
Pattern Recognition



what is the data?
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what is the data? 

a color (RGB) image is represented as 3 matrices (arrays) each 
containing numeric values typically in the range [0,255] with 0 

corresponding to “black” and 255 corresponding to “white”



how do we compare two images?
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are pixels the right “data”?



there are at least two problems with pixels: 

fragility 

dimensionality



most recognition systems consist of two basic parts* 

extract features (low-dimensional) 

build a classifier based on features

*  Not unique to face recognition



most recognition systems consist of two basic parts* 

extract features (low-dimensional) 

build a classifier based on features

* Deep neural networks combine these into one step



face recognition  
from 2 features: training 
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face recognition  
from 2 features: what are  

good features? 

low-dimensional and 
discriminating 

Balkcom 
Farid 
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face recognition  
from 2 features: how do 

we select good features? 

intuition and 
black-magic 

Balkcom 
Farid 
Slaughter



Facial Features (Geometric)



Facial Features (Principal Components Analysis (PCA))*

* aka Multi-Dimensional Scaling (MDS) or eigenfaces



Facial Features (PCA)
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Facial Features (PCA)

= w1 + w2 + w3 …

weights



Facial Features (PCA)

= w1 + w2 + w3 …

features



Facial Features (PCA)

= w1 + w2 + w3 …

PCA automatically generates a basis from training data



Facial Features (PCA)

original (2-D)



Facial Features (PCA)

original (2-D)

projection reduces 
dimensionality



Facial Features (PCA)

original (2-D) PCA (1-D) - project onto axis 
of maximal variance
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An N x N pixel image is a point in a N2 dimensional space 
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Facial Features (PCA)

An N x N pixel image is a point in a N2 dimensional space 

Given a large set of training images construct a PCA basis 
(typically of dimensionality ~20) 

Project all training images onto new basis 

Classify a testing image by projecting and finding nearest 
neighbor



Balkcom 
Farid 
Slaughter

w1

w2
Facial Features (PCA)



Facial Features (PCA)

Challenges: 

invariance to head pose, lighting, facial features, accessories 

discrimination on a large-scale (7+ billion humans) 

rebroadcast attacks 



Facial Features (PCA)

Implementation: 

openCV 



Finding Faces in Images (Haar Cascades)
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Finding Faces in Images (Haar Cascades)

193 135 3 42 114 137

192 198 85 153 21 254
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Finding Faces in Images (Haar Cascades)
this is a face
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Finding Faces in Images (Haar Cascades)
this is not face



Finding Faces in Images (Haar Cascades)
this is not face



Finding Faces in Images (Haar Cascades)

build a large database of faces 
extract features (Haar response) 

build a large database of non-faces 
extract features (Haar response) 

train a classifier



Linear Discriminant Analysis (LDA)
faces 
not faces

H1

H2



Project into low-dimensional space to maximize discriminability
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faces 
not faces

H1

H2Linear Discriminant Analysis (LDA)

objective: minimize within-class variance & maximize across-class variance
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H1

H2Linear Discriminant Analysis (LDA)

classifier

???
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H1

H2Support Vector Machines (SVM)
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faces 
not faces

H1

H2Support Vector Machines (SVM)

linear vs. non-linear SVM



Implementation: 

openCV 

Finding Faces in Images (Haar Cascades, LDA, SVM)



Cancer Diagnosis



Cancer Diagnosis

mass spec from  
patients with 

cancer

mass spec from  
patients without 

cancer

feature extraction 
(e.g., abundances at 

specific masses)
classifier

hypothesis-driven



Cancer Diagnosis

mass spec from  
patients with 

cancer

mass spec from  
patients without 

cancer

PCA classifier

discovery-driven



Spam

text from spam 
messages

text from non-
spam messages

feature extraction 
(e.g., trigger words, 

punctuation, sender, …)
classifier



Financial Fraud

tax returns from 
fraudulent returns

tax returns from 
legitimate returns

feature extraction classifier



Neural Networks

An artificial network consists of a pool of simple processing 
units which communicate by sending signals to each other 

over a large number of weighted connections. 

more tomorrow…



faces 
not faces

Supervised Learning



Unsupervised Learning



Clustering (K-means)

Unsupervised Learning
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Clustering (K-means)

denote your data as pi where i = 1,2,…,m 

denote n as the number of clusters (n=2 in this example) 

we seek n cluster centers ci and an assignment of each pi 
to a cluster

c1 

c2 



Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy
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Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy

pi = (xi,yi)

d1= sqrt( (xi-u1)2 + (yi-v1)2 )  
d2= sqrt( (xi-u2)2 + (yi-v2)2 ) 

if( d1 < d2 ) 
     pi belongs to c1 
else 
     pi belongs to c2

c1 = (u1,v1)

c2 = (u2,v2)

d1

d2



Clustering (K-means)

if we know ci then assignment of each pi to a cluster is easy

pi = (xi,yi)

d1= sqrt( (xi-u1)2 + (yi-v1)2 )  
d2= sqrt( (xi-u2)2 + (yi-v2)2 ) 

3-D, 4-D, …?
c1 = (u1,v1)

c2 = (u2,v2)

d1

d2
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Clustering (K-means)

if we know assignment of each pi then estimation of ci is easy

c1 = (u1,v1)

pi = (xi,yi)

center of mass: 
u1 = 1/n (x1 + x2 + …. + xn) 
v1 = 1/n (y1 + y2 + …. + yn)



Clustering (K-means)

if we know assignment of each pi then estimation of ci is easy

c2 = (u2,v2)

pi = (xi,yi)

center of mass: 
u2 = 1/m (x1 + x2 + …. + xm) 
v2 = 1/m (y1 + y2 + …. + ym)



Clustering (K-means)

if we know assignment of each pi then estimation of ci is easy

c2 = (u2,v2)

pi = (xi,yi)

center of mass: 
u2 = 1/m (x1 + x2 + …. + xm) 
v2 = 1/m (y1 + y2 + …. + ym) 

3-D, 4-D, …?



Clustering (K-means)

but we don’t know cluster center or cluster assignment - we 
have a chicken and egg problem.



Clustering (K-means)

1. initialize clusters (c1 and c2) randomly 



Clustering (K-means)

1. initialize clusters (c1 and c2) randomly 
2. assign each point (pi) to the closest cluster 



Clustering (K-means)

1. initialize clusters (c1 and c2) randomly 
2. assign each point (pi) to the closest cluster 
3. re-estimate cluster centers 
4. repeat until assignment doesn’t change



[demo]



Clustering (K-means): assumptions


