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ABSTRACT

A wallpaper map is a conformal projection of a spherical earth ogto re
lar polygons with which the plane can be tiled continuouslycomplete

set of distinct wllpaper maps that satisfy certain natural symmetry condi-
tions is dewed and illustrated. Though all of the projectionsvhaeen
published before, some generalize to one-parameneitiés in which the
sphere is pre-transformed by a conformal automorphism.

Within a decade of Sclakz’s publication of a formula for conformally mapping a
circle onto a regular polygdrthe noted American philosopher C. S. Peirce used it to cal-
culate a conformal map of the world in a square (Figure 1), with which the plane can be
tiled.2 The projection (more preciselys inverse) is doubly periodic, and necessarily pos-
sesses isolated branch poihtsach of which is surrounded by multiple copies of a
mapped neighborhood. Other doubly periodic projections were published sporadically
especially by O. S. Adams, until almost a century later LeP collected them and other
polygonal maps in a summary monogrdpdo more hae gpeared since. This paper
explains wty, and in so doing gies a iniform account of this family of projections.

Figure 1. Peirce& projection. A dissected square southern hemisphere is
arranged around a square northern hemisphere.



Preliminaries

For our purposes, 8ling is a coering of a surface by congruent, nomedapping
regular polygons, otiles, fitted edge-to-edge anerex-to-vertg. A tiling projectionis
a (one-to-mawg) conformal map from a tiling of the sphere to a tiling of the plane.
Restricted to a single spherical tile and one of its planar image tiles, the map must

(a) beconformal and bijecte throughout the interior,

(b) continueacross each edge into an adjacent tile, conformatie at isolated

singularities,

(c) presere the symmetry group of each spherical tile, and

(d) be the same in all tiles.
To date requirement (c) more precisdbt G andG' be the (dihedral) symmetry groups
of a spherical polygonX, and one of its planar images(’, respectiely; and let
f: X - X' be the mapping functionThen for eachgllG there must st g'[JG' such
that for eery point x X

f(a(x)) = g'(f(x) (1)

Requirement (d) says that tile-to-tile symmetries on the sphere and the plane com-
mute with mapping from sphere to plarié.f acts on spherical tileX andY to produce
images in planar tileX' andY’ respectrely, and g is a symmetry operation on the sphere
that takes tileX to Y, then there exists a symmetry operatighon the plane that tek
X"toY' such that (1) holds for all poinisin X.

The p lines of reflectre ymmetry in a sphericap-gon must map onto lines of
reflectve ymmetry in the planeln particular a ertex or the midedge of an edge (here-
after called simply anidedgé of a herical tile must map to aextex or midedge (not
necessarily respeutly) in the plane.Also, if p > 1, the center of a spherical tile must
map to the center of a planar tile.

Call the vertices and midedges colleely fixable pointsand number the fixable
points of a sphericgb-gon 0,1,---,2p — 1 in order around the boundargo hat \ertices
have even numbers and midedges odd. The fixable points of the corresporgliggn
image may be numbered similgnlyith directions of increase being consistent under the
map. Afixable point numbered on a spherical tile maps to a fixable point numbered
(kx+c)mod p' on the planar image, where igt c represents a rotation akd= p'/p is
a positive integer (Theorem 1 belo). If k is even, both kinds of fixable point map to just
one kind—ertex or midedge according asis even or add respectiely. If k is odd, the
kinds of fixable points are presed/whenc is even and exchanged whenis odd. For
continuity (condition (b)), the parity afmust be the same ivery tile.

These obseantions are summarized in a table, in which V and M denetices
and midedges; W - X,y means vertices map into fixable points of kindnd midedges
map into kindy.

c eva c odd
k even VM - VV V,M - MM
k odd VM VM VM- MV

A tiling is completely characterized by its S#fhlsymbol, {p, q}, which means
each tile hap edges (or vertices) and each veitesurrounded by tiles®
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Planar tilings comprise {3,6}, {4,4} and {6,3} (triangles, squares and hexagons).

