Pattern Recognition

what is the data?

pixels

pixels

			32	32	32	223	223	223
			32	32	32	223	223	223
			32	32	32	223	223	223
			32	32	32	223	223	223
			32	32	32	223	223	223
			32	32	32	223	223	223

color pixels

[255,0,0]

[0,0,255]

what is the data?

a color (RGB) image is represented as 3 matrices (arrays) each containing numeric values typically in the range [0,255] with 0 corresponding to "black" and 255 corresponding to "white" how do we compare two images?

70	244	129	38	236	89
173	86	178	65	89	211
167	149	227	214	50	149
41	57	244	64	64	140
30	191	139	207	157	233
127	65	35	62	120	72

193	135	3	42	114	137
192	198	85	153	21	254
97	238	41	67	58	19
144	33	202	166	232	112
19	145	79	175	38	27
13	119	134	190	210	245

image 2

image 1

70	244	129	38	236	89
173	86	178	65	89	211
167	149	227	214	50	149
41	57	244	64	64	140
30	191	139	207	157	233
127	65	35	62	120	72

193	135	3	42	114	137
192	192 198		153	21	254
97	238	41	67	58	19
144	33	202	166	232	112
19	145	79	175	38	27
13	119	134	190	210	245

image 2

image 1

-123	109	126	-4	122	-48
19	-112	93	-88	68	-43
70	-89	186	147	-8	130
-103	24	42	-102	-168	28
11	46	60	32	119	206
114	-54	-99	-128	-90	-173

image 1 - image 2 (difference)

123	109	126	4	122	48
19	112	93	88	68	43
70	89	186	147	8	130
103	24	42	102	168	28
11	46	60	32	119	206
114	54	99	128	90	173

| image 1 - image 2 | (absolute value) 3184

are pixels the right "data"?

there are at least two problems with pixels:

fragility

dimensionality

most recognition systems consist of two basic parts*

extract features (low-dimensional)

build a classifier based on features

* Not unique to face recognition

most recognition systems consist of two basic parts*

extract features (low-dimensional)

build a classifier based on features

* Deep neural networks combine these into one step

face recognition from 2 features: testing

Balkcom Farid Slaughter

Balkcom Farid Slaughter

face recognition from 2 features: what are good features? Balkcom Farid Slaughter

face recognition from 2 features: what are good features?

low-dimensional and discriminating

Balkcom Farid Slaughter

face recognition from 2 features: how do we select good features?

intuition and black-magic

Balkcom Farid Slaughter

Facial Features (Geometric)

Facial Features (Principal Components Analysis (PCA))*

* aka Multi-Dimensional Scaling (MDS) or eigenfaces

PCA automatically generates a basis from training data

original (2-D)

projection reduces dimensionality

original (2-D)

original (2-D)

PCA (1-D) - project onto axis of maximal variance

An N x N pixel image is a point in a N^2 dimensional space

An N x N pixel image is a point in a N^2 dimensional space

Given a large set of <u>training</u> images construct a PCA basis (typically of dimensionality ~20)

An N x N pixel image is a point in a N^2 dimensional space

Given a large set of <u>training</u> images construct a PCA basis (typically of dimensionality ~20)

Project all training images onto new basis

An N x N pixel image is a point in a N² dimensional space

Given a large set of <u>training</u> images construct a PCA basis (typically of dimensionality ~20)

Project all training images onto new basis

Classify a testing image by projecting and finding nearest neighbor

W2

4

Balkcom Farid Slaughter

 W_1

Challenges:

invariance to head pose, lighting, facial features, accessories

discrimination on a large-scale (7+ billion humans)

rebroadcast attacks

Implementation:

openCV

this is a face

this is a face

this is a face

this is not face

this is not face

build a large database of faces extract features (Haar response)

build a large database of non-faces extract features (Haar response)

train a classifier

Project into low-dimensional space to maximize discriminability

Project into low-dimensional space to maximize discriminability

objective: minimize within-class variance & maximize across-class variance

Finding Faces in Images (Haar Cascades, LDA, SVM)

Implementation:

openCV

Cancer Diagnosis

hypothesis-driven

discovery-driven

Spam

Financial Fraud

Neural Networks

An artificial network consists of a pool of simple processing units which communicate by sending signals to each other over a large number of weighted connections.

more tomorrow...

denote your data as p_i where i = 1, 2, ..., m

- denote your data as p_i where i = 1, 2, ..., m
- denote *n* as the number of clusters (n=2 in this example)

- denote your data as p_i where i = 1, 2, ..., m
- denote n as the number of clusters (n=2 in this example)
- we seek *n* cluster centers *c_i*

- denote your data as p_i where i = 1, 2, ..., m
- denote *n* as the number of clusters (n=2 in this example)
- we seek *n* cluster centers c_i and an assignment of each p_i to a cluster

if we know c_i then assignment of each p_i to a cluster is easy

 $d_1 = sqrt((x_i-u_1)^2 + (y_i-v_1)^2)$ $d_2 = sqrt((x_i-u_2)^2 + (y_i-v_2)^2)$

if we know c_i then assignment of each p_i to a cluster is easy

 $d_1 = sqrt((x_i-u_1)^2 + (y_i-v_1)^2)$ $d_2 = sqrt((x_i-u_2)^2 + (y_i-v_2)^2)$

if we know assignment of each p_i then estimation of c_i is easy

if we know assignment of each p_i then estimation of c_i is easy

if we know assignment of each p_i then estimation of c_i is easy

center of mass: $U_1 = 1/n (x_1 + x_2 + \dots + x_n)$ $V_1 = 1/n (y_1 + y_2 + \dots + y_n)$ $C_1 = (U_1, V_1)$ $\mathcal{D}_i = (X_i, Y_i)$

if we know assignment of each p_i then estimation of c_i is easy

center of mass: $u_2 = 1/m (x_1 + x_2 + \dots + x_m)$ $v_2 = 1/m (y_1 + y_2 + \dots + y_m)$

if we know assignment of each p_i then estimation of c_i is easy

center of mass: $U_2 = 1/m (x_1 + x_2 + \dots + x_m)$ $V_2 = 1/m (y_1 + y_2 + \dots + y_m)$ 3-D, 4-D, ...? $C_2 = (U_2, V_2)$ $D_i = (X_i, Y_i)$

but we don't know cluster center or cluster assignment - we have a chicken and egg problem.

1. initialize clusters (c_1 and c_2) randomly

- 1. initialize clusters (c_1 and c_2) randomly
- 2. assign each point (pi) to the closest cluster

- 1. initialize clusters (c_1 and c_2) randomly
- 2. assign each point (pi) to the closest cluster
- 3. re-estimate cluster centers
- 4. repeat until assignment doesn't change

[demo]

