
representing data

1. encoding data for transmission or storage (bits)
2. encryption and compression
3. compound data: objects and records
4. storing data in a file system: csv files
5. the unix filesystem
6. storing data in a relational database
7. selecting data using relations (SQL query)

outline

1. encoding data for transmission or storage (bits)
2. encryption and compression
3. compound data: objects and records
4. storing data in a file system: csv files
5. the unix filesystem
6. storing data in a relational database
7. selecting data using relations (SQL query)

outline

01011100 10110101 11011011 00001111 10101010

bit: A binary digit, with the value 0 or 1.
byte: A group of 8 bits
address: the index of the byte
Random Access Memory: constant time access

How memory works

data binary

encode

decode

entry, analysis for storage or transmission

binary is a uniform representation of data
 (humans use phonemes)

each data type needs its own not-so-secret code

data binary

encode

decode

entry, analysis for storage or transmission

01 01 11 00 10 11 01 01 11 01 10 11
b b d a c d b b d b c d

Is this a good code for
representing string values?

string
ASCII (8 bits per character) or
unicode (8 to 42 bits per character)

integer
positive: binary counting
negative: two’s complement, 64 bits

floating point (large or small, exponent)
 IEEE floating point standard 754
 standard for javascript, but inaccurate due to rounding

fixed point (high-speed traders use this)
 Q (Q17.15 has 17 bits for integer, 15 bits for fraction)

each data type needs its own code book

(from computerhistory.org)

http://computerhistory.org

1. encoding data for transmission or storage (bits)
2. encryption and compression
3. compound data: objects and records
4. storing data in a file system: csv files
5. the unix filesystem
6. storing data in a relational database
7. selecting data using relations (SQL query)

outline

encryption: symmetric vs asymmetric

data unencrypted
binary

encode

decode

entry, analysis

encrypted
binary

encrypt

decrypt

Simple symmetric encryption: a secret code book (pad)

Asymmetric encryption (RSA). Choose two numbers.
1. you give me your public number (public key)
2. I encrypt: math + your public number (public key)
3. you decrypt: math + your private number (private key)

 amazingly, public key allows encryption but won’t decrypt

1. encoding data for transmission or storage (bits)
2. encryption and compression
3. compound data: objects and records
4. storing data in a file system: csv files
5. the unix filesystem
6. storing data in a relational database
7. selecting data using relations (SQL query)

outline

compression: zip, jpg, png, mp3, mpeg4
loss-less (zip, png)

frequency: why use 8 bits to represent e and q?
Shannon: how small can you make a file (re-zip?)

lossy (jpg, mp3, mpeg4)
compress some other nicely-compressible data
lose (or add?) high-frequency information

delta (mpeg4)
 analyze repetition (between frames)

Computer science is not about coding.

What is information? How much do you have? How do
you keep it secret? How do you verify or error-check it?

Why is Hany Farid so excited about Benford’s law?

1. encoding data for transmission or storage (bits)
2. encryption and compression
3. compound data: objects and records
4. storing data in a file system: csv files
5. the unix filesystem
6. storing data in a relational database
7. selecting data using relations (SQL query)

outline

object string

serialize

deserialize

binary
encode

decode

JSON is a set of rules for serialization.
So is XML. (So is HTML.)

So is csv.

1. encoding data for transmission or storage (bits)
2. encryption and compression
3. compound data: objects and records
4. storing data in a file system: csv files
5. the unix filesystem
6. storing data in a relational database
7. selecting data using relations (SQL query)

outline

storing data with .csv files

What’s missing from this representation?
A schema tells you the structure of the data.
“string: country, string: country abbreviation, number: GDP,
number: population”

1. encoding data for transmission or storage (bits)
2. encryption and compression
3. compound data: objects and records
4. storing data in a file system: csv files
5. the unix filesystem
6. storing data in a relational database
7. selecting data using relations (SQL query)

outline

unix terminal and filesystem

Grab data-examples.zip from top of lecture 4 notes and upload
to main directory on c9.io. (No need to unzip yet.)

Now go to bash and type the command ls to list files

The unix command unzip <filename> unzips a file.

http://c9.io

unix terminal and filesystem

side note. Why all the typing? Why are so many nerds
using mac or linux? What is linux/unix anyway?

cd <directoryname> changes the working directory.