Spherical tilings comprise {3,3}, {3,4}, {3,5}, {4,3} and {5,3} (corresponding to
the rgular solids: tetrahedron, octahedron, icosahedron, cube and dodecahedron) plus the
infinite classes {2n} (gores) and #§,2} (hemispheres garded as spherical polygons
with n 180° angles), whemis a positie integel®

In the degenerate case {2,1}, the sphere is cut by a slit that defion@sihwident
edges. Thelit can be a great-circle arc ofygpositive length less than a circumference.
We take apole-to-pole slit (making one 360° gore) as a canonical representathis
uncountable subclasdliling projections based on {2,1} and its dual {1,2} will be dis-
cussed under the heading “Conformal automorphisms of the sphere”.

Characterization of tiling projections

Theoem 1. In a tiling projection from spherical tilingp{q} to planar tiling
{pr'.q}
(@ p is a divisor of p,
(i) if any spherical vertemaps onto a planar verke qis a divisor of ¢,
(i) if any spherical vertemaps onto a planar midedgqis 1 or 2, and
(iv) if any spherical edgpoint maps onto a planar vexed is even.

Proof of (i). The symmetry group of agalarn-gon is the dihedral group of order
2n, comprisingn rotations (including the identity) andreflections. Propert{i) follows
from the facts that the ord@p group of a spherical tile is isomorphic to a subgroup of
the order2p’ group of its planar image, and the order of a subgroup igisodiof the
order of a group.

The following lemma underlies the proofs of (ii)-(iv).

Lemma 1. If tile boundaries partition an arbitrarily small neighborhood of pBint
on the spheas, wth planar imaye P, then a neighborhood d?' contains kimages o
ead st in the partition, whex k 5 a positive intger.

Proof of Lemma 1Let pointx' in the plane trace a simple circuit arouPdsmall
enough to exclude vertices distinct frd?h For continuity its preimagex must trace a
closed (not necessarily simple) circt that winds aroundP, traversing a spherical
preimage tile for each werse of one planar tileFor C to close,C must traerse eery
tile incident onP the same number of times.

Proof of (ii) and (iii). WhenP andP’ are vertices, the multiplicity in Lemma 1 is
g'/q. whence property (ii). Property (iii) follows similarly from thact that exactly 2
planar tiles touch a midedge, gonust be a divisor of 2.

Proof of (iv). The edge partitions a small neighborhood of the spherical edge point
into two parts. Thushby Lemma 1g" must be a multiple of 2.

Corollary 1. In a tiling projection, the numhep, of vertices in a spherical tile is
at most 4.

Proof. In a planar tiling, the number of vertices per tile is at most 6. Hence by The-
orem 1, property (i), the numberof vertices in a spherical tile is at mostor p = 6,
the only admissible Scifli symbols—{6,2} for the sphere and {6,3} for the plane—are
ruled out by property (ii), unless all 6 sphericattices map to planar midedges. In that
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case spherical midedges map to planar vertices, so by propgnty ifiust be een (not
3). Hencep < 6.

A spherical tiling withp = 5 is ruled out by the lack of planar tilings in whighis
a multiple of 5.

The remaining potential pairings of spherical and planar tilings are listeable T
1. Seeral of the projections lack standard names;Jeh@aken the liberty of assigning
short nicknames to all of them*Some tiling projections can be understood in multiple
ways. For example, Peirce’projection (Figure 1) can be described as a map to squares
{4,4} from 2 gores (2-ertex hemispheres) {2,2}, from 4 gores {2,4}, from 4nex
hemispheres {4,2}, or from 1-verdiemispheres {1,2} in tw ways.

Table 1. Potential and actual tiling projections. Actual projections are called
by nickname and further described iable 2. Roman numerals designate
cases in Theorem 1 that peoimpossibility The starred entries generalize to
five dstinct one-parameter families of projections.

Spherical Planarling Planartiling

tiling V-V V- M

{3,6} {4,4} {3,6} {4,4}

M- M M-V M-V MM
{1,2} Hex* Peirce* Hex* Peirce*
{2,1} [ Square* [ Adams*
{2,2} [ Peirce i Peirce
{2,3} [ i [ i
{2,4} [ Peirce i ii
{2,6} [ i [ ii
{3,2} Hex i iii [
{3,3} Tetra i iii [
{3,4} ii [ i [
{4,2} [ Peirce i Peirce
{4,3} [ i [ i

I mplementation

The first step in\ery construction is a standard conformal projection from sphere
to plane. For all projections except Tetra, the second step is defined in terms of a stan-
dard Schwarz transform, which maps the unit disc irztpane onto a igular n-gon in
thew-plane:

W= 1!’(1 - z")?"dz 2)

The z plane is cut fromz = 1 to infinity along rays from the origin througith roots of
unity. Shifting the lower limit of the integral ta = 1, we obtain the alternate formula

* Peirce and Tetra were originally called “quincunciahd “tetrahedric”.
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Table 2. Characteristics and origins of projectioBsanch-point entrieb(e)
give the numberb, of branch points of xonente on the boundary of each
planar tile. The measure of angles at branch points in the plam@nges the
measure of corresponding angles on the sphere.

