graphs and grapn
algorithms

main ideas from yesterday

1. Objects can be used to store data items and
represent connections between the items.

<t prev <

< p

< prev < pr
Doc Dopey
nex

next >

prev rev
Bashful Sleepy

ext > next >

Happy

t >

ext >

2. The queue ADT models a first-in-first-out process.

graphs express connections between data

A socilal network:

Each vertex stores some data. Each edge connects a pair of vertices.
(The words node and vertex are used interchangeably.)

It there are n vertices, there may be up to n (n - 1) edges.

guestions we could ask

 Does Cathy know Gayle”? (Yes, there is an edge.)

e |s there a pathway between Harry and Emily? (Same component.)
 What is the shortest path between Harry and Emily? (H to J to E)
 Who is the most well-connected person” (Emily, vertex degree 5.)
e Largest group in which each knows everyone else (cligue)?

graph models: social networks

@ Secure https://www.facebook.com/graphsearcher/ w © B
& I8 Employment Infor... Y-driab & @& [[§]b [E] Committees [§]Forms [© CIO Search - Box [F] Teaching schedule %= https://csistaff.sla... [f§How To Tea

facebook

Introducing Graph

Q. Restaurants in London my friends have been to|

Princi London 16 Places
Restaurant - Cafe - $ (0-10) - & & & »

Q Cint Woss was here - Cint has been friends with you since October

Graph SeaI’Ch - ;11: .:':I—C?:"f_:'“: London, United Kingdom -
@graphsearcher ob 3,354 Nke this o °
f;' Huke §Map Q
Home - : o o
. ._. - » . : L'-D
About SO vua — O — A
Photos Wk Like 4 Share ¢ SuggestEdits - Send Message
Likes
Welcome Photos App Page
facebook o

graph models: social networks

& C @ Secure https://www.cs.cmu.edu/~./enron/ w @ B 5 ® G v ¢
Apps K 4O 4 [I§] Employment Infor... ¥-drab % & [f§jb [E] Committees [f§] Forms G CIO Search - Box [E] Teaching schedule %+ https://csistaff.sla...

Enron Email Dataset

This dataset was collected and prepared by the CALO Project (A Cognitive Assistant that Learns and Organizes). It contains data from about 150 users, mostly senior management
of Enron, organized into folders. The corpus contains a total of about 0.5M messages. This data was originally made public, and posted to the web, by the Federal Energy
Regulatory Commission during its investigation.

The email dataset was later purchased by Leslie Kaelbling at MIT, and turned out to have a number of integrity problems. A number of folks at SRI, notably Melinda Gervasio,
worked hard to correct these problems, and it is thanks to them (not me) that the dataset is available. The dataset here does not include attachments, and some messages have been
deleted "as part of a redaction effort due to requests from affected employees”. Invalid email addresses were converted to something of the form user@enron.com whenever
possible (i.e., recipient is specified in some parse-able format like "Doe, John" or "Mary K. Smith") and to no_address@enron.com when no recipient was specified.

I get a number of questions about this corpus each week, which I am unable to answer, mostly because they deal with preparation issues and such that I just don't know about. If
you ask me a question and I don't answer, please don't feel slighted.

I am distributing this dataset as a resource for researchers who are interested in improving current email tools, or understanding how email is currently used. This data is valuable;
to my knowledge it is the only substantial collection of "real” email that is public. The reason other datasets are not public is because of privacy concerns. In using this dataset,
please be sensitive to the privacy of the people involved (and remember that many of these people were certainly not involved in any of the actions which precipitated the
investigation.)

« Prior versions of the dataset are no longer being distributed. If you are using the March 2, 2004 Version; the August 21, 2009 Version; or the April 2, 2011 Version this
dataset for your work, you are requested to replace it with the newer version of the dataset below, or make the the appropriate changes to your local copy.

e May 7,2015 Version of dataset (about 423Mb, tarred and gzipped).
There are also several on-line databases that allow you to search the data, at Enronemail.com, UCB, and www.enron-mail.com