Ok, I’ll be nice, use the mouse and c9.io interface to
look at the contents of countdown.php.

http://c9.io

unix terminal and filesystem

php <filename> runs php code.

python <filename> runs python code.

unix terminal and filesystem

Exercise: create a new directory tempdir,
and a file myfile.txt within.

1. encoding data for transmission or storage (bits)
2. encryption and compression
3. compound data: objects and records
4. storing data in a file system: csv files
5. the unix filesystem
6. storing data in a relational database
7. selecting data using relations (SQL query)

outline

databases

A table is a collection of rows. Each row can be thought
of as a record: a collection of related information.

Each column contains a field: data of a particular type.

relational database query: A search for values over
one or more columns returns a set of rows.

creating a database with sqlite3

To create a database, sqlite3 <filename>.
Create a new database db.sqlite3 in data-examples now.

CREATE TABLE professors (firstName text,
lastName text, email text, phone text);

Type:

creating a database with sqlite3

CREATE TABLE professors (firstName text,
lastName text, email text, phone text);

• Notice that a file was just created: db.sqlite3
• You have created a table professors with four columns
• Each column is of type text
• Commands in sqlite end with a semicolon
• By convention, commands are capitalized.

Type .tables to list tables. You should have one: professors.

creating a database with sqlite3

INSERT INTO professors VALUES ('Devin',
'Balkcom', 'devin.balkcom@dartmouth.edu',
'6-0272');

Add a row with INSERT INTO <table_name> VALUES()

Verify that it worked:
SELECT * FROM professors;

Add Hany's info now:
Hany|Farid|hany.farid@dartmouth.edu|6-2761

.commands in sqlite3

Notice, no save command. Saves immediately!

sqlite3 data types

Each value in an SQLite3 database has one of the
 following storage classes.

• NULL. The value has no value
• INTEGER. The value is a signed integer
• REAL. The value is a floating point value
• TEXT. The value is a text string
• BLOB. The value is a blob of data, stored exactly

as input (image or music data is not text).

CREATE TABLE professors (firstName text,
lastName text, email text, phone text);

sqlite3 primary key

The primary key is a column that uniquely identifies each row.
Last name is not a good primary key. SSN is, but private.

CREATE TABLE professors2 (id integer PRIMARY KEY
AUTOINCREMENT, firstName text, lastName text, email text,
phone text);

To insert:
INSERT INTO professors2 VALUES (NULL, 'Devin',
'Balkcom', 'devin.balkcom@dartmouth.edu', '6-0272')

Add Hany to professors2 and select all.

a bigger example: world.sqlite3

(To see how world.sqlite3 was created, go to README-SQL.txt)

a bigger example: world.sqlite3

Let’s see what we’ve got:

To get the whole table:

To select a few columns
SELECT * FROM world;

SELECT country, gdp FROM world;

selecting rows with WHERE

SELECT column FROM table WHERE condition;

SELECT population FROM world
WHERE country = FRANCE;

Example:

Multiple columns and rows:

SELECT country, gdp FROM world
WHERE population < 500000;

conditions in SQL

SELECT column FROM table WHERE condition;

SELECT country, gdp FROM world WHERE
 population BETWEEN 500000 AND 1000000;

We can use BETWEEN x AND y to narrow further:

Logical operators AND and OR work:

SELECT country FROM world WHERE
 population < 500000 AND gdp > 10000000;

Exercise: Tuvalu

Write an SQLite command that searches the table world for all
countries with a gdp between 10 and 100 million. Your search
should return the matching countries’ 3-letter abbreviation.

SELECT abbrv FROM world WHERE gdp BETWEEN
 10000000 AND 100000000;

Nesting searches

Extract names of countries with population larger than France's:

SELECT country FROM world WHERE population >
66206930;

First way: find the population of France with search (66206930),
and then use that number (not nested):

Second way: nest the searches

SELECT country FROM world WHERE population >
(SELECT population FROM world WHERE
country='France');

Aggregate (calculations on search results)

SELECT <command> FROM <table>;

Command is usually of the form FUNCTION(column).

SELECT SUM(population) FROM world;

SELECT MAX(gdp) FROM world;

SELECT COUNT(*) FROM world;

Exercise: wealthy countries

Write a nested search that lists the names and gdp's of all
countries with above-average gdp. (Hint -- try something
simple first, like computing average gdp.)

SELECT country,gdp FROM world WHERE gdp >
(SELECT AVG(gdp) FROM world);