Nickname | FigureTable Tiles Branch Author, Date
Spherical Planar| Points
Peirce 12, 11; 3(a) | hemisphere| square 4(%) Peirce, 1879
Hex 12; 3(b) hemisphere| triangle 3(3) Adams, 1925
Square 133(d), 4(b) | 360° gore | square | 2}),2(E) | Adams, 1929
Adams 144(c) 360°gore square 6(3) Adams, 1938
Tetra 15;3(c) tetrahedral | triangle 3€) Lee, 196%°
triangle
z
W=w,+ I(l - 22" f (2)dz (3)
1
where
1
w, = 1[(1 - z")?"dz
1 _F@mn)r@-2/mn)
= HB(lln,l—Z/n)— T (L-1/n)
- 2N D—Z/n
W@ = 70

B andl are standard beta andrgma function® and f,(2) is analytic and nonzero at
z=1. From(3) we see that the transform multiplies, by a factor efZin), the measure
of angles between lines that meerzatl. Inparticularthe image of a smooth cuhat
passes through= 1 turns abruptly atv = w, making an angle of measure<2/n) .

Tetra involves a slight variant of the preceding scheme. dbld 3(c), the rhomls
ABCEhas angles/3 and 27/3 in the z-plane and angles twice as large on the sphere and
on its stereographic image in theplane. Bysymmetrythe short diagonal on the sphere
(arc AC in stereographic projection) maps to the short diagonal ia-giiene. The xpo-
nent-1/2 in the integrand realizes the halving of angles.

For some wallpaper maps, the Schwarz transform is applied, as shown in Table 3,
to a conformal image of the sphere stereographically projected onto the closedxcomple
plane. er others it is applied, as shown in Table 4, to an image projected onto the unit
disc by the Lagrange projection.

As inverses of doubly periodic functions, theaNpaper projections may be
expressed in terms of standard elliptic grls’? | have found, though, that orking
directly from Schwarz integrals is computationally simpler than sophisticated elliptic-
integral algorithms, and just as efficient for our purpose.

Expanding the integrand in (2) by the binomial theorem yields a power series rep-
resentation of the transform, with radius ofwagence 1.
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To evaluate the transform near the singularityat 1, change ariables in (3) to place the
singularity aty = 0.

=
I

wy= [ (= -y Py
° —2/n

A2 O, k-1 kO
w72 DY o ®

[

= w,-(1-2"?"F,(1-2)

whereF,, is a power series witk,(0) > 0. Table 5 gves floating-point coefficients for
F,. Using (4) in a neighborhood @=0 and (5) in a neighborhood &f= 1, one may
evduate the transform throughout a fundamentgia®, as highlighted in Tables 3 and 4.
The remainder of the projection can be filled in by symmadthave found 2| = 0. 6t0
be a workable choice for the boundary between tloeneighborhoods.

Similar reasoning applied to the formula for Tetra,
— (%11 _ 312
w = J’O(l z°)'*dz

leads to
_r@mI)r(/z)
T 3r(ie)
whereG is a paver series, coefficients for which are alswegiin Table 5. The series

corverges fast enough to be used for calculating the projection throughout the fundamen-
tal region.

(1-2)Y?G(1-2) (6)

Conformal automor phisms of the sphere

The fact that the center of a tile in the spherical tiling {1,2} is not fixed by its sym-
metry group allows @ailpaper maps based on this tiling to be modified by a preparatory
conformal transformation of the sphere onto itselfyvgled the transform respects the
symmetry group.For example, if the sphere is tiled by avhemispheres with their com-
mon \ertex at the north pole, a suitable preparatory transformation is to map the sphere to
a polar stereographic projection at one scale and back to the sphere on anothdtigeale.
ure 2 illustrates this scheme applied to Pierce.