graph models: hierarchies

United States
Department of State

Under Secrelary

for

Political Affairs

European and
Eurasian
Affairs

South Asian
Affairs

International
Organization
Affairs

Inspector Folicy

General Staff

Planning

International

United States
Agency for

United States
Permanent

Representative to
the United Nations

Development

Under Secretary for
Economic, Business,

Easl Asian
& Pacific
Affai

Economic and
Business Affairs

Near Eastern
Affairs

Western
Hemisphere
Affairs

Legal
Advisor

Office of
Civil Rights

and Agricultural Affairs

Deputy
Secretary of State

Executive
Secretariat

Under Secretary for
Public Diplomacy
and Public Affairs

Under Secretary for
Arms Control and
Int’l Security

Educational

and
Cultural Affairs

Public
Affairs

Non-
proliferation

International
Information
Programs

Political-
Military
Affairs

Verification
and
Compliance

Intelligence Resouce

Legislative
Management

Affairs

Under Secrelary

for

Management

Administration

Diplomatic
ISacurity & Foreign
Missions

Forelgn Service
Institute

Information
Resource
Management

Chief of
Protocol

Consular
Affairs

Director Genaral
of the Foreign
Sarvice & Director
of Human
Resources

Overseas
Buildings
Operations

Offica of
White House
Liaison

Counter-
terrorism

Printer
Friendly Version

Under Secrelary
for
Global Affairs

Democracy,
Human Rights
and Labor

Int'| Narcotics &
Law Enforcement
Affai

Oceans & Int’|
Environmental &
Scientific Affairs

Population,
Refugees,
and Migration

Office of Sclence
and Technology
Adviser

War Crimes Counselor
Issues

Revised: June 13, 2003

graph models: physical maps

& coneys
&

%'\’ — " \\\
; & .) .
S Choate CIusterO / RS / STSQ McLaughlm Cluster
LS (@) : .\ e_ \;/‘ I/,
) \ Dartmouth College i1
: ‘, o SudikoffLab =
," Webs - ﬁ 10 min {, ”. ,'l : .
Ave | 0.5mile Aol
Dartmouth 1 — CO”ege Park \
- T 10 min ' Berry Libra L
College Tuck Hall o 07"5 mile : M ry f R
i __.""’T—/ = . ’ ¢
J. 05000000 \ Yl S |
! 4 - e ‘//\\
v QThayer School r \4& g,’ |
\/ of Engineering at... N\) O |
— —— . ‘*‘ I _/ -:\ /_,1 Z—— / \ -
- | (] | < \({— > T-.\\
N T -~
= o’ \\ (o L/ / -
< \Z NI v v\ /\
a sy L1 S IAYZ 2 vee AR -
9 q}e “\\({\ “%, /’/ / im - /}/\4;_’:/ —\Whe‘e\o_c%- Ll‘\—‘v - *)9 D ar
W Wh) 0/ LA AN Alul
eeIOCk .Qf O 1 ~ - "l m 8 ‘_

graph models: genealogy

e e William 1
CRENING) e 17)
T
¥ domet. Pu—
Prace of Wane .
(1720 e
1
GroRGE Cradame of
of Gowst Brtan B B
ﬂmlm ﬂ?“ﬂ‘i.
GEOROEN WALAMN Coead. Ovie Victss of
o G Poran o Connt Ditan of Vam
176211 (1. 181T) AN (1Y)
Arem A
o g Poten
mane) (813 1901)
T
A COWARD '™
o Devmat of Gondt Bt
YR
CECRCE v
mﬁ o Covet (vtan
00671963 00 1906
) 4
r 1
EOWARD GEORGE W
WomuDtn dOmaBRen Se ety
(8 190 0806 196 (D J001)
TLTADE ™™ .
o) Elizabeth |

0506

e
THARLES Y Y W ooy s
aroass (172597 L T ‘n
Vet Amades B Mpny Artoeemy
o Drdena o Spom
arxne nr»en
Coatet Ewmancal N Viter Foweamel | Mans Therwes
of Codee o Twdnns o Asvie Evle
CARLES vV VCROR 1 0D
oL TR O?D:Q]
Mara Pednce Frmcm. Archihe
oA Sy o Aveva Fate
“WARY ¥ NI e
“"’c"“) |
Frmon V Fodrant Far st Froncess
Dne of Mdora W Anmalve o Asive
TRANCET w M’m
BN 1
Ludwyg N Mars Thawia
o Bovere dhnv:’bn
(S 901 WARY
M Cstraw Puporecte Copen
of Pasers Porc o of flnera
NES MY oo
[, (8 1955y
Mons Frangon Alewcie, Diie
mm. A
(Y9048 63 MNIERT Y
l s
h-.‘_M
of Daene
TRANES Y
M)

graph models: the web

Image from the Opte project.

graph models: document structure

Simple Document Tree

o]

|

<meta>

<title>

(models containership)

<div id="header”>

<hl1>

|

[

| |

<div id="main-content”>

<p> <a>
[1
| | <a>

(Image from dabrook.org.)

graph models: ordering constraints

Restrictions on the order in which a hockey goalie can get dressed:

-
1 | \undcrshoﬂ9

— ———e A ——
2 (socks) @ompressnon shorti) 3 (T-shirt) 9
4 (hose) up) 5 (chest ad) 10
o) o NP

6 <pams —

7 | skates
)

8 (leg pads) _

——>{catch glove) 13
NS :

(" blocker) 14

(Note: directed graph. Example by Tom Cormen.)

graph models: decisions and Al

CHOOSE YOUR OWN ADVENTURE® &

YOU'RE THE STAROF THE '@
STORY! CHOOSE FROM 22 POSSIBLE ENDINGS.

