
Pattern Recognition

what is the data?

pixels

0 128 255

pixels

32 32 32 223 223 223

32 32 32 223 223 223

32 32 32 223 223 223

32 32 32 223 223 223

32 32 32 223 223 223

32 32 32 223 223 223

pixels

[255,0,0]

[0,0,255]

color pixels

what is the data?

a color (RGB) image is represented as 3 matrices (arrays) each
containing numeric values typically in the range [0,255] with 0

corresponding to “black” and 255 corresponding to “white”

how do we compare two images?

70 244 129 38 236 89

173 86 178 65 89 211

167 149 227 214 50 149

41 57 244 64 64 140

30 191 139 207 157 233

127 65 35 62 120 72

193 135 3 42 114 137

192 198 85 153 21 254

97 238 41 67 58 19

144 33 202 166 232 112

19 145 79 175 38 27

13 119 134 190 210 245

image 1 image 2

70 244 129 38 236 89

173 86 178 65 89 211

167 149 227 214 50 149

41 57 244 64 64 140

30 191 139 207 157 233

127 65 35 62 120 72

193 135 3 42 114 137

192 198 85 153 21 254

97 238 41 67 58 19

144 33 202 166 232 112

19 145 79 175 38 27

13 119 134 190 210 245

image 1 image 2

-

-123 109 126 -4 122 -48

19 -112 93 -88 68 -43

70 -89 186 147 -8 130

-103 24 42 -102 -168 28

11 46 60 32 119 206

114 -54 -99 -128 -90 -173

image 1 - image 2
(difference)

123 109 126 4 122 48

19 112 93 88 68 43

70 89 186 147 8 130

103 24 42 102 168 28

11 46 60 32 119 206

114 54 99 128 90 173

| image 1 - image 2 |
(absolute value)

 | image 1 - image 2 |
(sum of absolute values)

3184

P

 | image 1 - image 2 |
(sum of absolute values)

P

 | image 1 - image 2 |
(sum of absolute values)

P

 | image 1 - image 2 |
(sum of absolute values)

P

 | image 1 - image 2 |
(sum of absolute values)

P

are pixels the right “data”?

there are at least two problems with pixels:

fragility

dimensionality

most recognition systems consist of two basic parts*

extract features (low-dimensional)

build a classifier based on features

* Not unique to face recognition

most recognition systems consist of two basic parts*

extract features (low-dimensional)

build a classifier based on features

* Deep neural networks combine these into one step

face recognition
from 2 features: training

Balkcom
Farid
Slaughter

eye color

IPD

face recognition
from 2 features: testing

Balkcom
Farid
Slaughter

Balkcom

face recognition
from 2 features: testing

Balkcom
Farid
Slaughter

Farid

face recognition
from 2 features: testing

Balkcom
Farid
Slaughter

Slaughter

face recognition
from 2 features: testing

Balkcom
Farid
Slaughter

???

face recognition
from 2 features: what are

good features?

Balkcom
Farid
Slaughter

face recognition
from 2 features: what are

good features?

low-dimensional and
discriminating

Balkcom
Farid
Slaughter

face recognition
from 2 features: how do

we select good features?

intuition and
black-magic

Balkcom
Farid
Slaughter

Facial Features (Geometric)

Facial Features (Principal Components Analysis (PCA))*

* aka Multi-Dimensional Scaling (MDS) or eigenfaces

Facial Features (PCA)

= w1 + w2 + w3 …

Facial Features (PCA)

= w1 + w2 + w3 …

basis

Facial Features (PCA)

= w1 + w2 + w3 …

weights

Facial Features (PCA)

= w1 + w2 + w3 …

features

Facial Features (PCA)

= w1 + w2 + w3 …

PCA automatically generates a basis from training data

Facial Features (PCA)

original (2-D)

Facial Features (PCA)

original (2-D)

projection reduces
dimensionality

Facial Features (PCA)

original (2-D) PCA (1-D) - project onto axis
of maximal variance

Facial Features (PCA)