The transformation just described slips the equat@y drom the midplane of the
poles, like a waistband droopingveay from an ample midriff. Thus I call such a trans-
form adroop. Figure 3 is an example of a globe transformed by a droop.

The same transformation idea is pertinent to a {2,1} tiling with a meridian slit of
length other thamr. By stereographic rescaling about the center of the tile, the length of
the slit may be adjusted g while preserving the tavreflectve symmetries of the tile.

These conformal automorphisms let us generalize the starred entries in Table 1 to
one-parameter families. Thedwtarred entries for Peirce denote distiranflies. Inone
family, the ends of the droop axis map to plarentizes; in the other (Figure 2) theap
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Figure 2. An aspect of the Peirce projectiorvisked independently by
Guyou®® At the top is a Peirce projection of dwhemispheres. Athe bot-
tom, the hemispheres aregeeded as {1,2} polygons with a loneextex at

the north pole. A droop shifts parallel 15°S to the normal position of the
equatoy emphasizing Antarctica and the Southern Ocean atxpense of

the Arctic Ocean and northern EurasiBhe \ertex of each hemisphere is
mapped to the midedge of the edge of a square.

to midedges. The twdarred entries for Hex, gever, yield only one &amily. In each
case one end of the droop axis passes throughtex,\the other through a midedg&he
two cases differ only in igard to which end the droop is measured frofus the six
starred entries ge rise to only fie dstinct parameterized families.

The choice of parameter is quitedithe choice of standard parallels in maaenfi-
iar projections such as the Albers or Bonne projections. In factverdent way to spec-
ify a polar droop is to name the parallel that becomes equidistant from the poles.

We row show that these generalizations exhaust the possibilities &ipaper
maps subject to thegin symmetry conditions. The remainder of this section establishes

Theoem 2. The set of tiling projections comprises exactly toggiions identified
in Table 2. All but &tra generlize to single-parameter familiesgifce genealizes in
two distinct ways.

In the following discussion, the termmeridian’, ‘‘parallel”, ‘‘pole” and “equa-
tor” generally refer to a mapped image of a standard spherical reticule, jusy ds the
discussions of a flat map, although here the image happens to lie on a Sdueral.
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properties of the standard reticule need not be preserved.

Meridians need not be great circles.
Paallels need not lie in parallel planes (though distinct parallels cannot intersect).

The two poles, where meridians meet, need not be antipodal.
The equator need not lie in the midplane between the poles.
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Figure 3. Orthographic wes from the front, side, and back of a globe trans-
formed by a droop about (0°N, 20°Hpoints on the outer edge of the front

view were originally 130°waay from the center.
Any conformal map of the sphere onto itself may be represented as the product of
three conformal steps:
s: Map the sphere onto the closed compllane by polar stereographic projection.
f: Conformally map the closed compglplane one-to-one onto itself.
s1: Map the plane back onto the sphere lvgrise stereographic projection.

If sis taken to project a sphere of diameter 1 fromvp@ntV at the south pole
onto a plane tangent at the north pole (Figure 4), then spherical coordihalesvbere
6 is measured from the north pole, map to polar coordineies énd back by the formu-

las
r =s(6) =tan@/2), 6 =s(r)=2tan’r

./

6/

Vv

Figure 4. Construction of stereographic projection.

Function f must belong to the class of linear-fractional transforms—the only ana-
lytic functions that map the closed complglane irvertibly onto the closed compte



planel*

+
az+b ad-bc#0
cz+

f(2) = :
(=g
The four coefficients may be scaled arbitrarily (e.g. to eamak

f =x"(1+0(x)), n(}{ - 1,0, 1} nearx=0). Hencethree parameters suffice to identify
ary member of the class, from which fact follows

Corollary 2. A conformal automorphism of the spghier cetermined by its behavior
at three points.

Besides preserving angles, all three steps map circles onto &frg@s.the com-
plex plane, straight lines count as circles of infinite radius.) Thus meridians and parallels
appear on the plane asawrthogonal systems of coaxal circfdllustrated in Figure 5.
The meridians, which pass through the images of the north and south poles, form a coaxal
system of “intersecting type’ Whenthe distance between poles is finite, the centers of
meridians must lie on the perpendicular bisector of the segment determined by the poles.
As on the sphere, parallels are trajectories orthogonal to the meridians and form a coaxal
system of “nonintersecting typge’Eachparallel is disjoint from the others and separates
the two poles. When the distance between poles is finite, the centers of the paadlllels f
on the line determined by the poles. When one pole lies at infiméydians become
straight lines radiating from the other pole and parallels become concentric circles.