TROUBLE ON
PLANET EARTH

BY KA. MONTGOMERY

¥
-

P

o
AV

r_c

* - -—

» — - - ;.‘.-'ﬁ ‘."

-

1h et
.
(=
» od
_ o &
B

Che

CEE: |

390 1 50 45 7% 44

ILLUSTRATLED BY RALPH REESI

guestions we could ask

* Does Cathy know Gayle? (Yes, there is an edge.)

* |sthere a pathway between Harry and Emily”? (Same component.)
 What is the shortest path between Harry and Emily”? (H to J to E)
 Who is the most well-connected person” (Emily, vertex degree 5.)
e Largest group in which each knows everyone else (clique)?

Food for thought: what are analogous questions for
each of the previous applications?

representing a graph: edge list

[[0,1],[0,6],[0,8], [1.,4], [1,6], [1,9], [2,4], [2,6], [3,4], [3,5],
3,81, [4,5], [4.9], [7.8], [7,9]]

* How long does it take to answer whether two vertices are connected?
* How much memory is required?

representing a graph: adjacency matrix

01 23456789

//(0) 001 00 0 0101 0
%9>/\C1) 11000101001
210 0001 01 00 0

8 /(2) 3/0 0001 1001 0
40 1 1 101 00 0 1

@a A 50 001 100000
</ 6/1 1 1 00 00000

@ /C“% 710 000000 0 1 1
G5 §/1 001 00010 0

9l0 1 001 001 0 0

* How long does it take to answer whether two vertices are connected?
* How much memory is required?

representing a graph: adjacency lists

o B —
0
/’”C/D\ 1| +—0]|4]6]9

K9) G > —

B 2 3| 1T—14]5]8

S sl +—{1]2]3]5]9
7 3 2

@i g 5 3[4

D (‘y 6| +—f0]1]2
(sff’ 7| 4+—{8]9

s | 4——{0]3]7

9| +——{1[a[7

* How long does it take to answer whether two vertices are connected?
* How much memory is required?

(Our preferred method)

representing a graph: example

) top v Filter Info v 2
Searching for path from Tuck to Sudikoff.
Found goal!

what’s in a node”

dartmouth_graph.txt X

20 Butterfield; Gold Coast, Blunt, FDA; 359, 509
21 Gold Coast; Tuck Dr, Butterfield; 295, 509
22 Tuck Dr; Gold Coast, Buchanan; 240, 509

................

* some data: name, pixel coordinates:
tuckNode.name = “Tuck”;
tuckNode.x = 116;
tuckNode.y = 487;

* an adjacency list:
tuckNode.adjacent =
[“Murdough”, *“Buchanan”];

given the name of a node, how do you get the node”?

graphDict dictionary indexes nodes using names (strings):

var myNode = graphDict[”Tuck”];
console.log(myNode.name) ;
console.log(myNode.Xx);
console.log(myNode.vy);

graph.js X

1
var graphSearch = function(graphDict, startNodeName, goalNodeName) {

console. log("Searching for path from " + startNodeName + " to " +
goalNodeName + ".");

start by experimenting with tetching nodes from graphDict.

given node name, how do you get names of adjacent nodes?

graphDict dictionary indexes nodes using names (strings):
var currentNodeName = *“Tuck”;

// Grab the node from the dictionary
var currentNode = graphDict[currentNodeName];

// The node contains the adjacency list:
console.log(currentNode.adjacent);

In this example, currentNode.adjacent contains an array of
strings.

breadth-tirst search on a graph

given two strings representing the start and goal locations,
what is the shortest connecting sequence of node names?

dartmouth_graph.txt X
18 Baker West; §§ngtn, Blunt, Carson; 496, 504
19 §?ﬂ99[ﬂ; Baker West, Green Northwest, Baker, North Mass; 498, 560
20 Butterfield; Gold Coast, Blunt, FDA; 359, 509
21 Gold Coast; Tuck Dr, Butterfield; 295, 509
22 Tuck Dr; Gold Coast, Buchanan; 240, 509
23 Buchanan; Tuck Dr, Thayer, Tuck, Murdough; 178, 509
24 Tuck; ﬂnggggh, Buchanan; 116, 487
25 Thayer; Murdough, Cummings, Buchanan; 127, 548
Example:

// test out the graph search code. Once you have written the graphSearch
// function, this should print out "testPath: Tuck,Buchanan,Tuck Dr"

var testPath = graphSearch(mapGraph, "Tuck", "Tuck Dr");
console.log("testPath: " + testPath);

a ‘harder’ problem that is easier to solve

given a string for the start, what is the shortest connecting
seqguence to every other node”?

Murdough

Buchanan

Tuck Dr

A Gold Coast

(Note — geometry does not matter.)

breadth-first exploration from Tuck

Start at Tuck. Send minions to claim adjacent nodes.