An N x N pixel image is a point in a N2 dimensional space

Facial Features (PCA)

An N x N pixel image is a point in a N2 dimensional space

Given a large set of training images construct a PCA basis
(typically of dimensionality ~20)

Facial Features (PCA)

An N x N pixel image is a point in a N2 dimensional space

Given a large set of training images construct a PCA basis
(typically of dimensionality ~20)

Project all training images onto new basis

Facial Features (PCA)

An N x N pixel image is a point in a N2 dimensional space

Given a large set of training images construct a PCA basis
(typically of dimensionality ~20)

Project all training images onto new basis

Classify a testing image by projecting and finding nearest
neighbor

Balkcom
Farid
Slaughter

w1

w2
Facial Features (PCA)

Facial Features (PCA)

Challenges:

invariance to head pose, lighting, facial features, accessories

discrimination on a large-scale (7+ billion humans)

rebroadcast attacks

Facial Features (PCA)

Implementation:

openCV

Finding Faces in Images (Haar Cascades)

Finding Faces in Images (Haar Cascades)

Finding Faces in Images (Haar Cascades)

1 1
1 1
-1 -1
-1 -1

Finding Faces in Images (Haar Cascades)

1 1 -1 -1
1 1 -1 -1

Finding Faces in Images (Haar Cascades)

1 1
1 1
-1 -1
-1 -1

70 244 129 38 236 89

173 86 178 65 89 211

167 149 227 214 50 149

41 57 244 64 64 140

30 191 139 207 157 233

127 65 35 62 120 72

Finding Faces in Images (Haar Cascades)

193 135 3 42 114 137

192 198 85 153 21 254

97 238 41 67 58 19

144 33 202 166 232 112

19 145 79 175 38 27

13 119 134 190 210 245

1 1 -1 -1
1 1 -1 -1

Finding Faces in Images (Haar Cascades)
this is a face

Finding Faces in Images (Haar Cascades)
this is a face

Finding Faces in Images (Haar Cascades)
this is a face

Finding Faces in Images (Haar Cascades)
this is not face

Finding Faces in Images (Haar Cascades)
this is not face

Finding Faces in Images (Haar Cascades)

build a large database of faces
extract features (Haar response)

build a large database of non-faces
extract features (Haar response)

train a classifier

Linear Discriminant Analysis (LDA)
faces
not faces

H1

H2

Project into low-dimensional space to maximize discriminability

faces
not faces

H1

H2Linear Discriminant Analysis (LDA)

faces
not faces

H1

H2Linear Discriminant Analysis (LDA)

Project into low-dimensional space to maximize discriminability

faces
not faces

H1

H2Linear Discriminant Analysis (LDA)

Project into low-dimensional space to maximize discriminability

faces
not faces

H1

H2Linear Discriminant Analysis (LDA)

objective: minimize within-class variance & maximize across-class variance

faces
not faces

H1

H2Linear Discriminant Analysis (LDA)

classifier

faces
not faces

H1

H2Linear Discriminant Analysis (LDA)

classifier

face

faces
not faces

H1

H2Linear Discriminant Analysis (LDA)

classifier

not face

faces
not faces

H1

H2Linear Discriminant Analysis (LDA)

classifier

???

faces
not faces

H1

H2Support Vector Machines (SVM)

margin

objective: maximize margin

faces
not faces

H1

H2Support Vector Machines (SVM)

margin

objective: maximize margin

face

not face

faces
not faces

H1

H2Support Vector Machines (SVM)

linear vs. non-linear SVM

Implementation:

openCV

Finding Faces in Images (Haar Cascades, LDA, SVM)