(0,0)

-k, 0) (p.0)

Figure 5. Representad members of tw orthogonal systems of coaxal cir
cles. Meridiansare centered on theaxis and parallels on theaxis. Poles
are at £k, 0). Meridiansintersect parallels at right angleshick circles are
a typical parallel centered afp(0) with squared radiup? - k?, a typical
meridian centered at (§) with squared radius)® + k?, and the smallest
meridian circle (radiug).



-10-

If sis a polar stereographic projection, ang a dilation about the pole by actor
of m, so hat the transform is a droop, th@arse stereographic projection maps pardllel
to ' according to

g'/12 = tan’t mr = tan }(mtané/2)

Whenm # 1, the projected parallels clustemtwds one pole.The inverse of a droop
with dilation factormis a droop about the same center with dilation fachor, @r equiv-
alently a droop about an antipodal center with dilation factor

The conformal sphere-to-sphere transformations form an automorphism group that
acts on what | caliroopy sphegs. In particular the group includes a transformation from
ary droopy sphere onto astandad sphewe, where the equator lies in the midplane
between antipodal poles.

Lemma 2. A droopy spleean be transformed to a standiagphere by a sngle
droop about an appropriate axis.

Proof of Lemma 2If the poles of the drogpsphere are antipodal, pick ypoint
E on the equatorThere exists a droop about a pole of a standard sphere that wal mak
the equator pass throughwhile preserving the polesddith the behavior of three points
known, the transform is completely specified. lisige is the required transform.

Although we hae described a droop asvolving a dilation of the projection plane
by some &ctorm, we @n equally well viey that as a dilation of the sphere by a factor of
1/m. We shall do so for the rest of this section.

If the poles are not antipodal, consider firstvito back-project arbitrary orthogo-
nal systems of coaxal circles withainite poles,N andS, and a distinguished equator
onto a standard spherket E be the intersection of the equator angnsentNS. Figure
6 dhows a cross-section of a back-projection onto a standard sphere tanbksht ihe
caption explains he to determine the point of tanggncorientation, and size of the
sphere.

Figure 7 shows hw to arange for three points on a drgogphere with pole-to-
equator angles of and B to project to exactly the same three points as do the corre-
sponding points on a standard sphere. The caption explains that, by rotating and dilating
the two spheres appropriately,* their tangent points can be made to coinGide.
required transformation is a droop about that point.

To complete the proof of Theorem 2, we note that a nontrivial droop pesserv
reflectve ymmetry only about planes through the axis of the drédgnce, the axis of a
droop applied to a {1,2} tiling of the sphere must pass through the siegk through
which pass the plane of symmetry for each hemispheric tile and the plane of tile-to-tile
symmetry Similarly, the axis of a droop applied to a {2,1} tiling must pass through the
center of the single gore, where the got@o panes of symmetry meet. As these are the
only applicable droops, and the set of droops comprise all thewiaintonformal auto-
morphisms of the sphere, wevikaow characterized all admissible generalizations of the
basic tiling projections.

* Dilation and rotation parameters are calculated in Appendix 1.
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Figure 6. Back projection onto a standard sphere from an arbitrary coaxal
system in plang with polesN andS. A standard sphere, with tick marks at
the poles and equatas placed with a meridian tangent to the unique straight
meridian in p. In p, the equator meets the straight meridianEat The
dashed circles are the loci of viewpoints from whiE and ES subtend

m/4; V4 is the unique viewpoint that ackes both.

Relaxed requirements

If the rather stringent conditions laid out amoiiyéliminaries’ are relaxed, more
wallpaper maps become possible. Some examples:

1. If the projection is not required to be the same in all tiles, then the composition of
ary droop with aty projection in Table 2 becomes admissible.
2. If a fle’s symmetry group is not required to be preserved, the Cox projéttion

joins the menagerieCox maps a {2,1} 360°-gore tiling of the sphere onto an equi-
lateral triangle (Table 6 and Figure 16), preserving only one of thesgore’
reflectve ymmetries.*

3. If, further, tiles are not required to be regular polygons, then Peirce can be
described in yet anotheray. a map from a {3,4} octahedral spherical tiling with
angles § 7 7) to a ganar tiling by triangles with angleg (7 7).

