} 360°-gore tiling of the sphere onto an equi-
lateral triangle (Table 6 and Figure 16), preserving only one of the gore’s two
reflective symmetries.*

3. If, further, tiles are not required to be regular polygons, then Peirce can be
described in yet another way: a map from a {3,4} octahedral spherical tiling with
angles (π2,

π
2,

π
2 ) to a planar tiling by triangles with angles (π

2,
π
4,

π
4 ).

Enough. Systematic investigation of plausible generalizations is a topic for another time.
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N SEp

d1

T1T2

d2

V1

V2

α /2
β /2

Figure 7. Mapping between a standard sphere on diameterd1 and a gray
droopy sphere ond2. The latter sphere is oriented so that the shortest pole-
to-pole meridian segment falls on the limb. Plane p, stereographic image
points N, E, S and viewpoint V1 are as in Figure 6. The dotted semicircle
again shows the locus ofV1 asE moves betweenN andS. The larger dotted
arc is a typical locus of viewpoint V2 for a droopy sphere with pole-to-equa-
tor anglesα and β , whereα + β < π . The poles and equator of the droopy
sphere are marked with outward-pointing ticks.As E moves monotonically
from S to N, viewpointsV1 andV2 also move monotonically along the dot-
ted arcs fromS to N. The abscissa ofV2 lies to the left ofN whenE is suffi-
ciently nearN, and to the right ofS when E is nearS. The abscissa ofV1,
however, is confined to the interval NS. By continuity, at some intermediate
position of E the abscissas and associated tangent pointsT1 and T2 must
coincide.
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Table 3. Construction of projections. Each left panel shows a stereographic projection in
the complex z-plane. In(a), (b) and (c) the north pole is atz = 0 and argz measures lon-
gitude. In(d) the north pole is at atz = −1 and the south is atz = 1. Thez-plane is cut
for a Schwarz transformation and scaled so cuts end on the unit circle. Similarly named
labels (e.g. B, B′) identify distinct approaches to the point at infinity, whose images
approach a single point (B) in the w-plane. Theequator is drawn with fine dashes, but
only when it is circular or (piecewise) straight.Representative vertices in thew-plane are
labeled by the ratioq/q′, with 1/1 for a point interior to a hemispheric tile. Branch-point
exponents in the Schwarz integrals areq/q′ − 1. A shaded triangle designates a funda-
mental region from which the projection can be extended to the rest of thew-plane image
by symmetry. (Computational formulas (4), (5) and (6) apply directly to both the funda-
mental region and its reflection in the real axis.)

(a) Peirce

H ′
A

B

B′

C

D

D′
E

F

F ′

G

H

A 2/4

B 1/1CD

E

F G H

w = ∫
z

0
(1 − z4)−1/2dzz

→
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Table 3 (continued)

(b) Hex

F ′
A

B

B′

C

D

D′

E

F

A 2/6

B 1/1C

D

E F

w = ∫
z

0
(1 − z3)−2/3dzz

→

(c) Tetra

F ′A
B

B′

C

D

D′

E

F

A 3/6

B 3/6

C

D

E

F

w = ∫
z

0
(1 − z3)−1/2dz

z

→

Spherical tileACE has 120° angles
and vertices at latitude arcsin1/3.

(d) Square (alternate construction)

D′′
A

BB′′
C

D

B′

D′

A 1/4

B 2/4

C

D

w = ∫
z

0
(1 − z2)−3/4dzz

→

Fundamental region has 2 branch points;
see Table 4(b) for simpler construction
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Table 4. Constructions of various projections via the Lagrange projection. In the style of
Table 3, (a) shows the construction of the Lagrange projection from a polar stereographic
projection with the equator as unit circle. Constructions (b) and (c) start from a Lagrange
projection in the complex z-plane. In (c) thez- and w-planes are rotated by−π /4 to put
cuts on the axes. Every circle shown in the table is a unit circle centered at the origin.

(a) Lagrange

A
B

A′

A

1/2 B

A′

A 1/2B

z t = z1/2 w =
t − 1

t + 1

→ →

(b) Square (preferred construction)

A

B

C

D

1/2
A 1/4

B 2/4

C

D

z
w = ∫

z

0
(1 − z4)−1/2dz

(Same integral as Peirce)

→
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Table 4 (continued)

(c) Adams

A
1/2

D
2/2

F

B

C

E

t = e−iπ /4z

A
1/2

D
B 2/4

C

E

F

e−iπ /4w = ∫
t

0
(1 − t4)−1/2dt

(Same integral as Peirce)

→

Table 5. Coefficients for power series in equations (5) and (6).A power-series package17

was used to calculate (rational) coefficients forn2/nFn and 31/2G, from which floating-
point coefficients ofkth powers inFn andG were derived. w(1) is the value ofw at z = 1
in (5) or (6).