Cancer Diagnosis

Cancer Diagnosis

mass spec from
patients with

cancer

mass spec from
patients without

cancer

feature extraction
(e.g., abundances at

specific masses)
classifier

hypothesis-driven

Cancer Diagnosis

mass spec from
patients with

cancer

mass spec from
patients without

cancer

PCA classifier

discovery-driven

Spam

text from spam
messages

text from non-
spam messages

feature extraction
(e.g., trigger words,

punctuation, sender, …)
classifier

Financial Fraud

tax returns from
fraudulent returns

tax returns from
legitimate returns

feature extraction classifier

Neural Networks

An artificial network consists of a pool of simple processing
units which communicate by sending signals to each other

over a large number of weighted connections.

more tomorrow…

faces
not faces

Supervised Learning

Unsupervised Learning

Clustering (K-means)

Unsupervised Learning

Clustering (K-means)

denote your data as pi where i = 1,2,…,m

pi

Clustering (K-means)

denote your data as pi where i = 1,2,…,m

denote n as the number of clusters (n=2 in this example)

pi

Clustering (K-means)

denote your data as pi where i = 1,2,…,m

denote n as the number of clusters (n=2 in this example)

we seek n cluster centers ci

pi c1

c2

Clustering (K-means)

denote your data as pi where i = 1,2,…,m

denote n as the number of clusters (n=2 in this example)

we seek n cluster centers ci and an assignment of each pi
to a cluster

c1

c2

Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy

Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy

pi = (xi,yi)

c1 = (u1,v1)

c2 = (u2,v2)

Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy

pi = (xi,yi)
d1

d2

c1 = (u1,v1)

c2 = (u2,v2)

Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy

pi = (xi,yi)
d1

d2

d1= sqrt((xi-u1)2 + (yi-v1)2)
d2= sqrt((xi-u2)2 + (yi-v2)2)

c1 = (u1,v1)

c2 = (u2,v2)

Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy

pi = (xi,yi)

d1= sqrt((xi-u1)2 + (yi-v1)2)
d2= sqrt((xi-u2)2 + (yi-v2)2)

if(d1 < d2)
 pi belongs to c1
else
 pi belongs to c2

c1 = (u1,v1)

c2 = (u2,v2)

d1

d2

Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy

pi = (xi,yi)

d1= sqrt((xi-u1)2 + (yi-v1)2)
d2= sqrt((xi-u2)2 + (yi-v2)2)

3-D, 4-D, …?
c1 = (u1,v1)

c2 = (u2,v2)

d1

d2

Clustering (K-means)

if we know assignment of each pi then estimation of ci is easy

Clustering (K-means)

if we know assignment of each pi then estimation of ci is easy

c1 = (u1,v1)

pi = (xi,yi)

Clustering (K-means)

if we know assignment of each pi then estimation of ci is easy

c1 = (u1,v1)

pi = (xi,yi)

center of mass:
u1 = 1/n (x1 + x2 + …. + xn)
v1 = 1/n (y1 + y2 + …. + yn)

Clustering (K-means)

if we know assignment of each pi then estimation of ci is easy

c2 = (u2,v2)

pi = (xi,yi)

center of mass:
u2 = 1/m (x1 + x2 + …. + xm)
v2 = 1/m (y1 + y2 + …. + ym)

Clustering (K-means)

if we know assignment of each pi then estimation of ci is easy

c2 = (u2,v2)

pi = (xi,yi)

center of mass:
u2 = 1/m (x1 + x2 + …. + xm)
v2 = 1/m (y1 + y2 + …. + ym)

3-D, 4-D, …?

Clustering (K-means)

but we don’t know cluster center or cluster assignment - we
have a chicken and egg problem.

Clustering (K-means)

1. initialize clusters (c1 and c2) randomly

Clustering (K-means)

1. initialize clusters (c1 and c2) randomly
2. assign each point (pi) to the closest cluster

Clustering (K-means)

1. initialize clusters (c1 and c2) randomly
2. assign each point (pi) to the closest cluster
3. re-estimate cluster centers
4. repeat until assignment doesn’t change

[demo]

Clustering (K-means): assumptions