Enough. Systematicwestigation of plausible generalizations is a topic for another time.
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Long before | kner most of the literature cited in this papkeshowed Peirce to the
late Robert Morris. He askedCan you do the same thing with trianglés?hat pre-
nant question spurred a lasting interest in wallpaper maps.

| am grateful to Daan Strebe for pointing out references in earth-sciences literature.

* A dams suggested the projection in 1925, but chose not to compute it.



-12-

Figure 7. Mapping between a standard sphere on diardetend a gray
droopy sphere ond,. The latter sphere is oriented so that the shortest pole-
to-pole meridian segment falls on the limBlane p, sereographic image
points N, E, S and vievpoint VV; are as in Figure 6. The dotted semicircle
acain shows the locus &f; asE moves betweenN andS. The larger dotted
arc is a typical locus of wepointV, for a drooy sphere with pole-to-equa-
tor anglese and B, wherea + B8 < . The poles and equator of the drgop
sphere are marked with outward-pointing tickss E moves monotonically
from Sto N, viewpointsV,; andV, also mae nonotonically along the dot-
ted arcs fron5to N. The abscissa d&f, lies to the left ofN whenE is sufi-
ciently nearN, and to the right ofS whenE is nearS. The abscissa df,,
however, is confined to the inteal NS By continuity, a some intermediate
position of E the abscissas and associated tangent pdintnd T, must
coincide.
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Table 3. Construction of projections. Each left panel shows a stereographic projection in
the compl& z-plane. In(a), (b) and (c) the north pole isat 0 and argz measures lon-
gitude. In(d) the north pole is at &= -1 and the south is a = 1. Thez-plane is cut

for a Schvarz transformation and scaled so cuts end on the unit circle. Similarly named
labels (e.g. B, B') identify distinct approaches to the point at infiniyhose images
approach a single poinBjJ in the w-plane. Theequator is drawn with fine dashesit b

only when it is circular or (piecewise) straigfRepresentate vetices in thew-plane are
labeled by the ratig/q’, with 1/1 for a point interior to a hemispheric tile. Branch-point
exponents in the Schwarz integrals ayg —1. A shaded triangle designates a funda-
mental region from which the projection can Beeaded to the rest of thve-plane image

by symmetry (Computational formulas (4), (5) and (6) apply directly to both the funda-
mental region and its reflection in the real axis.)

(a) Peirce
DB
C D C._ BjuL |
F \ / H .
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Table 3 (continued)

(b) Hex
BI
D\
B
! Al N
' ;;’

3/6

3/6

— %01 _ 53\-12
Spherical tileACE has 120° angles W = Io(l z’) "dz
and vertices at latitude arcdif3.

(d) Square (alternate construction)

B
| 3.2/4
D’ z w = Oz(l - 7234z

Fundamental region has 2 branch points;
see Table 4(b) for simpler construction
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Table 4. Constructions of various projections via the Lagrange projection. In the style of
Table 3, (a) shas the construction of the Lagrange projection from a polar stereographic
projection with the equator as unit circle. Constructions (b) and (c) start from a Lagrange
projection in the complez-plane. In (c) thez- and w-planes are rotated byr/4 to put

cuts on the axes. Every circle shown in the table is a unit circle centered at the origin.

(a) Lagrange

A
A
o B 128 | -
_ J1/2
z IS

w = Ioz(l - 24124z
(Same integral as Peirce)
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Table 4 (continued)

(c) Adams

e—i 71/4W -

[yt et
(Same integral as Peirce)

Table 5. Coeficients for power series in equations (5) and @)power-series packagé
was wsed to calculate (rational) coefficients fi#"F,, and 3/°G, from which floating-
point coefficients okth powers inF,, andG were dewed. w(1) is the value oivatz =1
in (5) or (6).