k F3 F4 G

0 1.44224957030741 1.0 1.15470053837925
1 0.240374928384568 0.25 0.192450089729875
2 0.0686785509670194 0.06875 0.0481125224324687
3 0.0178055502507087 0.0078125 0.010309826235529
4 0.00228276285265497 -7.64973958333333×10−3 3.34114739114366×10−4

5 -1.48379585422573×10−3 -0.0069580078125 -1.50351632601465×10−3

6 -1.64287728109203×10−3 -2.89330115685096×10−3 -1.23044177962310×10−3

7 -1.02583417082273×10−3 -2.0599365234375×10−5 -6.75190201960282×10−4

8 -4.83607537673571×10−4 9.95881417218377×10−4 -2.84084537293856×10−4

9 -1.67030822094781×10−4 8.64356756210327×10−4 -8.21205120500051×10−5

10 -2.45024395166263×10−5 3.85705381631851×10−4 -1.59257630018706×10−6

11 2.14092375450951×10−5 1.40434131026268×10−5 1.91691805888369×10−5

12 2.55897270486771×10−5 -1.34721419308335×10−4 1.73095888028726×10−5

13 1.73086854400834×10−5 -1.24614486897675×10−4 1.03865580818367×10−5

14 8.72756299984649×10−6 -5.74855643333586×10−5 4.70614523937179×10−6

15 3.18304486798473×10−6 -1.12228690340999×10−6 1.4413500104181×10−6

16 4.79323894565283×10−7 2.27285782088416×10−5 1.92757960170179×10−8

17 -4.58968389565456×10−7 2.12777819566412×10−5 -3.82869799649063×10−7

18 -5.62970586787826×10−7 9.99206810770337×10−6 -3.57526015225576×10−7

19 -3.92135372833465×10−7 1.83254758167307×10−7 -2.2175964844211×10−7

w(1) 1.76663875028545 1.31102877714606 1.40218210532545
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Table 6. Constructions of the Cox projection. Construction (a) is like those of Table 3; (b)
is like those of Table 4.

(a) Cox from stereographic (alternate construction)

D′A
BB′

C
D

A 1/61/2C

2/6 B

D

w = ∫
z

0
(1 + z)−1/2(1 − z)−5/6dzz

→

(b) Cox from Lagrange (preferred construction)

A

B

D

1/2 C
1/2

A 1/61/2C

2/6 B

D

z
w = ∫

z

0
(1 − z3)−2/3dz

(Same as Hexagonal)

→

Appendix 1. Droop calculations.

Parameters of the droop that maps between a given droopy sphere and a standard
sphere may be found by expressing the lengths of segmentsNT, ET, and ST in two
ways, as projections from each sphere (Figure 8).

d1 tan
π /2 + θ1

2
= d2 tan

α + θ2

2

d1 tan
θ1

2
= d2 tan

θ2

2

d1 tan
π /2 − θ1

2
= d2 tan

β − θ2

2

(7)

Set m = d1/d2, a = tan (12 α ), b = tan (12 β ), t1 = tan (12 θ1), t2 = tan (12 θ2); and use the
addition formula for the tangent to obtain algebraic equations.
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m
1 + t1

1 − t1
=

a + t2

1 − at2
mt1 = t2

m
1 − t1

1 + t1
=

b − t2

1 + bt2

(8)

The only real solutions of (8) (found by Maple*)18 entailed

m =
2a2b2 + a2 + b2 ± (4a2b2(1 − ab)2 + (a2 − b2)2 )

1
2

2ab(a + b)
(9)

To choose between the two roots, consider the caseα = β , or equivalently a = b. Then,
Figure [1projaxis] becomes symmetric, withT midway between N and S, and
θ1 = θ2 = 0. Hence,from Figure 9,m = d1/d2 = tan (12 α ) = a. Specialized toa = b, (9)
becomes

m =
1 + a2 ± ( (1 − a2)2 )

1
2

2a
(10)

N S

d2

d1

Tθ2E
θ1

α /2
β /2

Figure 8. A standard sphere and a droopy sphere with a common point of
tangency, T. θ1 andθ2 are azimuths of the equator measured at the center of
the spheres relative to the point of tangency.

Becauseα + β < π , the assumptionα = β impliesa = tan (12 α ) < tan (14 π ) = 1. Thusthe
positive square root of (1− a2)2 is 1− a2. For (10) to evaluate tom = a, the± sign in (9)
must be taken as−, provided the square root is understood to be positive.

To find t1, eliminate t2 from (8) by simple substitution; solve each of the remaining
equations fort2

1; and equate the two results.