Murdough Tuck

Buchanan

Tuck Dr

A Gold Coast

breadth-first exploration from Tuck

Now that Murdough has been claimed, it starts producing
minions of its own:

Tuck
Tuck

Buchanan

7~ @
A Gold Coast

Tuck Dr

breadth-first exploration from Tuck

Now that Murdough has been claimed, it starts producing
minions of its own:

Murdough @

Tuck

Tuck

Buchanan

Murdough @
‘,/'
A Gold Coast

Tuck Dr

Notice: Murdough-ians do not reclaim Tuck.

breadth-first exploration from Tuck

Buchanan was also claimed by Tuck, and starts producing
minions of its own:

Murdough @

Tuck

Murdough

Murdough

~

A Gold Coast

breadth-first exploration from Tuck

Buchanan was also claimed by Tuck, and starts producing
minions of its own:

Murdough @

Tuck

Murdough

Murdough

~

Buchanan

A Gold Coast

Notice: Buchanites do not claim Tuck, Murdough, or Thayer
(already claimed). They do claim Tuck Dr.

breadth-first exploration from Tuck

Thayer starts producing minions:

Murdough

Tuck

Murdough Tuck

Buchanan

Murdough

Buchanan

Tuck Dr

A Gold Coast

Continue this process until all nodes have been claimed.

finding the path with backchaining

What is a fastest way from Goal Coast to Tuck?

Murdough
(start)

Tuck

Murdough Tuck

Buchanan

Murdough

Buchanan
Tuck Dr

A Gold Coast

Gold Coast was first claimed from Tuck Dr. Tuck Dr was first
claimed by Buchanan. Buchanan was first claimed from Tuck.

Tuck Dr

Reverse this sequence: Tuck, Buchanan, Tuck Dr, Gold Coast.

breadth-first search: data structures

Murdough @

Tuck

Murdough

Murdough

~

A Gold Coast

* Which node should produce minions next? We keep a queue.

 Which nodes have been reached first (claimed) from where”?
We keep a dictionary, visitedFrom.

visitedFrom[“Thayer”] IS “Murdough”

breadth-first search: pseudo-code

add starting node name to new queue (e.g., ("Tuck”))
create dictionary visitedFrom and add entry for starting name

while queue is not empty:
dequeue current node name from the queue
get the corresponding node from graphDict

If the current node Is the goal, success,
backchain

for each adjacent node name that is not in visitedFrom:
add node name to queue for future exploration
mark where node name was reached from in visitedFrom

bfs: data structures example

add start to queue and visitedFrom

Murdough

Buchanan

Tuck Dr

A Gold Coast

queue: “Tuck”
visitedFrom: {“Tuck”: “start”}

breadth-first exploration from Tuck

Start at Tuck. Send minions to claim adjacent nodes.

Murdough Tuck

Buchanan

Tuck Dr

A Gold Coast

gueue: “Murdough”, “Buchanan”
visitedFrom: {*Tuck”: “start”, “Murdough”: “Tuck”, “Buchanan”: “Tuck™}

breadth-first exploration from Tuck

Next, dequeue "Murdough”. Its adjacent node names are “Tuck”,
“‘Cummings”, and “Thayer”. Since “Tuck” is already in
visitedFrom, just add “Cummings” and “Thayer” to queue and
visitedFrom.

Tuck

Buchanan

7~ @
A Gold Coast

gueue: “Buchanan”, “Cummings”, “Thayer”
visitedFrom: {"Tuck”: “start”, “Murdough”: “Tuck”, “Buchanan”; “Tuck”
“Cummings”: “Murdough”, “Thayer”: “Murdough”}

Tuck Dr

breadth-first exploration from Tuck

Buchanan is next in the queue. It will add Tuck Dr. to queue and
visitedFrom.

Murdough @

Tuck

Murdough

Murdough

~

A Gold Coast

queue: “Cummings”, “Thayer”, “Buchanan”
visitedFrom: {"Tuck”: “start”, “Murdough”: “Tuck”, “Buchanan”: “Tuck”,
“Cummings”: “Murdough”, “Thayer”: “Murdough”, “Tuck Dr.”: “Buchanan’}

assignment suggestions

To get started:

1.
2.
3.
4

lgnore the fancy graphics, use a test case starting at Tuck.
Make sure you understand graphDict and why you need it.
Terminate the while loop after a fixed number of steps (17 27)

Print out the contents of the queue and visitedFrom each
time you modify one of them. Do they both contain strings?
Are the strings what you expect?

Once things are working, terminate the while loop using the
empty queue condition (to handle when goal is not in the
graph) an if/return pair (to handle when the goal was found).

Don’t worry about backchaining until you are absolutely
certain that visitedFrom is correct when the goal is found.