K Fs Fy, G

0 1.44224957030741 1.0 1.15470053837925

1 0.240374928384568 0.25 0.192450089729875

2 0.0686785509670194 0.06875 0.0481125224324687

3 0.0178055502507087 0.0078125 0.010309826235529

4 0.00228276285265497 -7.64973958333868° | 3.34114739114364.0

5 | -1.483795854225%30° | -0.0069580078125 -1.50351632601466°

6 | -1.6428772810920@0° | -2.893301156850940° | -1.230441779623210°

7 | -1.025834170822%A0° | -2.05993652343768.0° | -6.7519020196028A07*

8 | -4.836075376735K10* | 9.958814172183%10* | -2.84084537293854.0*

9 | -1.670308220947810* | 8.643567562103210* | -8.2120512050005410°°
10 | -2.450243951662630° | 3.857053816318510* | -1.59257630018706.0°
11 2.1409237545095%107° | 1.4043413102626407° | 1.9169180588836407°
12 2.558972704867%10° | -1.347214193083380* | 1.73095888028724.07°
13 1.7308685440083407° | -1.24614486897678.0* | 1.03865580818367.07°
14 8.727562999846440° | -5.7485564333358A.0° | 4.706145239371340°
15 3.183044867984%30° | -1.122286903409940° | 1.441350010418410°
16 4.79323894565283077 | 2.2728578208842@.0° | 1.927579601701740°8
17 | -4.589683895654%80 ' | 2.1277781956640° | -3.828697996490630 '
18 | -5.6297058678782a077 | 9.99206810770337A0° | -3.57526015225524.0’
19 | -3.9213537283346307 | 1.8325475816730A07 | -2.21759648442241077

w(l) | 1.76663875028545 1.31102877714606 1.40218210532545
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Table 6. Constructions of the Cox projection. Construction (a) éstiise of able 3; (b)
is like those of Table 4.

(a) Cox from stereographic (alternate construction)

216

B | B

FC i A‘:D, -~ 1/2C A>1/6
D
z w = Ioz(l +2) V41 -2)>"%dz

(b) Cox from Lagrange (preferred construction)

2/6

1/2 - 1/2C A>1/6

D

= [f@-2)dz
(Same as Hexagonal)

Appendix 1. Droop calculations.

Paameters of the droop that maps betweenvangiroopy sphere and a standard
sphere may be found by expressing the lengths grheetsNT, ET, and ST in two
ways, as projections from each sphere (Figure 8).

12+ 6 +6
dltanﬂ 1 :dztana 2
61 6>
d, tan— = d,tan—= 7
1 2/2 ; 2 6 Y
d, tan 51 :dztan’g 2

Setm=d,/dy, a=tan a), b=tan( ), t; =tan § 6,), t, =tan } 6,); and use the
addition formula for the tangent to obtain algebraic equations.
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1+t

m 1_ att
1- tl 1- atz

mt; = t, (8)

1-t -

m 1_ b-6
1+t; 1+bty

The only real solutions of (8) (found by Mapl&gntailed

_ 2a%h? +a? + b? + (4a%b?(1 - ah)? + (a® - b?)?)? o
B 2ab(a + b) ©)
To choose between the daroots, consider the case= g, or equivalently a = b. Then,
Figure [1lprojaxis] becomes symmetric, with midway betweenN and S, and
6, = 6, =0. Hencefrom Figure 9,m=d,;/d, =tan (% a) = a. Specialized toa = b, (9)
becomes

m

1+a?+ ((1-a%?):
m= (A-&)7)

(10)

2a

Figure 8. A standard sphere and a dyogphere with a common point of
tangeng, T. 8; andé, are azimuths of the equator measured at the center of
the spheres relat o the point of tangenc

Becauser + 8 < 7, the assumptionr = g impliesa=tan ¢ &) <tan ¢ ) = 1. Thusthe
positive gyuare root of (+ a?)? is 1- a. For (10) to ®aluate tom = a, the * sign in (9)
must be taken as provided the square root is understood to be pesiti

To find t4, diminatet, from (8) by simple substitution; s@wach of the remaining
equations fot?; and equate the twresults.

* The Maple version that | used could soltae system only aftet, had been trially
eliminated.
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m-a-a(m?-1)t; _m-b+b(m?-1)t,
mam-1) m(bm- 1)

Whence
‘= a-b
17 2amb-b-a

Further routine manipulation leads to the complete solution of (8).

d; S 2a%b? + a% +b? -VD
d, 2ab(a+b)
. . _. _2a’h*-2ab+VD
tanG 6,) =t; = Z -2
an o) =t, = 2a%b? - a? - b?+VD
2 72— 2 2ab(a - b)

where
D = 4ab?*(1 - ab)? + (a® - b?)?
a=tanG a)
b =tanG )

(11)

andVD is understood to be posie It may be noted that andt, approach 0 in the limit

asb approaches.