* The Maple version that I used could solve the system only aftert2 had been trivially
eliminated.
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m − a − a(m2 − 1)t1

m(am− 1)
=

m − b + b(m2 − 1)t1

m(bm− 1)

Whence

t1 =
a − b

2amb− b − a

Further routine manipulation leads to the complete solution of (8).

d1

d2
= m =

2a2b2 + a2 + b2 − √ D
2ab(a + b)

tan (12 θ1) = t1 =
2a2b2 − 2ab+ √ D

a2 − b2

tan (12 θ2) = t2 =
2a2b2 − a2 − b2 + √ D

2ab(a − b)

(11)

where

D = 4a2b2(1 − ab)2 + (a2 − b2)2

a = tan(12 α )

b = tan(12 β )

and√ D is understood to be positive. It may be noted thatt1 andt2 approach 0 in the limit
asb approachesa.

−1 10

d1

d2

α α

1
2 α 1

2 α

Figure 9. A droop between a standard sphere and a droopy sphere with
equator midway between poles.For convenience, the distance between the
projected poles is scaled to 2. Thenm = d1/d2 = 1/d2 = tan(12 α ) = a.
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The shape of a droopy sphere

On a droopy sphere, meridians and parallels, being circles, lie in planes.Clearly
the planes of meridians meet in the line joining the two poles. Ingeneral, the planes of
parallels also meet in a common line, which must fall outside the sphere because parallels
can’t intersect (Figure 10).

Theorem 3. On a droopy sphere the planes of parallels concur in the line of inter-
section of planes tangent to the sphere at the two poles, or are parallel when the poles are
antipodal.

Proof. When the poles are antipodal, the droopy sphere can be transformed to a
standard sphere by a polar droop. Hence the planes of parallels must be parallel.

Otherwise, as we have seen, every droopy sphere is the inverse stereographic image
of an orthogonal pair of systems of coaxal circles, with meridians meeting at two finite
points. Parametric equations for such systems can be read off f rom Figure 5.

(x − p)2 + y2 = p2 − k2, parallels

x2 + (y − q)2 = q2 + k2, meridians

These equation simplify to

x2 + y2 − 2px + k2 = 0 (12)

x2 + y2 − 2qy − k2 = 0 (13)

Consider, without loss of generality, the inverse stereographic projection of systems
of coaxal circles in the planez = 1 (in Euclidean 3-space) onto a sphere of diameter 1
tangent toz = 1 at (0,0,1) with an antipodal center of perspective at (0,0,0). Theequation
of this sphere is

x2 + y2 + (z − 1/2)2 = (1 / 2)2

or

x2 + y2 + z2 − z = 0 (14)

To account for arbitrary positioning of the coaxal systems relative to the sphere,
move the center of the coaxal systems to (a, b) by replacing x and y by (x − a) and
(y − b) in (12) and (13).Circles of the systems are projected on sphere (14) by intersect-
ing it with cones that have vertex (0,0,0) and coincide with the specified circles when
z = 1.

(x − az)2 + (y − bz)2 − 2pz(x − az) + (kz)2 = 0 (15)

(x − az)2 + (y − bz)2 − 2qz(y − bz) − (kz)2 = 0 (16)

To find the intersection for a parallel, first subtract (14) from (15).

−2axz+ a2z2 − 2byz+ b2z2 − 2pxz+ 2apz2 − z + z − (kz)2 = 0

Factor outz to get an equation for the plane of the parallel.
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−2(a + p)x − 2by + (a2 + b2 + 2ap− 1 − k2)z + 1 = 0 (17)

The intersection of two such planes for infinitesimally different values ofp must satisfy
the equation resulting from differentiating with respect top.

−2x + 2az = 0 (18)

Thus the line of intersection lies in the planex = az. Substitute the value of 2x from (18)
into (17) to find the equation of another plane in which the the line of intersection lies.

−2by + (b2 − a2 − 1 − k2)z + 1 = 0 (19)

Since (18) and (19) are independent ofp, the line they specify is in fact the intersection
of all the planes of parallels.As parallels approach the poles, their planes approach
planes tangent to the sphere at the poles. Thus the common line of intersection is also the
intersection of those tangent planes (Figure 10).

L

e
N

S

Figure 10. Cross-section of a droopy sphere, showing the planes of parallels
transformed from a standard sphere with parallels spaced 30° apart.The
equator is labelede. The planes concur in lineL, perpendicular to the plane
of the page.

Droopy spheres have been described in the earth-science literature in connection
with orthogonal grids for ocean or atmospheric circulation models.19, 20The cited papers
suggest ‘‘rotated asymmetric bipolar grids’’ (defined by stereographic projection, linear-
fractional transformation, and stereographic back-projection exactly as above) as a means
for placing the singularities of a finite-difference mesh away from regions of principal
interest. They do not, however, indicate that every such a grid can be created by a simple
droop.
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Appendix 2. Gallery.

Unit cells of the several tiling projections. The plane can be tiled continuously
with translates of the figures.

Figure 11. Unit cell for Peirce.
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Figure 12. Unit cell for Hex.
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Figure 13. Unit cell for Square.
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Figure 14. Unit cell for Adams.

Figure 15. Unit cell for Tetra.
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Figure 16. Unit cell for Cox. Qualifies as a tiling projection only under
relaxed symmetry conditions.
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