Figure 9. A droop between a standard sphere and a grgppere with

equator midway between poleBor corvenience, the distance between the

projected poles is scaled to 2. Thars d;/d, =1/d, = tan(% a) =a.



-20-

The shape of a droopy sphere

On a droop sphere, meridians and parallels, being circles, lie in platdsarly
the planes of meridians meet in the line joining the paies. Ingeneral, the planes of
parallels also meet in a common line, which must fall outside the sphere because parallels
cantintersect (Figure 10).

Theoem 3. On a droopy spleethe planes of parallels concur in the line of inter
section of planes tangent to the sghat the two poles, or & parallel when the poles ar
antipodal.

Proof. When the poles are antipodal, the dpaphere can be transformed to a
standard sphere by a polar droop. Hence the planes of parallels must be parallel.

Otherwise, as we ka en, gery droogy sphere is the werse stereographic image
of an orthogonal pair of systems of coaxal circles, with meridians meeting dintte
points. Rrametric equations for such systems can be ré&cbaf Figure 5.

(x-p)?>+y?> = p?-k* parallels

x?+(y-q)*>=qg’+k> meridians
These equation simplify to
x> +y?—2px+k?®=0 (12)

x> +y?-2qy-k?=0 (13)

Consideywithout loss of generalifyhe irverse stereographic projection of systems
of coaxal circles in the plane=1 (in Euclidean 3-space) onto a sphere of diameter 1
tangent taz = 1 at (0,0,1) with an antipodal center of perspeetit (0,0,0). Thesquation
of this sphere is

X% +y? +(z—- 1/2)% = (1/2¥
or
X>+y?+722-2z=0 (14)
To account for arbitrary positioning of the coaxal systems rada the sphere,
move the center of the coaxal systems &h) by replacingx andy by (x—a) and
(y—b)in (12) and (13).Circles of the systems are projected on sphere (14) by intersect-

ing it with cones that ha vetex (0,0,0) and coincide with the specified circles when
z=1.

(x—az2)?+(y-bz)?-2pzx - az) + (k2> =0 (15)

(x —az2)?+(y-bz)? - 292y - bz) - (k2> =0 (16)
To find the intersection for a parallel, first subtract (14) from (15).
—2axz+ a’z® - 2byz+ b?z? - 2pxz+2apZ - z+z- (k9? =0

Factor outz to get an equation for the plane of the parallel.
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—2(a+ p)x—2by+(a®+b*+2ap-1-k?»z+1=0 (17)

The intersection of taw such planes for infinitesimally dérent values o must satisfy
the equation resulting from differentiating with respegpto

-2x+2az=0 (18)

Thus the line of intersection lies in the plane az. Substitute the &lue of Z from (18)
into (17) to find the equation of another plane in which the the line of intersection lies.

—2by+(b*-a?-1-k?z+1=0 (19)

Since (18) and (19) are independentppthe line thg specify is in fact the intersection

of all the planes of parallelsAs parallels approach the poles, their planes approach
planes tangent to the sphere at the poles. Thus the common line of intersection is also the
intersection of those tangent planes (Figure 10).

Figure 10. Cross-section of a drgogphere, showing the planes of parallels
transformed from a standard sphere with parallels spaced 30° djart.
equator is labeled. The planes concur in link, perpendicular to the plane
of the page.

Droopy spheres hee keen described in the earth-science literature in connection
with orthogonal grids for ocean or atmospheric circulation mddei8The cited papers
suggest “rotated asymmetric bipolar gridslefined by stereographic projection, linear
fractional transformation, and stereographic back-projection exactly ae) @@ neans
for placing the singularities of a finite-difference meslaafrom regions of principal
interest. Thg do not, havever, indicate thatwery such a grid can be created by a simple
droop.



-22-

Appendix 2. Gallery.

Unit cells of the seeral tiling projections. The plane can be tiled continuously
with translates of the figures.

> 5
4"

I WA

Figure 11. Unit cell for Peirce.
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Figure 12. Unit cell for Hex.
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Figure 13. Unit cell for Square.
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Figure 15. Unit cell for Tetra.
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relaxed symmetry conditions.

as a tiling projection only under
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